
 SMC
2.1 SDK
Programming

Guide

Contents

Copyrights

Preface

About This Guide
Who Should Read
This?
How This Guide is
Organized
Typographic
Conventions
PDF Version

What's New in
2.1?

Introduction

What is the SMC
SDK?
SMC SDK
Components
Features and
Benefits of the SMC
SDK
SMC SDK Contents

Getting Started

SMC Architecture
Sample User Session
How To Proceed
Starting the Console
Starting Services

Tools

Overview
Tool Model
UI Components
Accessing Resources
Packaging
Scope
Registration
Localization

Toolboxes

Overview
Starting the Toolbox
Editor

 Preface

About This Guide ~ Who Should Read This? ~ How This Guide is

Organized ~ Typographic Conventions ~ PDF Version

About This Guide

This guide provides instructions for using the SolarisTM Management Console 2.1 Software
Development Kit (SMC SDK) to create and port tools and services based on the SMC distributed
application environment. This guide also provides a general overview of the SMC architecture
and JavaBeansTM design considerations as they apply to the SMC SDK.

Who Should Read This?

This guide is intended for programmers who want to create or port applications for the SMC
environment. Readers of this guide should be proficient with Java, JavaBeans, and general
object-oriented programming techniques.

Please use this guide in conjunction with the SMC javadocs
(/usr/sadm/lib/smc/docs/javadoc/index.html) as well the smc(1M), smcregister(1M), and
smccompile(1M) man pages.

How This Guide is Organized

This guide is organized into the general sections listed below, followed by a glossary and a list of
illustrations. All sections in the guide can be reached from links in the navigation pane on the left,
which can be toggled between Index and TOC views.

What's New in 2.1? Brief descripions of the new features
in the SMC 2.1 SDK

Introduction General introduction to the uses and
features of the SMC SDK

Getting Started Overview of SMC architecture, tools,
services, and infrastructure; includes
high-level explanations of procedures
for creating and porting tools and
services with the SMC SDK

Services

Overview
Common Services
Model
Accessing other
services
Bundled Common
Services
Packaging
Registration
Debugging
Third-Party
Integration

Libraries

Overview
Packaging
Registration

Registration

Overview
smcregister
smcconf

Frequently Asked
Questions

Code Samples

Illustrations

Glossary

Tools In-depth instructions on how to build
and package a Tool, from a simple
CLI interface to a more complex
GUI, console. Also includes an
overview of some of the more
important user interface components
included in the SDK, with
instructions on how and when to use
them

Toolboxes Overview of what a toolbox is, and
how to manage them

Services In-depth instructions on how to build
and package a Service

Registration In-depth instructions on how to use
smcregister for registering Tools and
Services

Frequently Asked Questions General FAQ for the SMC SDK

Code Samples Compiled list of sample code used in
this guide

Illustrations Compiled list of illustrations used in
this guide

Glossary Glossary of terms relevant to SMC

While it is not necessary to read the sections in any particular order, you should be familiar with
the concepts in the Introduction and Getting Started sections before starting to use the SMC SDK.

Typographic Conventions

File names, commands, environment variables, class names and methods, and field values
are displayed in a fixed width font.

●

Links to glossary terms are in indicated by small book icons in the main text. For
example, Sun Management Center. Use the Back button in your browser to return to the
main text.

●

Code samples are displayed in separate windows alongside the main text. Code samples
can be displayed by clicking the Sample Code boxes; for example:

Sample Code Hello

●

PDF Version

To make it easier to print (or if you simply prefer PDF), this guide is also available in PDF
format. The PDF version contains this entire SDK guide in a single file.

 Copyrights

Copyright © 2001, Sun Microsystems, Inc.

This product or document is protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or document may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any. Third-party software, including font
technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.
UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company,
Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, Solaris Management Console, and Solaris are trademarks,
registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in
the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of
visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK
GUIs and otherwise comply with Sun's written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of
FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR
227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON- INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être
reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de
ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux
polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l'Université de
Californie. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par
X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, Solaris Management Console, et Solaris sont des marques
de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans
d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des
marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les
marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement
du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient une
licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également
les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU
IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS.
CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU
JURIDIQUEMENT NUL ET NON AVENU.

 Preface

About This Guide ~ Who Should Read This? ~ How This Guide is

Organized ~ Typographic Conventions ~ PDF Version

About This Guide

This guide provides instructions for using the SolarisTM Management Console 2.1 Software
Development Kit (SMC SDK) to create and port tools and services based on the SMC
distributed application environment. This guide also provides a general overview of the SMC
architecture and JavaBeansTM design considerations as they apply to the SMC SDK.

Who Should Read This?

This guide is intended for programmers who want to create or port applications for the SMC
environment. Readers of this guide should be proficient with Java, JavaBeans, and general
object-oriented programming techniques.

Please use this guide in conjunction with the SMC javadocs
(/usr/sadm/lib/smc/docs/javadoc/index.html) as well the smc(1M), smcregister(1M), and
smccompile(1M) man pages.

How This Guide is Organized

This guide is organized into the general sections listed below, followed by a glossary and a list
of illustrations. All sections in the guide can be reached from links in the navigation pane on the
left, which can be toggled between Index and TOC views.

What's New in 2.1? Brief descripions of the new features in the
SMC 2.1 SDK

Introduction General introduction to the uses and features of
the SMC SDK

Getting Started Overview of SMC architecture, tools, services,
and infrastructure; includes high-level
explanations of procedures for creating and
porting tools and services with the SMC SDK

Tools In-depth instructions on how to build and
package a Tool, from a simple CLI interface to
a more complex GUI, console. Also includes an
overview of some of the more important user
interface components included in the SDK, with
instructions on how and when to use them

Toolboxes Overview of what a toolbox is, and how to
manage them

Services In-depth instructions on how to build and
package a Service

Registration In-depth instructions on how to use smcregister
for registering Tools and Services

Frequently Asked Questions General FAQ for the SMC SDK

Code Samples Compiled list of sample code used in this guide

Illustrations Compiled list of illustrations used in this guide

Glossary Glossary of terms relevant to SMC

While it is not necessary to read the sections in any particular order, you should be familiar with
the concepts in the Introduction and Getting Started sections before starting to use the SMC
SDK.

Typographic Conventions

File names, commands, environment variables, class names and methods, and field
values are displayed in a fixed width font.

●

Links to glossary terms are in indicated by small book icons in the main text. For
example, Sun Management Center. Use the Back button in your browser to return to
the main text.

●

Code samples are displayed in separate windows alongside the main text. Code samples
can be displayed by clicking the Sample Code boxes; for example:

Sample Code Hello

●

PDF Version

To make it easier to print (or if you simply prefer PDF), this guide is also available in PDF

file:///F|/stuff/viper/s9v2/SDK-all.pdf

format. The PDF version contains this entire SDK guide in a single file.

 What's New in 2.1?

Faster Server Configuration ~ Faster Tools ~ New Registration Command ~ Java

Runtime Requirement ~ More Troubleshooting Tips ~ PDF Version

 Faster Server Configuration

The initial server startup configuration has been significantly reduced from several minutes to
just a few seconds.

 Faster Tools

Runtime performance of tools running in the console has been improved by a factor of
approximately 2-3x. This speedup is also available as a patch to all Solaris 8 updates starting
with the Solaris 01/01 update.

 New Registration Command

/usr/sadm/bin/smcregister is a new command-line tool for administering the SMC
repository. It is intended to replace /usr/sadm/bin/smcconf as the preferred interface for
managing the repository, as well as for managing toolboxes from within scripts, due to
significant performance enhancements over smcconf. See the registration section for detailed
information on smcregister.

 Java Runtime Requirement

SMC 2.1 requires Java 1.4

 More Troubleshooting Tips

The FAQ has been enhanced with more trouble-shooting tips relative to registration of tools and
services, and the SMC/Wbem server.

 PDF Version

To make it easier to print (or if you simply prefer PDF), this guide is also available in PDF
format. The PDF version contains this entire SDK guide in a single file.

file:///F|/stuff/viper/s9v2/SDK-all.pdf

 Introduction

What is the the SMC SDK? ~ SMC SDK Components ~ Features and Benefits of the SMC

SDK ~ SMC SDK Contents

What is the SMC SDK?

The SMC (Solaris Management Console) SDK is a software development kit designed to give
developers a platform on which to develop and deploy distributed applications. For example,
Sun Microsystems, Inc. is using the SMC SDK to develop Solaris system management
applications which plug into the SolarisTM Management ConsoleTM 2.1.

A distinguishing feature of the SMC SDK is its ability to present to the end user a unified
console consisting of user interface components that may have been built using several different
development platforms and middleware services. For example, a user interface created with the
SMC SDK might combine a simple disk management tool with a WBEM-based user
management tool, both of which would appear in the same console on the user's desktop.

SMC SDK Components

The SMC SDK environment comprises five general components:

Component Description

Tools Client-side applications; in SMC, all tools are written as sets of
JavaBeans

Consoles A container for SMC client tools; the SMC "desktop" from
which users perform management tasks

Services Server-side applications that support SMC tools; native SMC
services are generally a combination of Java and
platform-specific code

Look and Feel The presentation layer used in a console; in SMC, "Look and
Feel" is a pluggable component, and you can use whatever
look and feel -- including a command-line interface -- that is
most appropriate for your tools and customers

Infrastructure The "glue" that holds everything together; the SMC
infrastructure includes a set of core services and an

RMI-based communication model, although SMC tools and
services can also be implemented using other infrastructures,
such as CIM/ WBEM, and SunMC.

See the Getting Started section for a more complete description of the SMC architecture.

Features and Benefits of the SMC SDK

The SMC SDK provides several important features and benefits:

Common platform for all your tools -- Perhaps the biggest benefit the SMC SDK
provides is a common platform for deploying end user components. These components
can all share a common user model, and look and behave in the same manner, regardless
of the back end services the components might use.

●

Convenient core services --The SMC SDK also provides a convenient middleware
platform with a set of core services such as authorization, logging, messaging, and others.
See Bundled Common Services for more information about the SMC SDK core services.

●

Rapid and secure -- Another benefit of working with the SMC SDK is the rapid
development of secure, distributed applications. For server-side development, the SMC
SDK utilizes Java developers' existing knowledge of standard Java RMI (Remote Method
Invocation) and avoids presenting developers with any new paradigms or technologies.
For client-side development, the SMC SDK simply extends the set of lightweight user
interface components found in the Java Foundation Classes (JFC, a.k.a. Swing) with new
components and features such as wizards, property sheet editors, filtering, sorting, and
more.

●

Pure Java -- Because the SMC SDK is nearly 100% pure Java, it can be made available
on any platform with a Java2 runtime environment. A completely platform-independent
version of the SMC SDK is possible, as the only portions of the SMC SDK which are
platform dependent are for functions such as user authentication and authorization. These
portions can be replaced with different implementations on platforms other than Solaris.

●

SMC SDK Contents

The SMC SDK is a complete distributed application environment, including a server providing
remote services and a local console client providing an integrated user interface. The SMC SDK
includes:

Core services such as:●

Authentication■

Authorization■

Logging■

Messaging■

User Preferences■

Registration■

Application launch management■

Persistence■

JFC extensions such as:

Dialog■

Wizard■

Property Sheet Editor■

●

JavaDOC -- All public classes documented in HTML●

This SDK Guide●

Example code demonstrating many key features of the SMC SDK●

 Getting Started

SMC Architecture ~ Sample User Session ~ How To Proceed ~ Creating Tools ~ Creating

Services ~ Migrating Applications to SMC ~ Starting the Console ~ Starting Services

This section provides an overview of SMC architecture, and explains the basic steps and
considerations involved in creating and porting tools and services for the SMC platform.

SMC Architecture

SMC is a Java-based application environment designed to facilitate the rapid development of
network management client tools and server-based services.

In the simplest terms, the SMC environment is based on three types of JavaBeans components:

JavaBean Description

Tools Client-side applications; for example, a date/time tool that shows a
clock and calendar, and which allows the user to change the date
and time on a machine. Tools are the simplest GUI presentations in
the SMC system.

Consoles An extension of a Tool, providing a more advanced GUI
presentation, and acting as a container for sets of client Tools. For
example, a Console could provide a common display hierarchy,
toolbar, menu bar, and information pane for the Tools it contains.
The benefit of this model is that Tools can be combined into a
single Console implementation, sharing the common resources
provided by the Console, yet still retain their own complex
hierarchies and behavior.

Services Server-side components that support SMC tools; native SMC
services are generally a combination of Java and platform-specific
code. SMC includes a set of core services for security,
authentication, authorization, messaging, user preferences,
registration, logging, and launch management.

These three primary components are integrated by means of three sets of meta-components:

Meta-Component Description

Look and Feel The presentation layer used in a Console -- that is, the
specific window and dialog types, interface widgets, layout,
and so forth. In the SMC, "Look and Feel" is a pluggable
component, and you can use whatever look and feel --
including a command-line interface -- that is most
appropriate for your tools and customers.

Infrastructure The "glue" that holds everything together; the SMC
infrastructure includes the core services listed above and an

RMI-based communication model, although SMC tools
and services can also be implemented using other
infrastructures, such as CIM/ WBEM,and SunMC.

Event Bus Any tool running in the SMC console can receive events
related to any other tool in the console by means of the
VConsoleActionListener interface. Tools that
implement VConsoleActionListener are said to be
on the event bus because, analogous to a hardware bus, all
events on the bus are public and available to any tool that is
configured to listen for one or more event types. See Events
for more information.

The illustration below provides a general overview of SMC architecture.

SMC Architecture Overview

Console Description

In the accompanying illustration, the SMC Console contains four tools implemented as
JavaBeans. In this case, two of the tools are SMC native, one is WBEM-based, and the fourth is
SunMC-based. The specific combination of tools here is for illustration purposes only -- the
point is that you can integrate native SMC tools with tools based on other object models.

Tools are organized into toolkits, which are properties files associated with given users,
groups, and/or administrative roles. Toolkits, in turn, are displayed in the console, with the

specific user interface determined by the look and feel implemented for the console.

Look and feel is a pluggable component that can vary from console to console regardless of
the toolkits used. For example, the look and feel of a given toolkit in one console could
implement the common MS Windows Explorer-like interface, while the same toolkit could
be used in a browser-based interface modeled on Motif property sheets. SMC tools can be
ported as standalone Java applications, and browser-based Java applets. The illustration
below shows the default SMC look and feel.

Default SMC Look and Feel

The console provides container and wrapper services for the tools. One of the most important
aspects of this wrapper service is to provide a conduit between the toolkit and the
platform-specific APIs. This makes it possible to write tools that have no platform-specific
interfaces.

Communication between the client view -- that is, a browser-based applet, a standalone Java
application, and so forth -- is accomplished via XML and/or HTTP over RMI.

Note that while creating customized consoles is certainly possible, supporting documentation is
not available at this time.

Server Description

Again, in the architecture illustration above, the SMC server contains the SMC core services
and three tool-specific SMC services. A SunMC server and a CIM object manager
communicate with the SMC server directly. The CIM object manager also communicates with a
WBEM tool in the console.

Services implemented in the SMC server can be configured as daemons, singletons, or
multiple-instance processes.

One of the interesting features of the SMC server model is that it supports non-native services
like CIM/WBEM and SunMC. The SMC server acts as wrapper for these non-native services,
providing a model for extending the server infrastructure APIs to support platform-specific
hooks. Moreover, because the SMC server is built from sets of pluggable native and (in this
example) non-native components, dynamic and distributed management of services -- for
example, updating and replacing components -- is relatively quick and easy.

Similar to the model used for SMC client tools, the SMC server infrastructure API isolates
platform-specific code in the server components from the tools by means of the server
infrastructure API. In this model, the tools do not need to know about the underlying platform
on which a given service runs.

Ideally, to take advantage of SMC's component-oriented design, you should as much as
possible adhere to Model->Viewer->Controller paradigm of separating your client and
server code as much as possible, and rely as little as possible on platform- or
service-specific APIs.

In the SMC coding model, tools do not have direct access to console components -- for
example, the navigation and results pane. Instead, specific interfaces are provided for
accessing the underlying data model, and for accessing and customizing the console.

Remote Method Invocation

As mentioned previously, SMC uses RMI by default for communications between services
and tools. There is nothing in the SMC architectural model that prevents the use of other
communication models, but RMI is recommended for its ease of use, which complements the
SMC goal of enabling rapid development of management applications.

In cases where difficulties using RMI arise -- for example, when operating through some
firewalls -- RMI has the capability to fall back to HTTP as its transport mechanism.

The illustration below shows a typical RMI client/server interaction, in which a skeleton object
is used for passing client and server parameters. In this model, a typical server application
creates some remote objects, makes references to them accessible, and waits for clients to
invoke methods on these remote objects. A typical client application gets a remote reference to
one or more remote objects on the server, and then invokes methods on them. RMI provides the
mechanism by which the server and client communicate and pass information.

RMI Client/Server Model

Writing an SMC application is similar to writing a common RMI application, except that
SMC developers can ignore the "stub" and "skeleton" components shown in the illustration.

Sample User Session

Before stepping through the flow of events in a typical SMC user session, it is useful to describe
SMC tools and toolkits in slightly more detail.

Tool Initialization Parameters

Toolkits are defined by properties files, in which sets of tools are specified. In particular, as
shown in the illustration above, an SMC toolkit needs to know three things about a tool before
that tool can be initialized:

Class name -- The tool's class name, as provided by the tool information file (XML
format)

●

Server name -- The name of the local or remote server on which the tool is located●

Managed scope -- The scope, in URL form, that the tool can manage; if that scope
requires a session to some other server, the tool obtains a session to that machine using
getExternalClient()

●

With this in mind, the illustration below shows an example of the flow of events in a typical
SMC session.

Typical SMC Session

Before doing anything in a console, the user must open a toolbox. The console attempts to
construct a view of the toolbox by reading the server location and the class name for each tool
encountered.

For each server on which a tool is located, the SMC console must authenticate the user before
any tool or tool information can be retrieved. This authentication happens through one or more
dialog boxes, depending on where the tools are located.

For example, in the illustration, tools A and B both reside on the same server, so the console
only requires the user to log in once. However, tools C and D reside on two different servers,
and so the user is presented with two separate authentication dialogs. In this example, the user
must log in three times, to three different servers, before the toolkit will load.

How to Proceed

It's probably best to understand the main classes that you need to implement and/or will work
with most often in the SMC environment. The reader is urged to consult the SMC SDK
javadocs for details on these classes.

The primary classes and files are:

Tool●

Tool Descriptor●

VConsoleProperties●

VConsoleActionListener●

VScopeNode●

Creating Tools

The general steps for creating an SMC tool are as follows:

Develop a JavaBean implementing the SMC Tool interface1.

Include the Java service interface for the tool's corresponding service (optional)2.

Package and register the tool with the SMC server3.

Add the tool's authorizations to users, profiles, roles, etc.4.

Add the tool to a toolbox5.

Creating Services

The general steps for creating an SMC service are as follows:

Develop a Java service interface for the server-side bean1.

Develop a JavaBean service implementation implementing the SMC Service interface
and your service interface

2.

Package and register the service with the SMC server3.

Add the service's authorizations to users, profiles, roles, etc.4.

Migrating Applications to SMC

The first question one might ask when considering porting their applications to SMC is "How
much of my existing code is salvageable?". It depends, you might salvage more than half, or
you might salvage nothing. For applications that display their data as simple nodes or in tables,
the SMC engine will handle all the rendering for you; you need only provide your icons and
data. So if your application maintains a clear seperation between it's data model and the
presentation of that data, you can salvage the data model and it's management code, but throw
away the presentation code. Note that applications can still do their own rendering, but that
SMC provides "Windows Explorer-like" rendering services for free for those applications that
need a similar presentation.

Many applications are integrated into a parent console which is proprietary to their product. If
access to that console is provided thru a proxy class which provides the interface to the console,

then only the proxy needs to be changed to "point" to the SMC console, with little or no
changes to the application. Otherwise, you'll need to specifically port every instance where the
application has specific knowledge of the parent console.

In the SMC framework, applications do not have direct access to console components (eg., the
navigation pane, the results pane). Instead, specific interfaces are provided for accessing the
underlying data model and for accessing and customizing the console.

The SMC Service model is similar to other RPC models. You need to seperate out the
presentation layer from those functions that need to be performed on the server. The
presentation layer becomes the client side tool and the part that runs on the server becomes one
or more services. An interface needs to be defined between the tool and service(s). Some of the
native code on server side can be preserved by adding a JNI interface to it. Click here for details
on working with SMC services.

Starting the Console

In most cases, you start the console with the command /usr/sadm/bin/smc. This will
launch the console and allow you to run tools from the toolboxes you load. By default, SMC
will load the toolbox called this_computer.tbx for the local machine on which the
console was started.

IMPORTANT: Note that only upon the first time the console is started after installation, there
will be a delay of several seconds before the toolbox is loaded. This is due to SMC server
configuration taking place. During this time, SMC is bootstrapping it's registry with the tools
and services required for the SMC framework to run properly. It is important to be patient and
let this configuration complete, otherwise SMC may not function properly.

Starting Services

SMC services are bundled with WBEM services into a single JVM, and thus can be started and
stopped thru the WBEM script /etc/init.d/init.wbem.

To start the services, enter the following command:

/etc/init.d/init.wbem start

To stop the services, enter the command:

/etc/init.d/init.wbem stop

 Tools

Overview ~ Tool Model ~ UI Components ~ Access Resources ~ Packaging ~ Scope

~ Registration ~ Localization

Overview

This section provides detailed information about the SMC client tool model, and describes the
core SMC client classes you must use in your tool implementations.

Tool Model

The SMC tool model defines the basic components of a tool implementation, and how these
components are used to manage the presentation of data. A tool consists of five major
components, as described below.

Tool

The Tool class is the main interface client tools must implement, and is the top-level client
class instantiated by the console.

You are not limited to one instance of the Tool class. For example, you can create one instance
each for all your navigation nodes, or create one master instance with which all nodes are
associated, or create one for each of the non-leaf nodes, among other possibilities.

The design you choose depends on how you want to structure your application, and how much
may be in common among your navigation nodes. Navigational nodes are associated with
specific Tool instances by means of VScopeNode.setTool(Tool).

While you must implement all methods in the Tool interface, six are of particular interest, and
called in the order as presented here:

Method Description

Tool.setToolContext() Provides a handle to the
ToolContext object, used for
retrieving information (such as
it's management scope) about
the environment the tool is run
in.

Tool.setProperties() Provides a handle to the shared
properties object that all
components in the SMC system
can use for property storage

Tool.addConsoleActionListener() Allows other system
components to register to
receive your events; you simply
need to maintain a list of these
listeners

Tool.init() Called after the Tool is
instantiated, it is the time when
a Tool should connect to
server-side services.

Tool.start() Called whenever any node
associated with the Tool
instance is clicked; for a one
Tool instance application, it is
a signal that your application
has focus

Tool.stop() Called whenever any node not
associated with the Tool
instance is clicked; for a one
Tool instance application, it is
a signal that your application
has lost focus

It is important to know
when your application does
or does not have focus
because it will receive all
events on the event bus,
even those related to other
applications.

Tool Descriptor

Every tool must have a deployment descriptor before it can be registered and maintained by
SMC. A descriptor includes static information about the tool component that is used by the
SMC console to form a representation of the tool without actually instantiating it, and to
manage the lifecycle of its instances.

There are several attributes common to all tools, such as:

Tool package path (provider-class tag) -- SMC needs the provider-class in order to●

instantiate your Tool.

Resource bundle location -- Defines the base location and name of the Tool's
ResourceBundle (resource-bundle tag). The resource-bundle is used to lookup special
localized properties that are needed in order to present the Tool in the console without
instantiating it. These special properties are: LARGEICON, SMALLICON, BEANNAME,
DESCRIPTION, and VENDOR, and are discussed TBD.

●

Help file location (Optional) -- Defines the base location and name of the JavaHelp help
set for this component. See TBD for details on the policy established by SMC for
packaging of JavaHelp bundles.

●

SMC SDK API version (Required) -- Defines the String version number of the SMC
SDK API this component builds against. This must be in the form of :
major[.minor]

●

Supported tool display contexts -- Application GUI, applet, CLI.●

Supported Management Scopes (Optional) -- Defines the management scopes this
service supports. Supported management scopes specifies which one or more of the
following name services contents will be accessed and/or changed by this service:

file | nis | nisplus | ldap | dns

If not specified, file scope is assumed.

●

Runtime parameters (optional) -- Defines runtime attributes that effect service
behavior. Unlike global registry properties, these runtime parameters can be different for
each tool.

●

An SMC tool descriptor is defined as an XML-based file. Please refer to the "Deployment
Descriptor DTD" at /usr/sadm/lib/smc/lib/dtds/viperbean_1_0.dtd for
detailed syntax information.

Sample Code Tool Descriptor

VConsoleProperties

VConsoleProperties represents a shared Properties object that all components in an
SMC system can use for property storage.

The setProperties() method in your Tool instance is called once after instantiation to
provide a handle to the Properties object. You may want to cache the setProperties()
reference because you will eventually need it to access console properties.

Sample Code Tool.setProperties()

Additionally, you can register a PropertyChangeListener with the Properties
object so you can be notified when properties change. The easiest way to do this is to have
your main Tool class also implement PropertyChangeListener.

Sample Code PropertyChangeListener

In addition to the various console properties as defined in VConsoleProperties, you can create
your own properties for storage of tool preferences, so that they can be restored in subsequent
sessions. To avoid namespace collisions with similarly named preferences in other tools, or
even within the same tool, it is recommended that preference names be based on the full class
name of the class in which the preference is used.

Sample Code Preferences

VConsoleActionListener

Any class that implements Tool should also implement the VConsoleActionListener
interface, which enables the Tool to be notified of various events on the event bus. All
events are VConsoleEvent with String-type event IDs.

There are numerous console-specific events which your application can listen for, all of which
are listed under VConsoleActions. Additionally, you can define your own event IDs and
send them to other components in your own application or to other applications that have
knowledge of your event IDs. You just need to ensure your event ID's are globally unique,
similar to system properties -- for example,
com.mycompany.myproduct.mytool.formatDiskNow.

If your application is registered on the event bus, it will receive all console events, even those
related to other applications. You therefore need to make sure your application does not
execute, say, a refresh operation while another application has focus. You can use the
Tool.start() and Tool.stop() methods to track whether or not your application has
focus, and then react appropriately when listening for events.

Sample Code VConsoleActionListener

One of the most significant benefits of the event bus architecture is that it makes it possible to
develop dynamically configured display models with no API-specific dependencies. For
example, when the user selects "large icon view" from the toolbar, the toolbar will modify the
ICONSTYLE property to be LARGE. As soon as this property is modified, all components in the
system which have registered for property changes are notified of the property changed and of
the new value. The result pane for instance, will update its view to correspond to the new
ICONSTYLE property setting.

By comparison, if SMC used an API driven model, the toolbar would have to have a reference
to the results pane and know the method to call to update its display, as well as any other
component in the system which needed to know the value of the ICONSTYLE change.

An example of a console event would be the user selecting a node in the navigation tree. The
tree view component will create a SCOPESELECTED event and send it on the event bus.
Components which are interested in SCOPESELECTED events will process the event and react

accordingly. For instance, the result pane will display the children of this newly selected node.
The InfoBar component will count the number of children the newly selected node has and
set its textfield display to reflect that, such as 6 Item(s).

Eliminating API dependencies thus creates a very flexible display model. Components no
longer need any references to other components in the system, nor do they need to know the
methods to invoke, they simply modify a known property or generate a known event. The other
components in the system that are interested in the event or property will update themselves
accordingly. Display components can easily be added and removed without fear of breaking
API dependencies or passing around references to necessary components. Only one reference
needs to be set to the properties object, and components added as event listeners to create the
event bus.

As mentioned previously, Tool.addConsoleActionListener() lets other system
components register to receive your application's events, and you simply need to maintain a list
of these listeners. You use the standard "fire" method to notify all registered listeners of a
particular event.

Sample Code Console Listeners

VScopeNode

Perhaps the most widely used class is VScopeNode. This is the class in which you provide
information (like icons, column headers, and so forth) about your data model to the console,
whether that information is rendered in the navigation pane or results pane.

Use the payload field to associate your application-specific object with the node, so that you
can easily get a handle to your data object when events are received for a specified node.

You create an instance of VScopeNode for every object you want to appear in the navigation
pane. All navigation pane nodes that are children of a given parent node will automatically be
rendered in the results pane when the parent node is selected.

You denote non-leaf nodes by setting the internal root of the node to null
(node.setInternalRoot(null)). Perhaps a better term for these non-leaf nodes in the
SMC context is exposed nodes, because you are exposing the model completely to the SMC
engine for it to render and manage.

Additionally, SMC manages the opening of the corresponding results pane representation of the
exposed node when it is double-clicked by automatically navigating to its node representation
in the navigation pane. You do not need to do anything special to manage the results pane in a
model that does not have an internal root.

You denote leaf nodes by setting the internal root of the node to a VScopeNode instance. Leaf
nodes refer to models that your application will manage -- the model is not completely exposed
to the SMC engine. In the SMC context, this is referred to as an extended or internal root data
model.

In an extended model, your application is responsible for creating VScopeNode instances for
each object you want to render in the right-side results pane. Each of these nodes must be added
as siblings to the same parent node -- that is, to the internal root node. Whenever you change
this model -- for example, by adding deleting or modifying -- you must post an UPDATESCOPE
event.

Sample Code UPDATESCOPE

UI Components

The illustration below shows the default SMC look and feel, and the location of each of its
components. Note that tools do not have direct access to any of the components in the console.
Instead, specific interfaces are provided for accessing the underlying data model and for
accessing and customizing the console.

Default SMC Console Window

Navigation Pane

The Navigation pane works like a frame in a web page: clicking an item determines what
appears in the View pane. Before proceeding, it is probably best to have an understanding of the
VScopeNode class, and how it can be used to manage nodes in the Navigation pane.

While SMC knows how to create a the node representation of your tool in the Navigation pane
without actually instantiating it (via the Tool Descriptor), a tool can re-create or replace this

representation during it's instantiation. It is important that this top-level node for your tool be
returned by your Tool.getScopeNode() method:

Sample Code Create Tool Node

To add a node as a child for a specified parent node:

Sample Code Add Child Node

To remove a node that is a child of a specified parent:

Sample Code Remove Child Node

View Pane

The View pane (usually the "right-side" pane, and sometimes called the results pane) displays
the contents of the node selected in the Navigation pane, where the contents could consist of
folders or tools. If the node selected in the Navigation pane is a folder, the contents of that
folder are displayed in the View pane. If the node selected is a Tool, the top-level contents for
the tool is displayed, whether that be folders or simply the implementation of that Tool.

SMC supports 4 display styles in the View pane, accessible via the
VConsoleProperties.ICONSTYLE property:

Style VConsoleProperties Name

Rows and columns of small icons SMALL

Rows and columns of large icons LARGE

A single column of small icons, one per row LIST

Tabular view of detailed data arranged in
columns

DETAILS

A tool does not need to do anything to support all these styles. The SMC automatically ensures
that when the user changes display style for the current tool which has focus, changing focus to
another tool will preserve that display style.

A tool can restrict the available styles available for the user to choose from. However, since the
ICONSTYLE property is a shared property amongst all the tools, then a Tool must restore the
previous style when it loses focus.

Sample Code Details Style Only

Tools are not limitted to restricting the presentation to a single style. A tool can restrict more
than one style and still allow the remaining styles to be selected by the user.

Sample Code Enable Styles

Information Pane

The Information at the bottom of the console displays either context help for the object selected
in the Navigation pane, or a list of alarm types, depending on whether the Context Help or
Console Events tab is selected.

Context help must be in HTML format. Typically, the help is simply included in the Tool's jar
file and retrieved via ResourceManager.getLocalizedTextFile().

Sample Code Set Context Help

The Console Events log provides a view of events that occur between the console and its tools,
for example authentication events and tool loading problems. There are 3 types of events
defined in the VLogEvent class: INFORMATION, WARNING, and ERROR. Note that console
events are not persistent, and are lost when the console is exitted.

Sample Code Log Console Event

Menu bar

The Menu bar includes a series of menus which are common for all tools. Tools can implement
the own menu bars by extending JMenuBar and creating their own menus in the usual manner.
These menus can be added to the console's menus via the JMenu.setActionCommand()
method and the constants defined in the VMenuID class.

Sample Code Menubar Integration

Status bar

The Status bar at the very bottom of the Console has 3 distinct panes for displaying certain
kinds of information.

The left pane indicates the number of items (nodes) in the View Pane for the currently selected
node in the Navigation pane. Send an VConsoleActions.UPDATESELINFO event to the
console to display your text in the left-side info pane. By default, SMC provides a message of
"# Items":

Sample Code Set Left Status Info Pane

The center pane indicates console activity -- for example, a progress meter, or back and forth
"shade" movement. If your tool is not able to determine progress status for a long operation,
then enabling the back and forth "shade" movement can be done by simply sending a
VConsoleActions.UPDATEPROGRESS event to the console. Re-send the same event to
disable the movement.

If your tool is able to track progress, then you can specify a JProgressBar instance to be
displayed in this center pane, and simply update the JProgressBar as needed to show progress:

Sample Code
 Set Center Status Info

Pane

The right pane provides progress information in the form of text messages. Send an
VConsoleActions.UPDATESTATUS event to the console to display your text, similar to
the left-side pane as shown above.

Accessing Resources

All resources should be loaded using the ResourceManager and ConsoleUtility
classes, and should be located on the same root path as your main Tool class. For example, if
the provider-class name for your main Tool specified in the Tool Descriptor file is
com.mycompany.myproduct.mytool.client.VMytoolMgr, then all resources
should be rooted at com.mycompany.myproduct.mytool.client, ideally in
subdirectories of this path.

Although the ResourceManager.getLocalized*() methods are convenient for
downloading files, these methods do not cache files on the client. Therefore, successive
attempts to access the same resource come at the expense of another download. With this in
mind, you should implement some sort of caching scheme to minimize the number of
downloads, while at the same time taking into account the memory costs of caching. It is
anticipated that caching will be a feature of SMC in a future release.

Resource Bundles

Use ResourceManager.getBundle() to load resource bundles.

Sample Code ResourceManager.getBundle()

Online Help

Online help can be provided in 2 forms: "Spot" or context-sensitive help provides
short-and-simple information for dialog components in the form of HTML files. "Extended"
help provides more extensive information and search capabilities in the form of JavaHelp
helpsets. For more information, see the sections that discuss these two formats further under
Localization.

Use ResourceManager.getLocalizedTextFile() to load basic (non-JavaHelp)
HTML help files. Note the special heuristic used with respect to the current locale and the "C"
default locale. Default English HTML files might best be located in the C/html of your main
Tool; for example, com.mycompany.myproduct.foomgr.client.C.html.

Sample Code ResourceManager.getLocalizedTextFile()

file:///F|/stuff/viper/s9v2/sdk-tools.html#localization

Note that SMC does not at this time provide support for hyperlinking between HTML files, nor
to helpsets. You must implement your own hyperlink listening code on the JEditorPane
component of a VOptionPane and render the target of the link using
VOptionPane.setHelpHTML(). This will be provided in a future release. In the
meantime, you must implement your own link listener.

If you do implement your own link listener, it is possible to hyperlink to a specific helpset target
under the following conditions:

Due to a Java limitation, linking to helpsets is only useful from non-modal dialogs or
main frames, as modal dialogs will block input and prevent you from using the helpset
viewer.

●

Hyperlinks from within a context-sensitive html file to a helpset target must be of the
form helpset://<helpset filename>/<target>, where <helpset
filename> may or may not include the .hs extension. For example:
helpset://my_helpset.hs/my_target or
helpset://my_helpset/my_target.

●

Then your non-modal dialog or frame must implement a VConsoleActionListener to
rout the link event onto the event bus so the console can act on it and launch the help viewer for
the specified target. Note that you need to also check the link event to make sure it is indeed a
link to an external target, and NOT rout the event if it isn't. The best way to do this is check that
the URL's protocol specification is helpset:// and that the URL does NOT end in .html.

Sample Code Hyperlink to Helpset

Exceptions

VException is the class used for managing exceptions. It is not necessary to invoke the
ResourceManager directly, as this is done automatically when you attempt to retrieve the
exception's localized message via VException.getLocalizedMessage().

You should override two methods in your VException subclass.

Sample Code Exceptions

Images

Use ConsoleUtility.loadImageIcon() to load image icons.

Sample Code ConsoleUtility.loadImageIcon()

Packaging

Manifest

All tools must include a manifest file in its jar file. The manifest must include the full package
path of the main Tool class, and the full package file of the Tool Descriptor file:

Sample Code Manifest for Tools

Manifest files are only required for tools which will registered with smcconf. Beginning
with SMC 2.1, the preferred method for performing tool registrations is via
smcregister.

Shared interfaces and classes

Include in the jar file all classes and resources required by the tool. Take extra care NOT to
place the same class or resource in more than tool or service jar - this is especially important
later on in upgrade situations, as a patch for a resource that has been placed in multiple jar files
will require that all those jar files be upgraded. Thus, it is strongly encouraged that developers
bundle all the common interfaces and classes referenced by multiple tools and services into an
individual jar and register it as a shared library jar across tools, services, or both.

Resource bundles

It's required that all tools provide a resource bundle that contains information like name,
description, icons, vendor, version under predefined message keys:

BEANNAME -- Localized tool name●

DESCRIPTION -- Localized description of the tool●

VENDOR -- Localized vendor name●

VERSION -- Localized version number●

LARGEICON -- Path of large icon relative to this bundle●

SMALLICON -- Path of small icon relative to this bundle●

<property_name>.DESCRIPTION -- Optional description of a property this
component defines

●

<parameter_name>.DESCRIPTION -- Optional description of a parameter this
component defines

●

The icon paths specified as LARGEICON and SMALLICON should be relative to this resource
bundle's location.

ResourceBundles can be implemented as compilable subclasses of ListResourceBundle,
or as .properties files.

Sample Code Tool Resource Bundle

Classlist

It is required that all tools provide a file (better known as a classlist file) that contains a list of
all components in the jar file. This would include class files, images, resource bundles, etc. This
file can be generated by running the smccompile command with the -j option after the jar
file is created. Consult the smccompile(1M) man page for more information on this command.

Sample Code
 Generate tool classlist with

smccompile

Classlist files are only required for tools which will be registered with smcregister,
beginning with SMC 2.1.

Scope

The AdminMgmtScope class represents a management scope or domain; that is, a name
service domain or a single system. Use the ToolContext instance (obtained via your
Tool.setContext() method) to retrieve context-specific information about the environment the
Tool is running in.

Sample Code Scope

Registration

If a tool uses classes or resources from some other library jars, you need to register them first,
for example:

smcregister library <path>/mylibrary.jar
<path>/mylibraryClasslist.txt ALL

Here we are using the pseudo bean name 'ALL' to represent all tools and services.

Next, you register a tool jar to the server repository:

smcregister tool <path>/mytool.jar
<path>/mytoolClasslist.txt <path>/mytool.xml

You can check the repository to see the tool is successfully imported by doing repository
listing:

smcregister repository list

See the Registration section for more details regarding the smcregister command.

file:///F|/stuff/viper/s9v2/sdk-register.html

Localization

ResourceBundles

Localized ResourceBundles are implemented using the standard Java heuristics
(baseclass_language_country_variant). Consult the JDK docs for detailed
information.

As mentioned ealier, ResourceBundles can be implemented as compilable subclasses of
ListResourceBundle, or as .properties files. If you use .properties files, they
will not load properly at runtime if the translations are in a non Latin-1 based character set
(multi-byte environments) because there is no way to specify a character set encoding.
Therefore, they must be converted to Latin-1 or Unicode-encoded characters using the
native2ascii command.

Sample Code native2ascii

HTML files

Localized HTML files are implemented using a similar heuristic as ResourceBundles, although
each localization must reside in a unique directory based on locale, with identical filenames
across locales. For example:

com/mycompany/myproduct/C/html/foobar.html English
locale; system
default,
referred to as
the "C" locale

com/mycompany/myproduct/fr/html/foobar.html French locale

com/mycompany/myproduct/de/html/foobar.html German
locale

When translating HTML files, you must specify the proper character set via the CONTENT
field. Note that this information must be in a line that is NOT embedded withint a
<HEAD></HEAD> block.

Sample Code
 Setting Charcter Set

Encoding in HTML

JavaHelp Helpsets

Localized JavaHelp helpsets must be structured by locale, as discussed in the JavaHelp User's
Guide. Specifically:

The .hs file must be named following the●

http://java.sun.com/products/jdk/1.2/docs/api/java/util/ResourceBundle.html
http://java.sun.com/products/javahelp/download_binary.html#userguide
http://java.sun.com/products/javahelp/download_binary.html#userguide

baseclass_language_country_variant scheme as for Java ResourceBundles
(foo_locale.hs).

All other files belonging to the helpset must live in a subdirectory named for the locale.
The illustration below shows a sample layout of the filesystem hierarchy of localized
helpsets.

JavaHelp Localization Hierarchy

●

All references to those files in the .hs file must reflect this subdirectory name.●

Sample Code Localized Helpset

URLs must reflect the location of the html files relative to the helpset, regardless of
locale. For example, if some html files were located in the topics/topicA
subdirectory, as shown in the illustration above, then URLs for those files referenced in
Map.jhm would begin with topics/topicA/ in front of each file referenced.

●

Sample Code Helpset Map File

To translate a JavaHelp helpset, edit the specified files as follows:

.hs Specify proper character set encoding; translate all
<label> tag values

*.html Translate and also specify the proper character set
via the CONTENT field, as shown here

index.xml, map.jhm Specify proper character set encoding

toc.xml Specify proper character set encoding; translate all
tocitem "text" fields only (do NOT translate
"target" fields)

The final step in constructing a helpset is to build the search index. This requires that you have
JavaHelp 1.1 installed on your machine.

Sample Code Build Search Index

http://java.sun.com/products/javahelp/download_binary.html

 Toolboxes

Overview ~ Starting the Toolbox Editor

Overview

SMC uses the concept of a toolbox to provide a view of various system administration tools or
applications, possibly on different servers, within a common user interface. A toolbox is a file
in XML format, that is registered with the SMC server. It is a hierarchical collection of folders,
tools, legacy applications, and links to other toolboxes. This collection defines what you see in
the Console navigation pane.

The root toolbox or container is called "Management Tools". Its default behavior is to look for a
default toolbox on the host machine and link to it when the SMC is started. The default toolbox
is called "This Computer", with the file name this_computer.tbx, and comes
pre-configured with several tools.

You can modify this toolbox or create additional toolboxes to suit your needs using the SMC
Toolbox Editor. The Editor is essentially the SMC console run in a special mode. You can also
manage toolboxes via the command-line interfaces smcregister or smcconf.

For more detailed information regarding the SMC Toolbox Editor and management of
toolboxes, start the Editor and consult the extensive online help that is available.

Starting the Toolbox Editor

In most cases, you start the editor with the command /usr/sadm/bin/smc edit. This
launches the editor and allows you to edit toolboxes you load. By default, the editor will load
the toolbox called this_computer.tbx for the local machine on which the editor was
started. Consult the SMC man page smc(1M) for additional options for starting the editor.

 Services

Overview ~ Common Services Model ~ Accessing other services ~ Bundled Common

Services ~ Packaging ~ Registration ~ Debugging ~ Third-Party Integration

Overview

This section provides detailed information about the SMC service model, and describes the core
SMC service functions you can use in your service implementations.

Common Services Model

The SMC service model defines how services are used by clients and the basic components of
service implementation. A service consists of three major components: interface,
implementation, and descriptor, as described below.

Service Interface

From the client's point of view, service is defined only by its public interfaces. A client should
be able to retrieve a service handle by providing information on the public interface it is
expecting, without knowing the specific service implementation details. For example, an SMC
client may want to access a logging service in an environment where there may be many
different implementations of logging services available. In this case, the client simply requests a
service that implements some well-known logging interface.

Sample Code Access a Log Service

SMC predefines a set of common service interfaces, including log, authorization, message,
persistence and launch. Vendors can define their own public service interfaces and share
between its clients and its implementations, as long as the service interface satisfies the
following rules:

Extends base interface Service; this interface serves the similiar purpose as
java.rmi.Remote. The methods defined in its subclasses are considered public
business functions.

●

Each method must be public.●

Each method must declare java.rmi.RemoteException in its throws statements;
this is required even if this interface is only accessed locally.

●

Sample Code Service Interface Definition

Service Implementation

A service implementation in SMC must satisfy the following rules:

Implements at least one service interface●

Implements interface ServiceProvider; the SMC SDK provides a convenient base
class for service implementation, VService. Services can optionally override its
methods to plug in their own logic.

●

Has a public default constructor that takes no parameters. SMC will use this default
constructor to instantiate this service.

●

Sample Code Service Implementation

SMC services can be designed to run on client-side as well as on server-side. A server-side
implementation basically acts as a Java RMI server object. Clients do not have a direct handle
to the service object, and can only remotely access it through an automatically generated stub.
A single instance of such a server-side service can handle all requests from different client
processes. This is the default running mode for service implementation objects.

In some circumstances, it may be preferable to run a service directly in the client process/VM.
For example, when a client running inside a firewall tries to access a news service. If the news
service can be downloaded to the client VM and poll an outside server for updates, then the
client won't have to cope with firewall issues. Usually client-side services act as local agents
that preprocess client requests and passes them on to the real backend on remote servers. This is
very useful for third party integration. A log service proxy that represents a certain backend
framework service, like WBEM, Jiro, or J2EE, can shield all the details of its backend
framework dependency from its clients. Please see Third-Party Integration for more information
on how a service proxy accesses different framework backends.

Besides the basic requirements of a service implementation, a client-side implementation class
needs to implement the ServiceProxy interface. The SMC SDK provides a convenient base
class, VServiceProxy, for vendors to extend.

Service Descriptor

Every service must have a deployment descriptor before it can be registered and maintained by
SMC. A descriptor includes static information about the service component and is used by the
SMC console to manage the lifecycle of its instances.

There are several attributes common to all services, such as:

Daemon versus Non Daemon●

Service loading sequence●

Public interfaces (Required); an interface element represents a public interface class
through which other components access current service. It should be the fully qualified
interface class name that this service wants to publish.

●

Implementation class name (Required); defines the implementation class to instantiate
when a service is being loaded.

●

Help file location (Optional); defines the base location and name of the JavaHelp help set
for this component. See TBD for details on the policy established by SMC for packaging
of JavaHelp bundles.

●

SMC SDK API version (Required); defines the String version number of the SMC SDK
API this component builds against. This must be in the form of : major[.minor]

●

Singleton versus Multi-Instances (Required); defines if only one instance of the service
should be instantiated to serve all clients, or whether a new instance of the service is
needed for every client.

●

Supported Management Scopes (Optional); defines the management scopes this service
supports. Supported management scopes specifies which one or more of the following
name services contents will be accessed and/or changed by this service:

file | nis | nisplus | ldap | dns

If not specified, file scope is assumed.

●

Load dependency (optional); defines what other services should be running before this
service can be loaded.

●

Runtime parameters (optional); defines runtime attributes that effect service behavior.
Unlike global registry properties, these runtime parameters can be different for each
service.

●

An SMC service descriptor is defined as an XML-based file. Please refer to the "Deployment
Descriptor DTD" at /usr/sadm/lib/smc/lib/dtds/viperbean_1_0.dtd for
detailed syntax information.

Sample Code Service Descriptor

Accessing other services

A service can access other services using getServiceByName() calls. Also important in
this context are call delegation and accessing remote services, both of which are described
below.

Call Delegation

Call delegation is when a service needs to call other services to fulfill a client request; for
example, a service may need to pass on the client's identity to the services it calls. The service
can specify its access to the other services in this mode by specifying this in the
getServiceByName call, as:

Sample Code Call Delegation

Be aware that the other service handle running in delegation mode only works in the
current client's calling thread and its child threads. Services should not try to use
delegation mode in any threads that are not triggered by current client call.

Accessing remote services

SMC does not currently support access to remote services running on different servers -- that is,
different VMs on the same or different machines.

Bundled Common Services

The SMC environment bundles several common services in its release. Developers can find
interface definitions for these services in the ServiceList class. The bundled services are
briefly described below.

Logging

The SMC Log service logs messages into the default system log. When an SMC server runs on
its own, the default log is syslog. When running with a WBEM server in the same VM (the
SMC default), the default log is the WBEM log.

To enable localization, it is required that all messages logged are generated from resource
bundles. The Log service accepts message keys and resource bundle base names as parameters,
rather than directly accepting fixed strings. The real messages are later retrieved from the
resource bundle by the log viewer.

Sample Code Logging

Authorization

The Authorization service is used to decide whether an action towards some critical system
resource is to be allowed or denied, based on the security policy currently in effect. Its public
interface is defined as com.sun.management.viper.services.Authorization.

Different implementations use different security policies and different policy datastores. The
implementation bundled with SMC is using the Role Based Access Control (rbac(5)) which
was introduced in Solaris 8. See RBAC for details on how to install rights into its data store.
Administrators can use one of the SMC tools, Users Tool, to manage the data store and grant

rights to Solaris users.

In SMC, each action authorization is represented with a VPermission object.
VPermission is defined by a properly scoped action name string, for example:
solaris.admin.usermgr.read defines the read action in Solaris's User Manager tool.

Sample Code Checking Authorizations

Messaging

SMC provides a facility to exchange messages between clients (Tools or Services). There are
two types of messaging interfaces, one is MessagePullAgent and the second is
MessagePushAgent. Once a user gets a handle to the Core Message service, he needs to get a
handle to one of the message services (push or pull), initialize that service with either
ToolInfraStructure or ServiceInfrastructure, create the named channel, subscribe to that channel
and post messages to that channel. Clients need to implement the MessageListener interface to
get notification from other subscribed users to receive messages.

The user has to make a decision to use either the push or pull message mechanism. Pull
message is preferred if the client is running inside a firewall and needs to use a message service
outside of firewall. The MessagePullAgent interface will contact the message service for
updated list of messages.

Push message service will be notified by the message service through a callback mechanism so
client will get the message immediately after message has been posted.

Sample Code Messaging

Persistence

SMC provides a facility to store persistent data to SMC server. Tools and services can
store/restore/delete persistent data by the PersistanceAgent utility class. To use the
Persistance service:

Create the PersistenceAgent object with either ToolInfrastructure or
ServiceInfrastructure

1.

Store the serialized object with key (String) and version number (String); key is used for
indexing to retrieve the object later, and version another piece of information associated
with key for tools or services

2.

Restore the data by key3.

Sample Code Persistence

Launching

There are many non-SMC aware applications that provide management functionality

administrators want to use. They can be run on the server and displayed on the client machine
SMC is running on through the Launching Service. This service only supports X protocol, so
appropriate permissions for the X display server are required to launch any application. You can
grant display permission on the X display to the remote machine on which the application is
running via the following command:

% xhost +<server>

Applications that are launched from this service fall into 3 different types:

Application Type Description

CLI (TTY-based application) The Launch service runs these type of
applications inside a dtterm.

XAPP (X application) Applications of this type are executed with the
DISPLAY environment variable set to the
same X server as the tool in which the given
application is running.

HTML (URLs) The first browser that can be found in the
PATH environment set by the client tool will
be launched to load the URL specified. See
sdtwebclient(1) for the detail rules of
which browser will be used.

To use the Launch service to run a command on the server and displayed back on the client:

Get a handle to launching service from infrastructure 'inf'1.

Create a LaunchInfo object with information about this request.

If the application needs some environment variables been set, we can specify them in the
environments parameter in the format of <key>=<value>, for example:

String[] envs = {"PATH=/usr/bin:/sbin:/usr/ucb/bin",
"EDITOR=/usr/local/bin/vim" };

Environment variables PATH, DISPLAY, HOME, USER are always set by the service. But
caller can override their values by explicitly specifying the environment parameter.

2.

Launch the command; Launch service uses Authorization service to determine whether
current user has enough rights to execute the command.

3.

Sample Code Launching

Packaging

Manifest

All services must include a manifest file in its jar file. The manifest must include the full
package path of the main Service class, and the full package path of the Service Descriptor file.
Additionally, many service implementations need some native library support. You can bundle
those native libraries (.so) in the service jar and identify them in the manifest file so they can be
included in the library path.

Sample Code Manifest for Native Library

Manifest files are only required for services which will registered with smcconf.
Beginning with SMC 2.1, the preferred method for performing service registrations is via
smcregister.

Shared interfaces and classes

Include in the jar file all classes and resources required by the service. Callers of this service
will need the service's public interface classes as well. So we encourage developers to bundle all
the public interfaces and classes they directly reference into an individual jar and register it as a
shared library jar across tools and services. The real implementation of those interfaces can be
bundled and registered as a service jar.

Take extra care NOT to place the same class or resource in more than tool or service jar - this is
especially important later on in upgrade situations, as a patch for a resource that has been placed
in multiple jar files will require that all those jar files be upgraded. Thus, it is strongly
encouraged that developers bundle all the common interfaces and classes referenced by multiple
tools and services into an individual jar and register it as a shared library jar across tools,
services, or both.

Resource bundles

It is required that all services provide a resource bundle that contains the certain information
under predefined message keys:

BEANNAME -- Localized tool name●

DESCRIPTION -- Localized description of the tool●

VENDOR -- Localized vendor name●

VERSION -- Localized version number●

Agent container classes

It is required that all services provide agent container classes for the remote service. These
classes can be generated by running the smccompile command with the -c option on the
service implementation before the jar file is created. Consult the smccompile(1M) man page for
more information on this command.

Sample Code
 Generate agent container

classes with smccompile

Manual generation of these container classes is only required for services which will be
registered with smcregister, which is the preferred method for registering services
beginning with SMC 2.1. If smcconf will be used, then these classes are generated
automatically.

Classlist

It is required that all services provide a file (better known as a classlist file) that contains a list
of all components in the jar file. This would include class files, images, resource bundles, etc.
This file can be generated by running the smccompile command with the -j option after the
jar file is created. Consult the smccompile(1M) man page for more information on this
command.

Sample Code
 Generate service classlist with

smccompile

Classlist files are only required for services which will be registered with smcregister,
beginning with SMC 2.1.

Registration

If a service uses classes or resources from some other library jars, you need to register them
first, for example:

smcregister library <path>/mylibrary.jar
<path>/mylibraryClasslist.txt ALL

Here we are using the pseudo bean name ALL to represent all tools and services.

Next, you register a service jar to the server repository:

smcregister service <path>/myservice.jar
<path>/myserviceClasslist.txt <path>/myservice.xml

You can check the repository to see the service is successfully imported by doing repository
listing:

smcregister repository list

See the Registration section for more details regarding the smcregister command.

Multiple Implementations of A Common Service

file:///F|/stuff/viper/s9v2/sdk-register.html

SMC repository supports multiple implementations of one service interface. You can register a
syslog service and a WBEM log service that both implement interface
com.sun.management.viper.services.Log.

Get Service By Name

When a service handle is requested through getServiceByName() call to the infrastructure,
the repository scans the registered service list, starting from the most recent registered. The first
one that implements the given interface and successfully loads itself (init() and start()
methods are successfully called) is returned to the caller.

Configure services with Properties

A service can have several properties set to different values to customize the behavior of itself.
The properties are kept in the repository with the service and can be set at registrar time or later
on through smcregister.

Sample Code
 Configure Service with

Properties

Debugging

The SMC SDK has a debug utility class, com.sun.management.viper.util.Debug.
This class acts like a delegate to the real implementation of the output manager interface,
VDebug. All service containers will provide an implementation that plug into the class Debug.
Services can always call the trace() method with proper severity without worrying about
what level of detail should be really displayed or how they should be displayed.

Sample Code Debugging

The default implementation of Debug in the SMC server can be configured with the
environment variable SMC_DEBUG set to 0-2 to print out INFORMATION+, to ERROR+ level
messages.

Third-Party Integration

With one exception, general support for use of other services from third-party frameworks is
not currently provided, and may be provided in a future release.

The exception to this is that tools can connect to WBEM providers thru CIM:

Sample Code Accessing WBEM

 Libraries

Overview ~ Packaging ~ Registration

Overview

This section provides detailed information about creating libraries containing common classes
that can be shared among tools and services.

Any SMC tool or service bean can have pluggable libraries attached to it. These library jars can
be resource bundles in different locales, as well as function code that needs to be seperately
upgradable. Library jars that are attached to specific beans will be visible to that bean only at
runtime. However, there are three special bean keywords that allow you to control the scope of
library usage on a wider scale: ALL allows the library to be used by all tools and services,
ALLTOOL allows the library to be used only by other tools, and ALLSERVICE allows the
library to be used only by other services.

Packaging

Classlist

It is required that all libraries provide a file (better known as a classlist file) that contains a list
of all components in the jar file. This would include class files, images, resource bundles, etc.
This file can be generated by running the smccompile command with the -j option after the
jar file is created. Consult the smccompile(1M) man page for more information on this
command.

Sample Code
 Generate library classlist with

smccompile

Classlist files are only required for tools which will be registered with smcregister,
beginning with SMC 2.1.

Shared interfaces and classes

Include in the jar file all classes and resources which can be shared by more than one tool or
service. Take extra care NOT to place the same class or resource in more than tool or service jar
- this is especially important later on in upgrade situations, as a patch for a resource that has
been placed in multiple jar files will require that all those jar files be upgraded. Thus, the use of
shared libraries is strongly encouraged.

Registration

If a tool or service uses classes or resources from a library jar, you need to register the library
first, for example:

smcregister library <path>/mylibrary.jar
<path>/mylibraryClasslist.txt ALL

Here we are using the pseudo bean name 'ALL' to represent all tools and services.

You can check the repository to see the library is successfully imported by doing a repository
listing:

smcregister repository list

See the Registration section for more details regarding the smcregister command.

file:///F|/stuff/viper/s9v2/sdk-register.html

 Registration

Overview ~ smcregister ~ smcconf

Overview

The SMC object registry is a repository of object information used by the SMC console to
configure toolboxes, tools, and services. All tools and services must be registered in the SMC
object registry. Tools must be associated with a toolbox before they can appear in an SMC
console.

The SMC registry contains two types of entries: SMC beans and toolboxes. Executable
components, like client side GUI/CLI tools, external client providers, server side services, are
considered beans and are deployed in the format or jar files. All the beans can have additional
library jars attached to them. Toolboxes are XML-based files that describe collections of tool
beans and their presentation layout. This section only covers the registration part of those
created toolboxes and several command-line editing commands that shell scripts can use. SMC
comes with a GUI toolbox editor that can help administrators to create toolboxes.

IMPORTANT CHANGE FOR SMC 2.1: smcregister, a command-line tool for
administering the SMC repository, is intended to replace the older smcconf tool, which
has been deprecated. smcregister is now the preferred interface for managing the SMC
repository as well as toolboxes from within scripts, due to significant performance
enhancements over smcconf. Additionally, smcconf has dependencies on Java
developer tools which might not exist on every system. The smcregister command is
explained more later in this section.

Registry Basics

The SMC registry contains information about:

Registered tools and services●

Resource jars, if any, attached to tools and services●

Properties (key/value pairs), if any defined for tools, services, and resource jars●

If you want the tool be displayed inside an SMC console, you need to:

Register the tool●

Add the tool to a specific toolbox●

These steps are described later in this section.

SMC-based tools may or may not refer to backend SMC services. If the tool is dependent on
any backend SMC service(s), the service(s) also need(s) to be registered using
smcregister. Unless the dependent service(s) are registered, SMC will not be able to
invoke or display the corresponding tool.

The name of the tool or service bean can be found in the manifest of the jar file specified on the
command line. The bean name can be used later to unregister the tool or service, or as a handle
to which libraries/properties may be attached or detached.

smcregister

Some of the common object registry tasks you can perform with the smcregister tool
include:

Registering tool and service beans●

Unregistering tools and services●

Attaching and detaching library jars●

Adding and removing properties●

Managing toolboxes●

Listing registered tools/services●

Each of these tasks is discussed below.

All references to <classlistfile> in this section refer to the the class list text file
generated from the smccompile(1M) command with the -j option, which would be run
after the jar file is created. The reader is urged to consult the smccompile(1M) and
smcregister(1M) man pages for more complete information on these commands.
All references to <altjarname> in this section refer to the name in which your jar file
will be copied to the SMC server's codebase area. The reader is urged to consult the
smcregister(1M) man page for more complete information on this command.

Registering Tool and Service Beans

Registering the tool or service jar file does not remove the jar file from its original location. It
simply makes the tool or service usable from within the SMC by adding the information related
to the new tool or service to the SMC registry.

IMPORTANT: You must restart the SMC server after registering a tool with
smcregister. Simply running smcregister does not affect the SMC repository, but
simply posts the registration request to a queue which then gets processed when the server
is restarted.

The command used to register a tool bean is:

smcregister tool [-n altjarname] <path>/<jarfile>.jar
<path>/<classlistfile> <path>/<xmlfile>

The command used to register a service bean is:

smcregister service [-n altjarname]
<path>/<jarfile>.jar <path>/<classlistfile>
<path>/<xmlfile> <path>/<native library>

where you can specify up to 4 native libraries required by the service jar.

Unregistering Tools and Services

Unregistering a tool or service will make it unavailable from within the SMC. It removes the
registered tool or service information from the SMC registry.

IMPORTANT: You must restart the SMC server after unregistering a tool with
smcregister. Simply running smcregister -u does not affect the SMC repository,
but simply posts the registration request to a queue which then gets processed when the
server is restarted.

The command used to unregister a tool is:

smcregister tool -u <beanname>.jar

where <beanname> is the package path to the registered tool.

For example, to unregister the tool com.mycompany.myproduct.MyTool:

smcregister tool -u com.mycompany.myproduct.MyTool.jar

The command used to unregister a service is:

smcregister service -u <beanname>.jar

where <beanname> is the package path to the registered service.

For example, to unregister the service com.mycompany.myproduct.MyServiceImpl:

smcregister service -u
com.mycompany.myproduct.MyServiceImpl.jar

Attaching and Detaching Library Jars

You can attach or detach library jars to or from any of the following:

Tool/Service Beans●

All Services●

All Tools●

All Tools and Services●

Any SMC bean can have pluggable libraries attached to it. These library jars can be resource
bundles in different locales, as well as function code that needs to be seperately upgradable.
Library jars that are attached to specific beans will be visible to that bean only at runtime.
However, there are three special bean keywords recognized by smcregister that allow you
to control the scope of library usage on a wider scale: ALL allows the library to be used by all
tools and services, ALLTOOL allows the library to be used only by other tools, and
ALLSERVICE allows the library to be used only by other services.

Attaching Tool/Service beans

The command used to attach a library jar to a specific tool or service is:

smcregister library [-n altjarname] <path>/<jarfile>.jar
<path>/<classlistfile> <beanname>

where <beanname> is the package path of a registered tool or service to which the
library jarfile should be attached to and <jarfile>.jar is the library jar.

For example, to attach a localization library jar /usr/lib/MyTool_fr.jar to the
already registered bean com.mycompany.myproduct.MyTool:

smcregister library -n MyTool_fr.jar /usr/lib/MyTool_fr.jar
/usr/lib/MyTool_fr_classlist.txt
com.mycompany.myproduct.MyTool

●

Detaching Tool/Service beans

The command used to detach a library jar from a specific tool or service is:

smcregister library -u <jarfile>.jar <beanname>

where <beanname> is a registered tool and <jarfile>.jar is the library jar.

For example, to detach the localization library MyTool_fr.jar from the tool
com.mycompany.myproduct.MyTool:

smcregister library -u MyTool_fr.jar
com.mycompany.myproduct.MyTool

●

All tools

The command used to attach a library jar to all tools:

smcregister library [-n altjarname] <path>/<jarfile>.jar
<path>/<classlistfile> ALLTOOL

For example, to add a library jar attachment to be shared by all registered tools only, use
the following command:

smcregister library -n ToolsLib.jar /usr/lib/ToolsLib.jar
/usr/lib/ToolsLib_classlist.txt ALLTOOL

●

The command used to detach a library jar from all tools:

smcregister library -u <jarfile>.jar ALLTOOL

For example, to remove a library jar attachment which is shared by all registered tools
only, use the following command:

smcregister library -u ToolsLib.jar ALLTOOL

All services

The command used to attach a library jar to all services:

smcregister library [-n altjarname] <path>/<jarfile>.jar
<path>/<classlistfile> ALLSERVICE

For example, to add a library jar attachment to be shared by all registered services only,
use the following command:

smcregister library -n ServicesLib.jar
/usr/lib/ServicesLib.jar /usr/lib/ServicesLib_classlist.txt
ALLSERVICE

The command used to detach a library jar from all services:

smcregister library -u <jarfile>.jar ALLSERVICE

For example, to remove a library jar attachment which is shared by all registered services
only, use the following command:

smcregister library -u ToolsLib.jar ALLSERVICE

●

All tools and services

The command used to attach a library jar to all tools and services:

smcregister library [-n altjarname] <path>/<jarfile>.jar
<path>/<classlistfile> ALL

For example, to add a library jar attachment to be shared by all registered tools and
services, use the following command:

smcregister library -n MyProductLib.jar
/usr/lib/MyProductLib.jar
/usr/lib/MyProductLib_classlist.txt ALL

The command used to detach a library jar from all tools and services:

smcregister library -u <jarfile>.jar ALL

For example, to remove a library jar attachment which is shared by all registered tools
and services, use the following command:

●

smcregister library -u MyProductLib.jar ALL

Adding and Removing Properties

You can define and undefine properties (key/value pairs) for any of the following:

Tool/Service Beans●

All Services●

All Tools●

All Tools and Services●

As with library jars, the keywords ALL, ALLTOOL, and ALLSERVICE allow you to control
the scope of properties beyond specific beans.

Tool/Service Beans

Tools and services can have properties associated to their registry entries. To add
properties to a registered tool/service, use the commmand below. Note that unlike
smcconf, only one property can be added or removed at a time to the specified
tool/service with smcregister.

smcregister property <key> <value> <beanname>

For example, to add the property key HOMEDIR with value /home/kd to the tool
com.mycompany.myproduct.MyTool, use the following command:

smcregister property HOMEDIR /home/kd
com.mycompany.myproduct.MyTool

To remove a property already defined on the specified registered tool/service, use the
following command:

smcregister property -u <key> <beanname>

For example, to remove the property key HOMEDIR from the tool
com.mycompany.myproduct.MyTool, use the following command:

smcregister property -u HOMEDIR
com.mycompany.myproduct.MyTool

●

All tools

To add properties to be shared by all registered tools, use the following command:

smcregister property <key> <value> ALLTOOL

For example, to add the property key HOMEDIR with value /home/kd to all tools, use
the following command:

smcregister property HOMEDIR /home/kd ALLTOOL

●

To remove a property already defined on all tools, use the following command:

smcregister property -u <key> ALLTOOL

For example, to remove the property key HOMEDIR from all tools, use the following
command:

smcregister property -u HOMEDIR ALLTOOL

All services

To add properties to be shared by all registered services, use the following command:

smcregister property <key> <value> ALLSERVICE

For example, to add the property key HOMEDIR with value /home/kd to all services,
use the following command:

smcregister property HOMEDIR /home/kd ALLSERVICE

To remove a property already defined on services, use the following command:

smcregister property -u <key> ALLSERVICE

For example, to remove the property key HOMEDIR from all services, use the following
command:

smcregister property -u HOMEDIR ALLSERVICE

●

All tools and services

To add properties to be shared by all registered tools and services, use the following
command:

smcregister property <key> <value> ALL

For example, to add the property key HOMEDIR with value /home/kd to all tools and
services, use the following command:

smcregister property HOMEDIR /home/kd ALL

To remove a property already defined on tools and services, use the following command:

smcregister property -u <key> ALL

For example, to remove the property key HOMEDIR from all tools and services, use the
following command:

smcregister property -u HOMEDIR ALL

●

Managing Toolboxes

Managing toolboxes with smcregister is identical to smcconf with one exception: the
smcregister toolbox subcommand accepts the -D option which defers execution of the
toolbox command until the SMC server is restarted. This is a convenient option for use in
packaging scripts during install and uninstall. Additionally, the command runs much faster than
if run interactively (without -D).

Folders

The following command will create the Devices folder as a subfolder inside the
Hardware folder in the toolbox file /home/user/myToolbox.tbx. The specified
icons and description of "Device Mgt. Tools" will be used to represent the folder in the
SMC console.

smcregister toolbox add [-f] folder "Devices" [-F
"Hardware] "Device Mgt. Tools" \
smallDevice.gif largeDevice.gif -B /home/user/myToolbox.tbx

To remove that folder from the toolbox:

smcregister toolbox remove folder "Devices" [-F "Hardware]
" \
-B /home/user/myToolbox.tbx

To create the same folder non-interactively during the next server restart:

smcregister toolbox -D add [-f] folder "Devices" [-F
"Hardware] "Device Mgt. Tools" \
smallDevice.gif largeDevice.gif -B /home/user/myToolbox.tbx

To remove that folder from the toolbox non-interactively during the next server restart:

smcregister toolbox -D remove folder "Devices" [-F
"Hardware] " \
-B /home/user/myToolbox.tbx

●

Tools

The following command adds a native SMC tool to the System Status folder of the
default toolbox. The Java classname of the tool is
com.mycompany.myproject.client.MyTool (the name, description, and icons
visible in the console are provided by the tool itself). When loaded, it will be run in the
NIS domain, syrinx, which is hosted by the machine, temple, and will be retrieved
from port 2112 on the machine from which the toolbox was loaded.

smcregister toolbox add tool
com.mycompany.myproject.client.MyTool \
-F "/System Status/" -D nis:/temple/syrinx -H :2112

To remove that tool from the toolbox:

●

smcregister toolbox remove tool
com.mycompany.myproject.client.MyTool \
-F "/System Status/"

Links to other toolboxes

The following command adds a link to the default toolbox on the machine divet to the
"Divet's Tools" folder in the toolbox /home/user/myToolbox.tbx:

smcregister toolbox add [-f] tbxURL
http://divet:898/toolboxes/this_computer.tbx \
-F "/Divet's Tools/" -B /home/user/myToolbox.tbx

●

Legacy Tools

Any CLI (Command Line Interface) or XAPP (X Applications) tool can also be
registered with the SMC registry. This will allow the SMC to invoke the corresponding
CLI/XAPP tool from within the console; for example:

The following command will register a CLI in the default toolbox which will run the
command /usr/bin/ls -alR

smcregister toolbox add legacy -N "Ls Tool" -T CLI -E
/usr/bin/ls -P " -alR "

The following command will register a the CDE Calculator in the default toolbox:

smcregister toolbox add legacy -N "Calculator" -T XAPP -E
/usr/dt/bin/dtcalc

●

Listing Registered Tools/Services

To list the contents of registered tools/services/attachments/properties, use the following
command:

smcregister repository list

This command lists the following information:

Properties defined for all tools and services●

Properties defined for all tools only.●

Properties defined for all services only.●

Resource jars/shared libraries attached to all tools and services●

Resource jars/shared libraries attached to all tools●

Resource jars/shared libraries attached to all services●

Registered services; for each registered service, the following is displayed:

Native libraries■

●

Properties■

Resource jars/shared libraries attachments and properties, if any are defined on
them.

■

Registered tools (no legacy tools are listed here); for each registered tool, the following is
displayed:

Properties■

Resource jars/shared libraries attachments and properties, if any are defined on
them.

■

●

smcconf

Some of the common object registry tasks you can perform with the smcconf tool include:

Registering tool and service beans●

Unregistering tools and services●

Attaching and detaching library jars●

Adding and removing properties●

Managing toolboxes●

Listing registered tools/services●

Each of these tasks is discussed below.

IMPORTANT CHANGE FOR SMC 2.1: smcconf has been deprecated in SMC 2.1 and
replaced by smcregister. smcregister is now the preferred interface for managing
the SMC repository as well as toolboxes from within scripts, due to significant performance
enhancements over smcconf. Additionally, smcconf has dependencies on Java
developer tools which might not exist on every system. The smcregister command is
explained earlier in this section.

Registering Tool and Service Beans

Registering the tool or service jar file does not remove the jar file from its original location. It
simply makes the tool or service usable from within the SMC by adding the information related
to the new tool or service to the SMC registry. The command used to register a tool or service
bean is:

smcconf repository add bean <path>/<jarfile>.jar

If the tool or service bean has already been registered, smcconf will not allow you to
overwrite the existing tool/service bean unless you use the -f option as show below.

smcconf repository add -f bean <path>/<jarfile>.jar

where <jarfile>.jar is an existing tool or service bean.

For example, to register /usr/lib/MyTool.jar:

smcconf repository add -f bean /usr/lib/myTool.jar

Any service jar that requires a native library can simply include the native library in the jar file,
but also add an entry for the native library to the manifest file, as discussed in Packaging.

Unregistering Tools and Services

Unregistering a tool or service will make it unavailable from within the SMC. It removes the
registered tool or service information from the SMC registry. The command used to unregister a
tool or service is:

smcconf repository remove bean <beanname>

where <beanname> is a registered tool or service.

For example, to unregister the bean com.mycompany.myproduct.MyTool:

smcconf repository remove bean
com.mycompany.myproduct.MyTool

Attaching and Detaching Library Jars

You can attach or detach library jars to or from any of the following:

Tool/Service Beans●

All Services●

All Tools●

All Tools and Services●

Any SMC bean can have pluggable libraries attached to it. These library jars can be resource
bundles in different locales, as well as function code that needs to be seperately upgradable.
Library jars that are attached to specific beans will be visible to that bean only at runtime.
However, there are 3 special bean keywords recognized by smcconf that allow you to control
the scope of library usage on a wider scale: ALL allows the library to be used by all tools and
services, ALLTOOL allows the library to be used only by other tools, and ALLSERVICE allows
the library to be used only by other services.

Use the -f (force) option to override any resource jar attachment. The -f option can be
used while attaching a library jar only.

Attaching Tool/Service beans

The command used to attach a library jar to a tool or service is:

smcconf repository add library <beanname>
<path>/<jarfile>.jar

●

where <beanname> is a registered tool or service and <jarfile>.jar is the library
resource jar.

For example, to attach a localization library jar /usr/lib/MyTool_fr.jar to the
already registered bean com.mycompany.myproduct.MyTool:

smcconf repository add library
com.mycompany.myproduct.MyTool /usr/lib/MtTool_fr.jar

Detaching Tool/Service beans

The command used to detach a library jar from a tool or service is:

smcconf repository remove library <beanname> <jarfile>.jar

where <beanname> is a registered tool and <jarfile>.jar is the resource jar.

For example, to detach the localization library MyTool_fr.jar from the tool
com.mycompany.myproduct.MyTool:

smcconf repository remove library
com.mycompany.myproduct.MyTool MyTool.jar

●

All tools

To add a library jar attachment to be shared by all registered tools only, use the following
command:

smcconf repository add library ALLTOOL <jarfile>.jar

To remove a library attachment which is shared by all registered tools only, use the
following command:

smcconf repository remove library ALLTOOL <jarfile>.jar

●

All services

To add a library jar attachment to be shared by all registered services only, use the
following command:

smcconf repository add library ALLSERVICE <jarfile>.jar

To remove a library attachment which is shared by all registered services only, use the
following command:

smcconf repository remove library ALLSERVICE <jarfile>.jar

●

All tools and services

To add a library jar attachment to be shared by all registered tools and services, use the
following command:

●

smcconf repository add library ALL <jarfile>.jar

To remove a library attachment which is shared by all registered tools and services, use
the following command:

smcconf repository remove library ALL <jarfile>.jar

Adding and Removing Properties

You can define and undefine properties (key/value pairs) for any of the following:

Tool/Service Beans●

All Services●

All Tools●

All Tools and Services●

Specific resource jars in specific tool/service beans●

As with library jars, the keywords ALL, ALLTOOL, and ALLSERVICE allow you to control
the scope of properties beyond specific beans.

Tool/Service Beans

Tools and services can have properties associated to their registry entries. To add
properties to a registered tool/service, use the commmand below. More than one property
could be added at a time to the specified tool/service as shown below by specifying
multiple -P <key=value> arguments.

smcconf repository add property -P HOMEDIR=/tmp -P
MYHOME=/home/kd <beanname>

The above command will add two properties (HOMEDIR=/tmp and
MYHOME=/home/kd to the <beanname> bean).

To remove properties already defined on the specified registered tool/service, use the
following command:

smcconf repository remove property -P HOMEDIR -P MYHOME
<beanname>

or

smcconf repository remove property -P HOMEDIR=/tmp -P
MYHOME=/home/kd <beanname>lt:beanname<beanname>gt;

Any one of the above commands can be used for removing the specified properties.

●

All tools

To add properties to be shared by all registered tools, use the following command:

●

smcconf repository add property -P HOMEDIR=/tmp ALLTOOL

To remove properties shared by all registered tools, use the following command:

smcconf repository remove property -P HOMEDIR=/tmp ALLTOOL

All services

To add properties to be shared by all registered services, use the following commmand

smcconf repository add property -P HOMEDIR=/tmp ALLSERVICE

To remove properties shared by all registered services, use the following commmand:

smcconf repository remove property -P HOMEDIR=/tmp
ALLSERVICE

or

smcconf repository remove property -P HOMEDIR ALLSERVICE

●

All tools and services

To add properties to be shared by all registered tools and services, use the following
command:

smcconf repository add property -P HOMEDIR=/tmp ALL

To remove properties shared by all registered tools and services, use the following
command:

smcconf repository remove property -P HOMEDIR=/tmp ALL

or

smcconf repository remove property -P HOMEDIR ALL

●

Specific resource jar in a specific tool/service bean

It is also possible to add/remove properties to a specified resource jar attachment to a
specified tool/service bean; for example, CronTool.client.VCronTool tool has
two resource jar attachments: CronTool_C.jar and CronHelpSet.jar.

To add properties to the CronHelpSet.jar resource jar attachment only, use the
following command:

smcconf repository add property -P HOMEDIR=/tmp \
CronTool.client.VCronTool \
CronHelpSet.jar

●

Managing Toolboxes

Managing toolboxes with smcconf is identical to managing toolboxes with smcregister
with one exception: the smcregister toolbox subcommand accepts the -D option which
defers execution of the toolbox command until the SMC server is restarted. This is a convenient
option for use in packaging scripts during install and un-install. Additionally, the command runs
much faster than if run interactively (without -D). In all other aspects, the toolbox arguments
for smcconf and smcregister are the same.

Listing Registered Tools/Services

To list the contents of registered tools/services/attachments/properties, use the following
command:

smcconf repository list

This command lists the same repository information as smcregister.

 Frequently Asked Questions

How Much of My Existing Code Can I Salvage?●

How Do I Load Images, ResourceBundles, and Online Help?●

How Do I Access the Console Frame Parent for Dialogs?●

How Do I Access the Selection Set in the Results Pane?●

How Do I Set Selections in the Results Pane?●

How Do I Get the Currently Selected Node in the Navigation Pane?●

How Do I Specify System Properties on the Console Command Line?●

How Do I Update the Console Display to Show Changes in the Data Model?●

How Do I Integrate Menubars and Toolbars?●

How Do I Create Dialogs?●

How Do I add an About Box for my Tool?●

How Do I Save and Restore User Preferences?●

How Do I Manage Sorting Preferences?●

How Do I Customize the First Column Header in Details View?●

How Do I Align Column Values in Details View?●

Can I Use Global Static Variables●

Why Can't SMC find my new jar file I just registered?●

I Re-Registered My jar File, But I Get a ClassNotFoundException at Runtime.●

How do I determine the management scope?●

I'm using a non-SMC service in my backend. How do I connect to it?●

I keep getting service connection failures to my SMC service.●

Server status seems unstable. How can I fix it?●

How Much of My Existing Code Can I Salvage?

See the section Migrating Applications to SMC.

How Do I Load Images, ResourceBundles, and Online Help?

See the section Accessing Resources.

How Do I Access the Console Frame Parent for Dialogs?

If you descend from one of the AWT or Swing top-level windows (for example, Window,
Frame, Dialog, JFrame, JDialog), you limit the contexts in which your code will run,
which is often not required. Using the VConsoleProperties.DIALOGTYPE property will
do the following:

Allows your tool to know the environment it is in, either FRAME or INTERNALFRAME.●

Lets you know the type of top level container in which to place your component; for
example, JFrame/JDialog or a JinternalFrame.

●

If the DIALOGTYPE setting is FRAME, (SMC style), you need the parent frame to create
dialogs. If the DIALOGTYPE setting is INTERNALFRAME (as in the "desktop" console), you
need the Swing desktop pane to add your JInternalFrame.

Sample Code
 Console Frame Parent for

Dialogs

How Do I Access the Selection Set in the Results Pane?

Obtain a handle to the VDisplayModel and call getSelectedNodes().

Sample Code
 Getting Selections in Results

Pane

How Do I Set Selections in the Results Pane?

There several methods for effecting the selection set, depending on the what you want to do.
Each require obtaining a handle to the VDisplayModel.

Sample Code
 Setting Selections in Results

Pane

How Do I Get the Currently Selected Node in the Navigation
Pane?

Obtain a handle to the VDisplayModel and call getSelectedNavigationNode().

Sample Code
 Get Selected Navigation

Pane Node

How Do I Specify System Properties on the Console Command
Line?

smc J-Dname1=value1 -J-Dname2=value2 ...

This is convenient if you want to dynamically effect application behavior without having to
change code. However, your application will by default only have access to the standard
properties (or whatever access is permitted by the security policy in effect).

To grant read permission for application-specific properties, you can create a policy file in
your home directory (.java.policy).

Sample Code
 Specify Properties on

Command Line

How Do I Update the Console Display to Show Changes in the
Data Model?

Send an UPDATESCOPE event to the console.

Sample Code UPDATESCOPE

How Do I Integrate Menubars and Toolbars?

You can specify your own menubar and toolbar on a per-navigation-node basis, via the
VScopeNode constructor. You should also do this for the root node of each internal-root
model. Your menu/toolbar will appear to the right of the console's menu/toolbar.

See the Menu bar section for details on how to integrate your menu items with the console
menus.

How Do I Create Dialogs?

Extend VOptionPane to create your own dialogs. When you need to display it, create a
VDialog or VFrame, place the VOptionPane inside it and then display your VDialog or
VFrame.

Sample Code Creating a Dialog

How Do I add an About Box for my tool?

First integrate an About menu item into the Help menu, as discussed in the Menu bar section.
When you receive the event (in the ActionListener for the menu item) associated with this
menu item, instantiate a VAboutBox dialog, set the title and description information relative to
your tool, and display the dialog.

Sample Code About Box

How Do I Save and Restore User Preferences?

See the section VConsoleProperties.

How Do I Manage Sorting Preferences?

Your tool is responsible for tracking what the sort attribute (column identifier) and sort order
(ascend or descend) are, and saving them as a property. Sort preferences are in [+/-]# format,
where:

+ implies ascending sort order●

- implies descending sort order●

is the column number to sort by●

For example, +2 means to sort column 2 in ascending order, -1 means to sort column 1 (the
first column) in descending order.

Sample Code Manage Sorting Preferences

How Do I Customize the First Column Header in Details View?

By default, SMC assigns the title for the first column in details view to be Name. You can use
the VConsoleProperties.DEFAULTCOLUMNHEADER property to customize the title.

If your tool is not limitted to the Details view only, then at the same time you customize the first
column, you might also want to customize the width of the column grid for the other views
using VConsoleProperties.DEFAULTCOLUMNWIDTH. Specifiy the value as a pixel
width in String format.

Sample Code
 Customize first Column

Header

How Do I Align Column Values in Details View?

See VScopeNode.columnHeaders in the SMC SDK Javadocs for detailed information
about how to specify column headers and their widths.

Specifying alignment involves adding fixed values to the desired column widths:

Width values >20000 will be right-aligned.●

Width values >10000 and <20000 will be center-aligned.●

Width value <10000 will be left-aligned.●

Sample Code Align Column Values

Can I Use Global Static Variables?

The short answer is no. Depending on user-specific console configuration, your application may
be instantiated more than once, and no variable should have scope beyond the instance for
which it was originally set, otherwise you may get very strange results. Furthermore, you
cannot use VConsoleProperties for per-application global data because the Properties
object is a console-wide shared object.

Why Can't SMC find my new jar file I just registered?

Newly registered jar files require that the SMC server be restarted. See the Starting Services
section for how to do this.

I Re-Registered My jar File, But I Get a
ClassNotFoundException at Runtime.

This is a common error during development, typically after you've added a new class or new
properties file. It is especially common during GUI development, where named and anonymous
inner classes are used quite frequently, and often without the developer even realizing that this
results in additional .class files. New classes and properties files require that the SMC server
be restarted. See the Starting Services section for how to do this. Additionally, make sure
packaging for tool and service jars has been done properly.

How do I determine the management scope?

Call getParameter(ToolContext.MGMTSCOPE) on the ToolContext object, which
is passed to the tool via Tool.setToolContext() upon loading by the SMC console.

I'm using a non-SMC service in my backend. How do I connect
to it?

See the section Third-Party Integration.

I keep getting service connection failures to my SMC service.

Make sure the service has been properly packaged and registered. A common mistake with
SMC 2.1 is to forget to generate the agent container classes and the classlist.

Server status seems unstable. How can I fix it?

With SMC 2.0, it was possible to stumble into catch-22 situations where init.wbem stop
indicated the server was not running and so there was no server to stop, yet init.wbem
start indicated it already was running and so would not attempt to start it. Effective with
SMC 2.1, this situation should occur much less frequently, but if it does happen to occur, here is
the guaranteed cure for all your problems:

su root●

kill all instances of the smcboot process●

kill all instances of the cimomboot process●

kill all instances of SMC-related JVMs. These will contain either "-Dviper.fifo.path=" or
"-Djava.security.policy=" in their command paths.

●

SMC 2.1: rm -rf /var/run/smc<port> where <port> is usually 898●

SMC 2.0: rm -rf /tmp/smc<port> where <port> is usually 898●

Then invoking /etc/init.d/init.wbem start will successfully start the server.

 Code Samples

This page provides links to the code samples used in numerous places in this guide. Code
samples are listed below in alphabetical order. Numbers in this list are provided for ease of
reference only, and do not refer to the order in which the code is presented in the guide.

About Box1.

Accessing a Log Service2.

Accessing WBEM3.

Add Child Node4.

Align Column Values5.

Build Search Index6.

Call Delegation7.

Checking Authorization8.

Configure Services with Properties9.

Connect to External Client Provider10.

Console Listeners11.

Create Tool Node12.

Creating a Dialog13.

Customize 1st Column Header14.

Debugging15.

Details Style Only16.

Enable Styles17.

Exceptions18.

External Client Provider19.

Generate agent container classes with smccompile20.

Generate library classlist with smccompile21.

Generate service classlist with smccompile22.

Generate tool classlist with smccompile23.

Get Frame Parent24.

Getting Selected Navigation Pane Node25.

Getting Selections26.

Getting Sort Preferences27.

Hello28.

Helpset Map File29.

Hyperlink to Helpset30.

Launching31.

Loading Help Files32.

Loading Images33.

Loading Resource Bundles34.

Localized Helpset35.

Log Console Event36.

Logging37.

Manifest for External Client Provider38.

Manifest for Native Library39.

Manifest for Tools40.

Menubar Integration41.

Messaging42.

native2ascii43.

Persistence44.

Preferences45.

PropertyChangeListener46.

Remove Child Node47.

Scope48.

Service Descriptor49.

Service Implementation50.

Service Interface Definition51.

Set Center Status Info Pane52.

Set Context Help53.

Set Left Status Info Pane54.

Setting Character Set Encoding in HTML55.

Setting Selections56.

System Properties on Command Line57.

Tool Descriptor58.

Tool Resource Bundle59.

Tool.setProperties60.

Update Display with UPDATESCOPE61.

UPDATESCOPE62.

VConsoleActionListener63.

 Sample Code: About Box

// Create About Box, setting title and description
//
VAboutBox aboutBox = new VAboutBox();
aboutBox.setTitle("My Tool 1.0");
aboutBox.setDescription(
 "Long-winded Copyright notice\nthat only a lawyer can comprehend");

// Add some extra space below the copyright text, otherwise
// the default icons at the bottom will crop some of the text.
// The space we add must be relative to the current font.
//
Dimension d = aboutBox.getMinimumSize();
FontMetrics fm = aboutBox.getFontMetrics(aboutBox.getFont());
d.height += (2 * fm.getHeight());
aboutBox.setMinimumSize(d);

// Create container for About box
//
JFrame consoleFrame =
(Jframe)(properties.getPropertyObject(VConsoleProperties.FRAME));
VDialog container = new VDialog(consoleFrame, true);
aboutBox.setContainer(container);

// Set title for container
//
container.setTitle("About My Tool");

// Put it all together and render
//
container.getContentPane().setLayout(new BorderLayout());
container.getContentPane().add(aboutBox, BorderLayout.CENTER);
container.pack();
container.showCenter(consoleFrame);

 Sample Code: Accessing a Log Service

method1 () {
 ...
 Log logsvc = (Log)
infrastructure.getServiceByName("com.mycompany.myproduct.MyLogService");
 logsvc.writeLog(...);
}

The infrastructure handle is given to the client upon loading by the SMC console.

 Sample Code: Accessing WBEM

ToolInfrastructure inf = ...
ToolContext toolContext = ...
AdminMgtScope scope = (AdminMgtScope)toolContext.getParameter(
 ToolContext.MGMTSCOPE);
String mgtServer = scope.getMgmtServerName();
String authenHost = inf.getIdentity().getAuthenHost();
CIMNameSpace cns = new CIMNameSpace(mgtServer, "root\\cimv2");
Object[] params = {cns, new String(CIMClient.CIM_RMI)};
CIMClient cimClient = (CIMClient)inf.getExternalClient(
 ExternalClientList.JAVAXWBEM, params);

The inf and toolcontext handles are given to the client upon loading by the SMC console.

 Add Child Node

VScopeNode parent = ...

...

VScopeNode child = new VScopeNode(null, null, null,
 myMenuBar, myToolBar, myPopupMenu,
 smallIcon, largeIcon, "Child Node",
 "A child node for some parent",
 null, -1, childDataObject);

// Associate the node with our Tool's instance.
// This allows node selection notification to be handled by the
// console's engine thru the Tool's start/atop methods.
child.setTool(myTool);

// Add the node as a child of the parent
parent.add(child)

...

// Notify console that Navigation pane should be updated.
// (Assumes a general method for firing events).
VConsoleEvent ev = new VConsoleEvent(
 myTool, VConsoleActions.UPDATESCOPE, parent);
fireConsoleAction(ev);

 Sample Code: Align Column Values

private final Object[][] columnHeaderConfig = {
 // Column key and column width in characters units
 {"My Column 1", new Integer(20)}, // First column, left-aligned
 {"My Column 2", new Integer(10013)}, // Second column, center-aligned
 {"My Column 3", new Integer(20015)}, // Third column, right-aligned
 ...
};

int nCols = columnHeaderConfig.length;
String[][] columnHeaders = new String[nCols][3];

// Get FontMetrics for header. Since we don't have access to the
// header component, create a dummy component that uses the same
// font as the header. Then get the FontMetrics for the dummy
// component.
//
JLabel dummy = new JLabel();
dummy.setFont(ResourceManager.labelFont);
FontMetrics fmHeader = dummy.getFontMetrics(ResourceManager.labelFont);

// Do the same to get FontMetrics for the data
//
dummy.setFont(ResourceManager.bodyFont);
FontMetrics fmData = dummy.getFontMetrics(ResourceManager.labelFont);
for (int i = 0; i < nCols; i++) {
 // Get actual header string
 columnHeaders[i][0] = (String)columnHeaderConfig[i][0];

 // First compute the width of the localized column header.
 // Note that this includes a 2-character margin on each
 // side, based on the character 'A'.
 //
 int headerWidth = fmHeader.stringWidth(columnHeaders[i][0]);
 headerWidth += fmHeader.stringWidth("AAAA");

 // Extract the alignment value from the column width:
 // width values > 20000 -> right aligned
 // width values > 10000 -> center aligned
 // width values > 0 -> left aligned
 //
 int columnWidth = ((Integer)columnHeaderConfig[i][1]).intValue();
 int alignmentValue = 0;
 if (columnWidth > 20000) {
 alignmentValue = 20000;
 } else if (columnWidth > 10000) {
 alignmentValue = 10000;

 }
 columnWidth -= alignmentValue;

 // Then compute the preferred width of the column's data. This too,
 // is based on the character 'A'.
 //
 int dataWidth = fmData.stringWidth("A");
 dataWidth *= columnWidth;
 dataWidth += alignmentValue;

 // Actual width is max of header/data width, but in String format.
 columnHeaders[i][1] = new String(
 String.valueOf(Math.max(headerWidth, dataWidth)));
}

...

// The columnHeaders object array can then be set on a VScopeNode,
// whether it is the internal root for your data model, or a node
// in the navigation pane.
node.setColumnHeaders(columnHeaders);

 Sample Code: Build Search Index

To build the search index for a helpset for a specified locale and place it in the SearchIndex subdirectory,
assuming the helpset is rooted at ${HOME}/helpset, and the html files are in the html subdirectory:

setenv JHHOME <path where JavaHelp 1.1 is installed>
setenv JAVA_HOME <path where the JDK is installed>
setenv PATH ${JAVA_HOME}/bin:${PATH}
cd ${HOME}/helpset
rm -rf locale/SearchIndex
${JHHOME}/javahelp/bin/jhindexer -locale locale -db locale/SearchIndexlocale
locale/html/*

 Sample Code: Call Delegation

 // pass on caller identity to other service
 // by specifying delegation to true
 OtherService os = (OtherService)
infra.getServiceByName(OtherService.class.getName(), true);
 ...
 os.doSomething();
 ...

 Sample Code: Checking Authorization

 // This example illustrates how to check authorizations
 // for a service that supports read and write authorizations

 public static final String AUTH_MYSERVICE_WRITE =
"solaris.admin.myservice.write";
 public static final String AUTH_MYSERVICE_READ = "solaris.admin.myservice.read";

 PermissionCollection permissionCollection = null;
 ToolInfrastructure infrastructure = <gotten from SMC>;

 // Get authorizations.
 try {
 Authorization auth = (Authorization)infrastructure.getServiceByName(
 ServiceList.AUTHORIZATION);
 permissionCollection = auth.readUserPermissions(
 infrastructure.getIdentity());
 } catch (Exception ex) {
 // Report exception
 }

 ...

 /**
 * Determine if user is authorized for "write" access.
 *
 * @return true if user has write authorization, otherwise false
 */
 public boolean hasWriteAuthorization() {

 // Allow only if explicitly authorized.
 //
 VPermission perm = new VPermission(AUTH_MYSERVICE_WRITE);
 if ((permissionCollection != null)
 && permissionCollection.implies(perm))
 return true;

 // Otherwise, deny
 return false;

 } // hasWriteAuthorization

 /**
 * Determine if user is authorized for "read" access.
 *
 * @return true if user has read authorization, otherwise false
 */
 public boolean hasReadAuthorization() {

 // Allow only if explicitly authorized.
 //

 VPermission perm = new VPermission(AUTH_MYSERVICE_READ);
 if ((permissionCollection != null)
 && permissionCollection.implies(perm))
 return true;

 // Otherwise, deny
 return false;

 } // hasReadAuthorization

 Sample Code: Configure Services with Properties

Set the architecture and port properties after a service has been registered
smcregister property ARCH `uname -p` com.mycompany.myproduct.MyService.jar
smcregister property PORT 8080 com.mycompany.myproduct.MyService.jar

At runtime, the service retrieves the properties through the ServiceContext that is given to the service via the method
setContext():

import com.sun.management.viper.VService;
public class MyServiceImpl extends VService implements MyService {
 ...
 public void init() {
 super.init();
 ServiceContext context = super.getContext();
 String arch = context.getRegistryProperty("ARCH");
 String port = context.getRegistryProperty("PORT")
 ...
 }

 Sample Code: Connect to External Client Provider

ToolInfrastructure tinf; // Set by SMC console

// Get external client proxy reference for WBEM.
// We pass the target host in the name space parameter.
CIMNameSpace cns = new CIMNameSpace(hostname, "root/cimv2");
Integer protocol = new Integer(CIMClient.RMI);
Object [] params = {cns, protocol};
CIMClient cc = (CIMClient)tinf.getExternalClient("CIMWBEM", params);
// Access providers through this CIMClient
...

 Sample Code: Console Listeners

public class VProcMgr implements Tool, VConsoleActionListener {

 private Vector consoleListeners = new Vector();

 ...

 /**
 * Adds the specified console actions listener to receive events for actions
 * by our subcomponents.
 *
 * @param listener the console action listener to forward events to
 */
 public void addConsoleActionListener(VConsoleActionListener listener) {

 if (listener != null)
 consoleListeners.addElement(listener);

 } // addConsoleActionlistener

 /**
 * Notify all registered listeners of the specified console event.
 *
 * @param e the console action event
 */
 public void fireConsoleAction(VConsoleEvent e) {

 for (int i = 0; i < consoleListeners.size(); i++) {
 VConsoleActionListener l = (VConsoleActionListener)
 consoleListeners.elementAt(i);
 l.consoleAction(e);
 }

 } // fireConsoleAction

 ...

 VConsoleEvent ev = new VConsoleEvent(...);
 fireConsoleAction(ev);

 ...
}

 Create Tool Node

public class MyTool implements Tool ... {

 VScopeNode myToolNode;

 ...

 // Notice how we leave the first 3 parameters as null.
 // This means the console's rendering engine will take
 // over for us and handle the rendering of our child
 // nodes.
 myToolNode = new VScopeNode(null, null, null,
 myMenuBar, myToolBar, myPopupMenu,
 smallIcon, largeIcon, "My Cool Tool",
 "A tool that does cool stuff",
 null, -1, myDataObject);

 // Associate the node with our Tool's instance.
 // This allows node selection notification to be handled by the
 // console's engine thru the Tool's start/atop methods.
 MyToolNode.setTool(this);

 ...

 public void getScopeNode() {
 // Return the root node of our data model
 return myToolNode;
 }

 ...

 Sample Code: Creating a Dialog

public class MyDialog extends VOptionPane {

 getContentPane().setLayout(...);
 ... add components ...

 VFrame container = new VFrame();
 setContainer(container);
 container.setTitle(...);
 ...

 JFrame f = (JFrame)(properties.getPropertyObject(VConsoleProperties.FRAME));
 container.showCenter(f);

}

 Sample Code: Customize 1st Column Header

Properties properties = ...

// Header for the default column in details view.
properties.setPropertyObject(
 VConsoleProperties.DEFAULTCOLUMNHEADER,
 "My Column");

// Pixel width of the column grid during large/small icon view.
// Typically, you wouldn't hardcode the value as shown here, but
// should compute the value based on the font used in the View
// pane.
properties.setProperty(
 VConsoleProperties.DEFAULTCOLUMNWIDTH,
 "28");

 Sample Code: Debugging

import com.sun.management.viper.util.Debug;

public class MyServiceImpl extends VService implements MyService {
 ...
 public void doit() throws RemoteException {
 try {
 ...
 } catch (Exception ex) {
 Debug.trace("MyServiceImpl",
 Debug.ERROR, "Exception during doit() ",
 ex);
 }
 }
}

 Details Style Only

public class MyTool implements Tool ... {

 String style = "";
 ...

 public void start() {
 ...

 // Save the current style set in the console
 style = properties.getProperty(VConsoleProperties.ICONSTYLE);

 // Since we're only allowing one view, we need to disable
 // style menu items, so user can't change style
 properties.setProperty(VConsoleProperties.ICONVIEWSENABLED,
 VConsoleProperties.FALSE);

 // Set style property for Details only
 properties.setProperty(VConsoleProperties.ICONSTYLE,
 VConsoleProperties.DETAILS);
 ...
 }

 public void stop() {
 ...

 // Reset style back to original setting
 properties.setProperty(VConsoleProperties.ICONSTYLE, style);

 ...
 }

 ...

 Enable Styles

// Enable on LARGE ICON and DETAILS styles
properties.setProperty(VConsoleProperties.ICONVIEWSENABLED,
 VConsoleProperties.LARGE + VConsoleProperties.DETAILS);

 Sample Code: Exceptions

public class MyException extends VException {

 // Resource class for Exceptions.properties.
 private static final String RESOURCECLASS =
 "com.mycompany.myproduct.mytool.resources.Exceptions";

 ...

 /**
 * Protected methods to return the base name of the resource
 * bundle property file.
 */
 protected String getBundleName() {
 return RESOURCECLASS;
 }

 /**
 * Protected method to return the ClassLoader for this class.
 */
 protected ClassLoader getResourceClassLoader() {
 try {
 return this.getClass().getClassLoader();
 } catch (Exception e) {
 return ClassLoader.getSystemClassLoader();
 }
 }
}
...

try {
 if (some error)
 throw new MyException("errorKey");
} catch (Exception e) {
 System.out.println("Error doing something. Exception msg is "
 + e.getLocalizedMessage();
}

 Sample Code: External Client Provider

public class CIMClientProvider implements ExternalClientProvider {
 private static String myType =
"com.sun.management.viper.client.ExternalClientList.CIMWBEM";

 public Object getExternalClient(
 String xcType,
 String host,
 String user,
 String credential,
 String role,
 String roleCredential,
 Object[] params) throws Exception {

 if (!xcType.equals(myType))
 throw new VException("Unknown xc type");

 // validate parameter array skipped

 CIMNameSpace ns = (CIMNameSpace)params[0];
 SolarisUserPrincipal up = new SolarisUserPrincipal(user, role);
 SolarisPasswordCredential pc = new SolarisPasswordCredential(
 credential, roleCredential);

 return new CIMClient(ns, up, pc);
 }
}

 Sample Code: Generate agent container classes with smccompile

cd <CLASSPATH root> # parent directory of com/mycompany/myproduct
/usr/sadm/bin/smccompile -c com.mycompany.myproduct.MyService.jar

 Sample Code: Generate library classlist with smccompile

/usr/sadm/bin/smccompile -j library -n com.mycompany.myproduct.MyLibrary.jar \
 MyLibrary.jar > MyLibrary_classlist.txt

 Sample Code: Generate service classlist with smccompile

/usr/sadm/bin/smccompile -j service -n com.mycompany.myproduct.MyService.jar \
 MyService.jar > MyService_classlist.txt

 Sample Code: Generate tool classlist with smccompile

/usr/sadm/bin/smccompile -j tool -n com.mycompany.myproduct.MyTool.jar \
 MyTool.jar > MyTool_classlist.txt

 Sample Code: Accessing the Frame Parent

Assuming you already have a reference to the VConsoleProperties object:

String dialogType = (String)(properties.getProperty(VConsoleProperties.DIALOGTYPE));
if ((dialog.Type == VConsoleProperties.FRAME) {
 JFrame frame =(JFrame)(properties.getPropertyObject(VConsoleProperties.FRAME);
 ...
} else if ((dialog.Type == VConsoleProperties.INTERNALFRAME) {
 JDesktopPane p =
(JDesktopPane)(properties.getPropertyObject(VConsoleProperties.DESKTOPPANE));
 ...
}

 Sample Code: Getting Selected Navigation Pane Node

Assuming you have a reference to the VConsoleProperties object:

VDisplayModel model =
(VDisplayModel)(properties.getPropertyObject(VConsoleProperties.DISPLAY);

VScopeNode node = model.getSelectedNavigationNode();

 Sample Code: Getting Selections in Results Pane

Assuming you already have a reference to the VConsoleProperties object:

VDisplayModel model =
(VDisplayModel)(properties.getPropertyObject(VConsoleProperties.DISPLAY);

Vector vSelected = model.getSelectedNodes();

where vSelected is a Vector of VScopeNode objects.

 Sample Code: Getting Sort Preferences

String sortPreferencesKey = getClass().getName() + ".sortPreferences";
Properties properties = ...

// Save the current sort properties as a preference.
properties.setProperty(sortPreferencesKey,
 properties.getProperty(VConsoleProperties.SORTEDCOLUMN));

...

// Get previously saved preferences. If none exist, then
// presumably the user disabled sorting in the previous
// session, and we should honor that.
//
String sortPreferences = properties.getProperty(sortPreferencesKey);
if ((sortPreferences != null) && !sortPreferences.equals("null")) {

 // Sort preferences are in "[+/-]#" format, where:
 // + implies ascending sort order
 // - implies descending sort order
 // # is the columns number to sort by

 // Extract the sort order
 String sortOrder = VConsoleActions.SORTUP;
 if (sortPreferences.indexOf('-') >= 0)
 sortOrder = VConsoleActions.SORTDOWN;

 // Extract the sort column
 Integer[] sortColumn = new Integer[1];
 try {
 int n = Integer.parseInt(sortPreferences.substring(1));
 sortColumn[0] = new Integer(n);
 } catch (Exception e) {
 // Should never get here, but Murphy's Law...
 sortColumn[0] = new Integer(0);
 }

 // Apply sort criteria to display model
 VConsoleEvent e = new VConsoleEvent(myTool, sortOrder, sortColumn);
 myTool.fireConsoleAction(e);

 // Update console UI controls on applied sort criteria
 properties.setProperty(VConsoleProperties.SORTEDCOLUMN, sortPreferences);
}

 Sample Code: Hello

Sample code is displayed in this window.

/**
 * Comments? Questions?
 */

 Sample Code: Helpset Map File

This shows an example helpset map file, where some of the HTML files reside in the topics/topicA subdirectory of the
helpset.

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE map PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp Map Version 1.0//EN"
"http://java.sun.com/products/javahelp/map_1_0.dtd">

<map version="1.0">
 <mapID target="mytool_topicA_coolstuff_html" url="topics/topicA/coolstuff.html" />
 <mapID target="mytool_topicA_hotstuff_html" url="topics/topicA/hotstuff.html" />
 ...
</map>

 Sample Code: Hyperlink to Helpset

public class MyDialog extends VOptionPane {

 public MyDialog() {
 ...

 final ... app = <handle to some class that has the event routing method>
 addConsoleActionListener(
 new VConsoleActionListener() {
 public void consoleAction(VConsoleEvent e) {
 if (e.getID().equals(VConsoleActions.HYPERLINKEVENT) &&
 myLinkListener.isExternalLink((String)(e.getPayload())))

 app.fireConsoleAction(e);
 }
 }
 });

 ...
 }
 ...
}

 Sample Code: Launching

// Example code for launching the Motif application 'wsinfo'

import com.sun.management.viper.services.Launch;
import com.sun.management.viper.services.LaunchInfo;
import com.sun.management.viper.services.ServiceList;
...
Launch launcher = (Launch)inf.getServiceByName(ServiceList.LAUNCH);
 LaunchInfo wsinfo = new LaunchInfo(
 "/usr/openwin/bin/wsinfo", // application path
 LaunchInfo.APP_TYPE_XAPP, // type null
 null //,
 environments);
try {
 launcher.launch(wsinfo);
} catch (LaunchException le) {
 // problems like command not found, no display
} catch (AuthorizationException ae) {
 // current user has no authorization to launch this command
} catch (RemoteException re) {
 // Other connection problem
}

 Sample Code: Loading Help Files

bundle = ResourceManager.getLocalizedTextFile(
 "html/addUserHelp.html",
 toolClass);

where toolClass is a class object that has the same codebase as the HTML file to be loaded.
It is typically -- but not always -- the class object of your main Tool instance
(myTool.getClass()). For example, a project-wide common dialog, subclassed from
JDialog, that exists in a library jar file could pass this.getClass().

 Sample Code: Loading Images

imageIcon = ConsoleUtility.loadImageIcon(
 "images/foobar.gif",
 toolClass);

where toolClass is a class object that has the same codebase as the icon image to be loaded.
It is typically -- but not always -- the class object of your main Tool isntance. For example, a
project-wide common dialog, subclassed from JDialog, that exists in a library jar file could
pass this.getClass().

 Sample Code: Loading Resource Bundles

ResourceBundle bundle = ResourceManager.getBundle(
 "com.sun.product.foomgr.client.resources.Resources",
 this.getClass());

where this is a handle to your main Tool instance.

 Sample Code: Localized Helpset

This shows an example helpset file localized for the French (fr) locale.

Note how references to other files in this helpset are based on the locale-based subdirectory name.

<?xml version='1.0' encoding='ISO-8859-1' ?>
<!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version
1.0//EN" "http://java.sun.com/products/javahelp/helpset_1_0.dtd">

<helpset version="1.0">
 <title>My Tool Help</title>
 <maps>
 <homeID>about_my_tool_html</homeID>
 <mapref location="fr/map.jhm" />
 </maps>

 <view>
 <name>TOC</name>
 <label>Table of Contents</label>
 <type>javax.help.TOCView</type>
 <data>fr/toc.xml</data>
 </view>

 <view>
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>fr/index.xml</data>
 </view>

 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <data engine="com.sun.java.help.search.DefaultSearchEngine">fr/SearchData</data>
 </view>

</helpset>

 Log Console Event

// Presume we have an Exception which contains the error message
Exception ex = <the exception to be logged>;

VLogEvent logEvent = new VlogEvent(
 myTool, VlogEvent.ERROR, new Date(),
 "Connection Failure",
 "Connection to server XXX failed",
 ex.getMessage(),
 ex,
 null);

// Log the console event
VConsoleEvent ev = new VConsoleEvent(
 myTool, VConsoleActions.LOGEVENT, logEvent);
fireConsoleAction(ev);

 Sample Code: Logging

 import com.sun.management.viper.services.Log;
 import com.sun.management.viper.services.LogException;
 private static final String MYLOGRESOURCES = "my.service.ServiceResources";

 try {
 Log logsvc = (Log) infra.getServiceByName(Log.class.getName());
 logsvc.writeLog("BEANNAME",
 Log.CATOGERY_APPLICATION,
 Log.SEVERITY_ERROR,
 "FailureSummaryKey1",
 "FailureDetailKey1",
 MYLOGRESOURCES,
 null);
 } catch (LogException le) {
 System.err.println("can't log message");
 } catch (VException ve) {
 System.err.println("can't get log svc");
 }

 Sample Code: Manifest for External Client Provider

Name: com.mycompany.myproduct.XXXXClientProvider.class
Java-Bean: True

Name: com.mycompany.myproduct.XXXXClientProviderInfo.xml
Viper-Info: True

 Sample Code: Manifest for Native Library

Name: com/mycompany/myproduct/MyService.class
Java-Bean: True

Name: com/mycompany/myproduct/MyService.xml
Viper-Info: True

Name: com/mycompany/myproduct/libprint.so
Viper-Lib: True

 Sample Code: Manifest for Tools

Name: com/mycompany/myproduct/MyTool.class
Java-Bean: True

Name: com/mycompany/myproduct/MyTool.xml
Viper-Info: True

 Menubar Integration

public class MyMenuBar extends JMenuBar {

 JMenu actionMenu;
 JMenu viewMenu;
 JMenu helpMenu;

 public MyMenuBar() {

 JMenuItem mi;
 MyActionsListener actionListener = new MyActionsListener(...);

 actionMenu = new JMenu("Action");

 actionMenu.add(mi = new JMenuItem("Action Item 1"));
 mi.setActionCommand("action1");
 mi.addActionListener(actionListener);

 actionMenu.add(mi = new JMenuItem("Action Item 2"));
 mi.setActionCommand("action2");
 mi.addActionListener(actionListener);
 ...
 actionMenu.setActionCommand(VMenuID.ACTION);
 add(actionMenu);
 ...

 viewMenu = new JMenu("View");

 viewMenu.add(mi = new JMenuItem("View Item 1"));
 mi.setActionCommand("view1");
 mi.addActionListener(actionListener);

 viewMenu.add(mi = new JMenuItem("View Item 2"));
 mi.setActionCommand("view2");
 mi.addActionListener(actionListener);
 ...
 viewMenu.setActionCommand(VMenuID.VIEW);
 add(viewMenu);
 ...

 helpMenu = new JMenu("Help");

 helpMenu.add(mi = new JMenuItem("About My Tool"));
 mi.setActionCommand("about");
 mi.addActionListener(actionListener);

 ...
 helpMenu.setActionCommand(VMenuID.HELP);
 add(helpMenu);

 ...
 }
}

 Sample Code: Messaging

 public Chat extends VTool implements VConsoleActionListener,
 MessageListener {
 Message ms;
 MessagePushAgent ca;

 public void init(ToolInfrastructure inf) {
 try {
 ms = (Message)
 inf.getServiceByName(ServiceList.MESSAGE);
 ca = (MessagePushAgent)
 ms.getMessagePushAgent(); ca.init(inf);
 ca.createChannel("ChatChannel_EVERYBODY);
 ca.subscribe("ChatChannel_EVERYBODY", this);
 } catch (Exception e) {
 }
 }

 public void handleMessage(VMessage message) {
 String str = message.getMessage();
 }
 }

 Sample Code: native2ascii

native2ascii Resources_<locale>.properties /tmp/mbe.properties
cp /tmp/mbe.properties Resources_<locale>.properties

 Sample Code: Persistence

prefs = new PersistenceAgent(inf);
prefs.store(obj, version, key);
Object obj = (Object)prefs.restore(key);

 Sample Code: Preferences

// Our "size" preference can be "small", "medium", or "large"
// Assume user selected "large".
String sizeKey = getClass().getName() + ".size";
properties.setProperty(sizeKey, "large");

Later on, possibly in the next SMC session, get the preference

String sizePreference = properties.getProperty(sizeKey);
if (sizePreference == "large")
 // do something for "large"
else if (sizePreference == "medium")
 ...

 Sample Code: PropertyChangeListener

public class MyTool implements Tool, PropertyChangeListener {

 ...

 /**
 * Property change listener, used to be notified when property
 * values change.
 *
 * @param e the property change event
 */
 public void propertyChange(PropertyChangeEvent e) {

 String key = e.getPropertyName();
 if (key.equals(VConsoleProperties.DISPLAYMODEL))
 displayModel = (VDisplayModel)properties.getPropertyObject(
 VConsoleProperties.DISPLAYMODEL);

 else if (key.equals(VConsoleProperties.FRAME))
 consoleFrame = (JFrame)properties.getPropertyObject(
 VconsoleProperties.FRAME);

 else if (...

 }

 ...
}

 Remove Child Node

VScopeNode parent = ...
VScopeNode child = ...

// Add the node as a child of the parent
parent.remove(child)

...

// Notify console that Navigation pane should be updated.
// (Assumes a general method for firing events).
VConsoleEvent ev = new VConsoleEvent(
 myTool, VConsoleActions.UPDATESCOPE, parent);
fireConsoleAction(ev);

 Sample Code: Scope

AdminMgmtScope scope =
 (AdminMgmtScope)toolContext.getParameter(ToolContext.MGMTSCOPE);

...

// Connect to remote service, ... maybe pass scope to service
MyService myService = (MyService)infrastructure.getServiceByName
 ("com.mycompany.myproduct.MyServiceImpl");
myService.initialize(scope, ...);

...

// Get scope type
AdminMgmtScope mgmtScope =
 (AdminMgmtScope)toolContext.getParameter(ToolContext.MGMTSCOPE);
scopeType = mgmtScope.getMgmtScopeType();
if (scopeType.equals(AdminMgmtScope.ADM_SCOPE_DNS))
 System.out.println("managing DNS")

...

// Get the management server name.
String serverName = scope.getMgmtServerName();

...

 Sample Code: Service Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE component PUBLIC '-//Sun Microsystems, Inc.//Viper Component//EN'
'http://www.sun.com/solaris/management/dtds/viperbean_1_0.dtd'>
<component version="1.0">
<service>
 <interface>com.mycompany.myproduct.MyService</interface>
 <provider-class>com.mycompany.myproduct.MyServiceImpl</provider-class>
 <api-version>1.0</api-version>
 <is-singleton>true</is-singleton>
 <scope>file</scope>
</service>
<resource-bundle>com.mycompany.myproduct.MyServiceImplResources</resource-bundle>

 Sample Code: Service Implementation

 import com.sun.management.viper.Service;
 import java.rmi.RemoteException;

 public class MyServiceImpl extends VService implements MyService {
 public MyServiceImpl() throws RemoteException, MyException {
 ...
 }

 public void method1(int i) throws MyException, RemoteException {
 ...
 }

 ...
 }

 Sample Code: Service Interface Definition

 import com.sun.management.viper.Service;
 import java.rmi.RemoteException;

 public interface MyService extends Service {
 public void method1(int i) throws MyException, RemoteException;
 ...
 }

 Sample Code: Set Center Status Info Pane

boolean showProgress = true;
...
final JProgressBar progressBar = new JProgressBar(0, 100);
progressBar.setValue(0);
progressBar.setStringPainted(true);
Object[] args = new Object[1];
args[0] = new Integer(progressBar.getValue());
progressBar.setString(MessageFormat.format("{0}%", args));
progressBar.setVisible(showProgress);

myTool.fireConsoleAction(new VConsoleEvent(
 myTool, VconsoleActions.UPDATEPROGRESS,
 showProgress ? progressBar : null));

...

// As the operation proceeds (presumably in a seperate thread),
// update the progress bar.
// We assume "count" and "total" are integer variables
// that represent the cumulative status thus far and the total
// expected.
if (count >= total)
 progressBar.setValue(100);
else
 progressBar.setValue((count * 100)/total);
Object[] args1 = new Object[1];
args1[0] = new Integer(progressBar.getValue());
progressBar.setString(MessageFormat.format("{0}%", args1));

...

// Later when the operation is complete, we want to disable
// the progress meter and remove it from the center pane.
myTool.fireConsoleAction(new VConsoleEvent(
 myTool, VConsoleActions.UPDATEPROGRESS, null));

 Set Context Help

VScopeNode node = ...

// Here we retrieve the HTML file from the jar file.
// Note how the path to the file is relative to the
// package path of the specified Tool class.
String html = ResourceManager.getLocalizedTextFile(
 "html/myhelp.html", myTool);

node.setHTMLText(html);

 Sample Code: Set Left Status Info Pane

String format = "{0} Networks";
Object[] args = new Object[1];
args[0] = new Integer(<the number of network objects in View pane>);
String status = MessageFormat.format(format, args);

VConsoleEvent e = new VConsoleEvent(
 myTool,
 VConsoleActions.UPDATESELINFO,
 status)
myTool.fireConsoleAction(e);

 Sample Code: Setting Character Set Encoding in HTML

<html>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<head>
<title>This title would be translated into the appropriate locale</title>
</head>
<body>
<p>This body would be translated into the appropriate locale.
</p>
</body>
</html>

 Sample Code: Setting Selections in Results Pane

Assuming you already have a reference to the VConsoleProperties object, you first need to to get a reference to the
display model:

 VDisplayModel model =
 (VDisplayModel)(properties.getPropertyObject(VConsoleProperties.DISPLAY);

To select specific nodes, where vSelected is a Vector of VScopeNode objects:

 model.setSelectedNodes(vSelected);

To select a range of nodes by index:

 model.setSelectionInterval(index0, index1);

To select all nodes:

 model.selectAll();

To unselect all nodes:

 model.clearSelection();

 Sample Code: Specifying System Properties on Console Command Line

Create a .java.policy file in your home directory. You can also grant a finer granularity of permissions on
specific properties (for example, mytool.demoMode), rather than all properties.

 grant {
 permission java.util.PropertyPermission "mytool.*", "read";
 };

Add code in your tool to access the property:

 String serviceType = "Wbem";
 try {
 String serviceTypeProp = System.getProperty("mytool.serviceType");
 if (serviceTypeProp != null)
 serviceType = serviceTypeProp;
 } catch (Exception ex) {
 }

 if (serviceType == "Wbem")
 // do something for Wbem
 else if (serviceType == "Demo")
 // do something for Demo
 ...

Start SMC, and specify property on command line:

 /usr/sadm/bin/smc -J-Dmytool.serviceType=Demo

 Sample Code: Tool Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE component PUBLIC '-//Sun Microsystems, Inc.//Viper Component//EN'
'http://www.sun.com/solaris/management/dtds/viperbean_1_0.dtd'>
<component version="1.0">
<tool>
 <interface>com.mycompany.myproduct.MyService</interface>
 <provider-class>com.mycompany.myproduct.MyTool</provider-class>
 <help-base>com.mycompany.myproduct.helpset.myhelpset</help-base>
 <api-version>1.0</api-version>
 <scope>file</scope>
 <tool-context>TC_APPLICATION_GUI</tool-context>
</tool>
<resource-bundle>com.mycompany.myproduct.MyToolResources</resource-bundle>
</component>

 Sample Code: Tool Resource Bundle

BEANNAME=My Cool Management Tool
DESCRIPTION=A cool tool for creating and managing lotsa of information.
VERSION=2.0
VENDOR=My Company

###
Icon images, used only by SMC in order to render a "stub" of the
application in the console before actually instantiating it.
DO NOT LOCALIZE!
#
LARGEICON=../images/largeProgram.gif
SMALLICON=../images/smallProgram.gif
#
###

###
DO NOT LOCALIZE!
#
locale_file_version=1.0
#
###

 Sample Code: Tool.setProperties()

VDisplayModel displayModel = null;
VConsoleProperties properties = null;
JFrame consoleFrame = null;

/**
 * This method will be called by the console engine when this Tool is
 * created. It sets the properties object which contains the properties
 * of the environment which the tool is running in.
 *
 * @param properties the properties object
 */
public void setProperties(VConsoleProperties properties) {

 this.properties = properties;
 if (properties = null)
 return;

 // Get the display model
 displayModel = (VDisplayModel)properties.getPropertyObject(
 VConsoleProperties.DISPLAYMODEL);

 // Get the main console frame
 consoleFrame = (JFrame)properties.getPropertyObject(
 VconsoleProperties.FRAME);

 ...

} // setProperties

 Sample Code: Updating Display to Reflect Data Model Changes

VConsoleEvent ev = new VConsoleEvent(
 src, VConsoleActions.UPDATESCOPE, node);
myTool.fireConsoleAction(ev);

fireConsoleAction(ev) might be a utility method in your main Tool class for firing
console events.

For models that have an internal root, node is the parent node (the internal root) for all
VScopeNode objects you are managing in the right-side results pane. For models without an

internal root, node is the node in the navigation tree that is associated with the content in the
right-side results pane.

Click here for a discussion on the differences between models with and without an internal root.

 UPDATESCOPE

vObjects = <vector of application data objects>
exposedNode = <navigation tree node associated with this results pane>
rootNode = new VScopeNode();
exposeNode.setInternalRoot(rootNode);
for (int i=0; i<vObjects.size(); i++) {
 MyObject myObject = (MyObject)vObjects.elementAt(i);
 VScopeNode node = new VScopeNode(
 ... fill in fields as appropriate ...
 myObject);
 rootNode.add(node);
}
VConsoleEvent ev = new VConsoleEvent(
 src, VConsoleActions.UPDATESCOPE, exposedNode);
myTool.fireConsoleAction(ev);

 Sample Code: VConsoleActionListener

public class MyTool implements Tool, VConsoleActionListener {

 boolean hasFocus = false;

 public void start() {
 hasFocus = true;
 ...
 }

 public void stop() {
 hasFocus = false;
 ...
 }

 public void consoleAction(VConsoleEvent ev) {
 if (!hasFocus)
 return;

 if (ev.eventID.equals(VConsoleActions.XXX)) {
 ...
 } else if (ev.eventID.equals(VConsoleActions.YYY)) {
 ...
 }

 ...
}

 Illustrations Used in this Guide

This page provides links to the illustrations used in this guide. Illustrations are listed below in
alphabetical order. Numbers in this list are provided for ease of reference only, and do not refer
to the order in which the illustrations are presented in the guide.

Architectural Overview1.

Console Overview2.

Default Console Window3.

Event Bus4.

JavaHelp Localization Hierarchy5.

RMI Client/Server Model6.

Sample Application Data Model7.

Tool Initialization Parameters8.

Tool/Service Interaction9.

Typical SMC Session10.

 SMC Architecture

 SMC Console

 Default Console Window Layout

 Event Bus

 JavaHelp Localization Hierarchy

 RMI Client/Server Model

 Sample Application Data Model

 Tool Initialization Parameters

 Tool/Service Interaction

 Typical SMC Session

 Glossary

Click on the term for which you want a definition. Click on the up arrows () to return to the
top of this list.

authentication●

authorization●

CIM●

console●

event bus●

infrastructure●

JavaBean●

launch●

logging●

Look and Feel●

messaging●

properties●

RBAC●

registration●

RMI●

service●

Sun Management Center●

tool●

Tool class●

Tool Descriptor class●

toolkit●

VConsoleActionListener class●

VConsoleProperties class●

VScopeNode class●

WBEM●

 authentication

The service that is used to verify a user's login credentials, such as a username and
password.

 authorization

The service that is used to decide whether an action towards some critical system
resource is to be allowed or denied, based on the security policy currently in effect.
See Authorization for more information.

 CIM

Common Information Model; a set of templates (schemas) specifying a data format
for enterprise management information that is independent of platform and
management application.

 console

A container for SMC client tools; the SMC "desktop" from which users perform
management tasks.

 event bus

In SMC, a chain that allows components to create, send, and listen for events to or
from other components in the console. Every component in the console is given a
reference to these properties and is added to the event bus; components then can
get and set properties to effect behavior. They may also send and receive events
which may/may not correspond directly with user interaction.

 infrastructure

Collective term for the object model, communications protocols, platform-specific
APIs, and core services used as the "glue" layer between client and server
components; for example, native SMC tools and services used JavaBeans
communicating over RMI, with server components having some Solaris-specific

dependencies, and using the core SMC authentication, authorization, security,
messaging, logging, preferences, and launch services.

 JavaBean

A portable, platform-independent reusable component model; native SMC tools
are written as sets of JavaBeans, while SMC services are often written as a
combination of JavaBeans and platform-specific code.

 launch

The act of starting a computer application. With respect to SMC, this refers to the
service for launching legacy (non-SMC aware) applications. See Launching for
more information.

 logging

The service for posting and tracking messages that pertain to important system
events. See Logging for more information.

 Look and Feel

A pluggable user interface component in the SMC system; SMC includes a default
Explorer-like look and feel for the Solaris Management tools, with a tree view on
the left, a results pane on the right, and an information pane on the botton. See UI
Components for more information.

 messaging

A mechanism for exchanging messages between 2 or more clients. See Messaging
for more information.

 properties

Named values that effect application behavior and/or presentation, and which can
persist from one session to the next. Properties are managed by the
VConsoleProperties class.

 RBAC

Determining the authorization for an access request by mapping to an attribute of
the requestor, such as membership in a group, job function, or organizational level,
rather than on the individual's unique identity; assumes that a person will take on
different roles over time, and different responsibilities in relation to IT systems;

access control based on specific rules relating to the nature of the subject and
object, beyond just their identities.

 registration

The process by which a tool or service is made known to the SMC console. All
tools and services must be registered in the SMC object registry and associated
with a toolbox before they can appear in an SMC console.

smcregister is a command-line tool to administer the application registry.
It provides the capability to manipulate the toolbox and perform
registry-related tasks.

See Registration for more information.

 RMI

Remote Method Invocation; a distributed object model for communication between
Java programs, in which the methods of remote objects written in Java can be
invoked from other Java virtual machines, possibly on different hosts. RMI is the
native communications model used by SMC tools and services.

 service

Server-side applications that support SMC tools; native SMC services are
generally a combinatation of Java and platform-specific code.

 SunMC

Sun Management Center; an open, extended, standards-based server monitoring
and management solution that uses JavaTM and SNMP protocols to provide an
integrated and comprehensive enterprise-wide management of Sun server products
and their subsystems, components, and peripheral devices.

 tool

Client-side applications; in SMC, all tools are written as sets of JavaBeans.

 Tool class

The top-level client class instantiated by the Console; the main interface that SMC
clients must implement. See Tool for more information.

 Tool Descriptor

Provides information to represent a tool without actually instantiating the tool. See
Tool Descriptor for more information.

 toolkit

Collections of tools associated with a given user, group, or administrative role.
Toolkits are defined with toolkit properties files, which specify tool names,
locations, and managed scope.

 VConsoleActionListener class

Provides the interface through which tools can be notified about various events in
the system. See VConsoleActionListener for more information.

 VConsoleProperties class

Shared properties object used by all components in an SMC system for property
storage. See VConsoleProperties for more information.

 VScopeNode class

The most common (and arguably the most important) SMC tool class; provides
information (icons, column headers, payload, etc.) about a data model to the
console, whether that information is rendered in the left-side navigation pane, or
the right-side results pane. See VScopeNode for more information.

 WBEM

Web-Based Enterprise Management; standard for defining platform-independent
management information across platforms; initiated by the Distributed
Management Task Force (DMTF) to define a Common Information Model (CIM),
and further refined by Sun Microsystems; management information is made
available to management applications via eXtensible Markup Language (XML)
over the common Web protocol HyperText Transport Protocol (HTTP).

Index

about box
about this guide
architectural overview
authentication
authorization
bean
CIM
code samples
column alignment
column one header
console overview
console, creating
console, starting
console, starting
console
copyrights
data model
DDE_LINK1
default console window layout
dialogs
event bus
event bus
eventbus
frequently asked questions
getnode
getselect
getting started
global static variables
glossary
how to proceed
illustrations
infrastructure
infrastructure
introduction
jar files
JavaHelp localization hierarchy
launch
localization
logging
look and feel
look and feel
menu bar

menus and tools
messaging
navigation pane
new features in SDK 2.1
organization, this guide
packaging resources
packaging
parent
PDF version
preface
preferences
properties
properties
RBAC
re-registering
registration, overview
registration
registration
registration
registry basics
resources
resources
RMI client/server model
RMI
salvage
sample application data model
Sample Code: About Box
Sample Code: Accessing a Log Service
Sample Code: Add Child Node
Sample Code: Align Column Values
Sample Code: Build Search Index
Sample Code: Call Delegation
Sample Code: Checking Authorization
Sample Code: Configure Services with Properties
Sample Code: Connect to External Client Provider
Sample Code: Console Listeners
Sample Code: Create Tool Node
Sample Code: Creating a Dialog
Sample Code: Customize 1st Column Header
Sample Code: Debugging
Sample Code: Details Style Only
Sample Code: Enable Styles
Sample Code: Exceptions
Sample Code: External Client Provider
Sample Code: Get Frame Parent
Sample Code: Getting Selected Navigation Pane Node
Sample Code: Getting Selections
Sample Code: Getting Sort Preferences

Sample Code: Hello
Sample Code: Helpset Map File
Sample Code: Hyperlink to Helpset
Sample Code: Launching
Sample Code: Loading Help Files
Sample Code: Loading Images
Sample Code: Loading Resource Bundles
Sample Code: Localized Helpset
Sample Code: Log Console Event
Sample Code: Logging
Sample Code: Manifest for External Client Provider
Sample Code: Manifest for Native Library
Sample Code: Manifest for Tools
Sample Code: Menubar Integration
Sample Code: Messaging
Sample Code: native2ascii
Sample Code: Persistence
Sample Code: Preferences
Sample Code: PropertyChangeListener
Sample Code: Remove Child Node
Sample Code: Scope
Sample Code: Service Descriptor
Sample Code: Service Implementation
Sample Code: Service Interface Definition
Sample Code: Set Center Status Info Pane
Sample Code: Set Context Help
Sample Code: Set Left Status Info Pane
Sample Code: Setting Character Set Encoding in HTML
Sample Code: Setting Selections
Sample Code: System Properties on Command Line
Sample Code: Tool Descriptor
Sample Code: Tool Resource Bundle
Sample Code: Tool.setProperties
Sample Code: Update Display with UPDATESCOPE
Sample Code: UPDATESCOPE
Sample Code: VConsoleActionListener
sample UI flow
scope
server, starting
service, starting
service
services, accessing delegated
services, accessing other
services, accessing remote
services, authorization
services, bundled
services, common descriptor
services, common implementation

services, common interface
services, common
services, creating
services, debugging
services, launch
services, logs
services, messages
services, migrating
services, overview
services, package-dependent
services, package resource
services, packaging
services, persistence
services, register config service
services, register servicename
services, registering multiservice
services, registering
services, shared packaging
services
setselect
SMC architecture
SMC, components
SMC, description
SMC, features
SMC, toolkit
smcconf, listing resources
smcconf, properties
smcconf, registering
smcconf, toolbox
smcconf, unregistering
smcconf
smcregister, jar files
smcregister, legacy applications
smcregister, listing resources
smcregister, properties
smcregister, registering
smcregister, toolbox
smcregister, unregistering
smcregister
sorting
SunMC
third-party applications
Tool class
tool class
tool initialization parameters
tool model
tool/service interaction
tool

toolbox, editor
toolboxes, overview
toolboxes
Toolinfo class
ToolInfo class
toolkit
tools, creating
tools, overview
tools
typical SMC session
typographic conventions
UI components
user session, typical
VConsoleActionListener class
VConsoleActionListener class
VConsoleProperties class
VConsoleProperties
VScopeNode class
VScopeNode
WBEM
what's new?
who should read this?

Contents

Copyrights

Preface

About This Guide
Who Should Read This?
How This Guide is Organized
Typographic Conventions
PDF Version

What's New in 2.1?

Introduction

What is the SMC SDK?
SMC SDK Components
Features and Benefits of the SMC SDK
SMC SDK Contents

Getting Started

SMC Architecture
Sample User Session
How To Proceed
Starting the Console
Starting Services

Tools

Overview
Tool Model
UI Components
Accessing Resources
Packaging
Scope
Registration
Localization

Toolboxes

Overview
Starting the Toolbox Editor

Services

Overview
Common Services Model
Accessing other services

Bundled Common Services
Packaging
Registration
Debugging
Third-Party Integration

Libraries

Overview
Packaging
Registration

Registration

Overview
smcregister
smcconf

Frequently Asked Questions

Code Samples

Illustrations

Glossary

	SMC SDK Programming Guide
	Contents
	Copyrights
	Preface
	About This Guide
	Who Should Read This?
	How This Guide is Organized
	Typographic Conventions
	PDF Version

	What's New?
	Introduction
	What is the SMC SDK?
	SMC SDK Components
	Features and Benefits
	SMC SDK Contents

	Getting Started
	SMC Architecture
	Sample User Session
	How To Proceed
	Starting the Console
	Starting Services

	Tools
	Overview
	Tool Model
	UI Components
	Accessing Resources
	Packaging
	Scope
	Registration
	Localization

	Toolboxes
	Overview
	Starting the Toolbox Editor

	Services
	Overview
	Common Services Model
	Accessing Other Services
	Bundled Common Services
	Packaging
	Registration
	Debugging
	Third-Party Integration

	Libraries
	Overview
	Packaging
	Registration

	Registration
	Overview
	smcregister
	smcconf

	Frequently Asked Questions
	Code Samples
	Sample Code: About Box
	Sample Code: Accessing a Log Service
	Sample Code: Accessing WBEM
	Sample Code: Add Child Node
	Sample Code: Align Column Values
	Sample Code: Build Search Index
	Sample Code: Call Delegation
	Sample Code: Checking Authorization
	Sample Code: Configure Services with Properties
	Sample Code: Connect to External Client Provider
	Sample Code: Console Listeners
	Sample Code: Create Tool Node
	Sample Code: Creating a Dialog
	Sample Code: Customize 1st Column Header
	Sample Code: Debugging
	Sample Code: Details Style Only
	Sample Code: Enable Styles
	Sample Code: Exceptions
	Sample Code: External Client Provider
	Sample Code: Generate agent container classes with smccompile
	Sample Code: Generate library classlist with smccompile
	Sample Code: Generate service classlist with smccompile
	Sample Code: Generate tool classlist with smccompile
	Sample Code: Get Frame Parent
	Sample Code: Getting Selected Navigation Pane Node
	Sample Code: Getting Selections
	Sample Code: Getting Sort Preferences
	Sample Code: Hello
	Sample Code: Helpset Map File
	Sample Code: Hyperlink to Helpset
	Sample Code: Launching
	Sample Code: Loading Help Files
	Sample Code: Loading Images
	Sample Code: Loading Resource Bundles
	Sample Code: Localized Helpset
	Sample Code: Log Console Event
	Sample Code: Logging
	Sample Code: Manifest for External Client Provider
	Sample Code: Manifest for Native Library
	Sample Code: Manifest for Tools
	Sample Code: Menubar Integration
	Sample Code: Messaging
	Sample Code: native2ascii
	Sample Code: Persistence
	Sample Code: Preferences
	Sample Code: PropertyChangeListener
	Sample Code: Remove Child Node
	Sample Code: Scope
	Sample Code: Service Descriptor
	Sample Code: Service Implementation
	Sample Code: Service Interface Definition
	Sample Code: Set Center Status Info Pane
	Sample Code: Set Context Help
	Sample Code: Set Left Status Info Pane
	Sample Code: Setting Character Set Encoding in HTML
	Sample Code: Setting Selections
	Sample Code: System Properties on Command Line
	Sample Code: Tool Descriptor
	Sample Code: Tool Resource Bundle
	Sample Code: Tool.setProperties
	Sample Code: Update Display with UPDATESCOPE
	Sample Code: UPDATESCOPE
	Sample Code: VConsoleActionListener

	Illustrations
	Architectural Overview
	Console Overview
	Default Console Window Layout
	Event Bus
	JavaHelp Localization Hierarchy
	RMI Client/Server Model
	Sample Application Data Model
	Tool Initialization Parameters
	Tool/Service Interaction
	Typical SMC Session

	Glossary
	Index

