smc

2.1 SDK
Programming

Guide

-
Contents

Copyrights

Preface

* About This Guide

* \Who Should Read
This?

* How This Guide s
Organized

* Typographic
Conventions

* PDF Version

What'sNew in
2.1?

I ntroduction

* What isthe SMC
SDK?

* GVIC SDK
Components

* Features and
Benefits of the SMC
K

* SVIC SDK Contents

Getting Started
* 9VIC Architecture

* Sample User Session

* How To Proceed

* Sarting the Console

* Sarting Services

Tools

* Overview
* Tool Model
* Ul Components

* Accessing Resources

* Packaging

* Scope

* Registration
* | ocalization

Toolboxes

* Overview

* Sarting the Toolbox

Editor

ch WHEWW
ﬂﬁﬁes Wﬂ

P
[m‘&-?q Preface

About This Guide ~ Who Should Read This? ~ How This Guideis
Organized ~ Typographic Conventions ~ PDF Version

About This Guide

This guide providesinstructions for using the Solaris™ Management Console 2.1 Software
Development Kit (SMC SDK) to create and port tools and services based on the SMC distributed
application environment. This guide also provides a genera overview of the SMC architecture
and JavaBeans™ design considerations as they apply to the SMC SDK.

This guide is intended for programmers who want to create or port applications for the SMC
environment. Readers of this guide should be proficient with Java, JavaBeans, and general
object-oriented programming techniques.

Who Should Read This?

Please use this guide in conjunction with the SMC javadocs
(/usr/sadm/lib/smc/docs/javadoc/index.html) aswell thesnc(1M , sntregi ster (1M, and

sncconpi | e(1M man pages.

This guide is organized into the general sections listed below, followed by a glossary and alist of
illustrations. All sections in the guide can be reached from links in the navigation pane on the left,
which can be toggled between Index and TOC views.

How This Guide is Organized

What's New in 2.1? | Brief descripions of the new features
inthe SMC 2.1 SDK

I ntroduction | General introduction to the uses and
features of the SMC SDK

Getting Started | Overview of SMC architecture, tools,
services, and infrastructure; includes
high-level explanations of procedures
for creating and porting tools and
services with the SMC SDK

Services

* Overview

* Common Services
Model

* Accessing other
services

* Bundled Common
Services

* Packaging

* Registration

* Debugging

* Third-Party
Integration

Libraries

* Overview

* Packaging
* Registration

Registration
* OQverview

®sncregi ster
*sncconf

Frequently Asked
Questions

Code Samples

Illustrations

Glossary

Tools| In-depth instructions on how to build
and package a Tool, from asimple
CLI interface to a more complex
GUI, console. Also includes an
overview of some of the more
important user interface components
included in the SDK, with
instructions on how and when to use
them

Toolboxes | Overview of what atoolbox is, and
how to manage them

Services | In-depth instructions on how to build
and package a Service

Registration | In-depth instructions on how to use
smcregister for registering Tools and
Services

Freqguently Asked Questions|General FAQ for the SMC SDK

Code Samples| Compiled list of sample code used in
this guide

Illustrations|Compiled list of illustrations used in
this guide

Glossary | Glossary of terms relevant to SMC

While it is not necessary to read the sectionsin any particular order, you should be familiar with
the concepts in the Introduction and Getting Started sections before starting to use the SMC SDK.

« File names, commands, environment variables, class names and methods, and field values
aredisplayedinafi xed w dt h font.

Typographic Conventions

« Linksto glossary terms are in indicated by small book icons& in the main text. For
example,) Sun Management Center. Use the Back button in your browser to return to the

main text.

« Code samples are displayed in separate windows alongside the main text. Code samples
can be displayed by clicking the Sample Code boxes; for example:

Sample Code 2 Hello

To make it easier to print (or if you simply prefer PDF), thisguideis aso available in PDF
format. The PDF version contains this entire SDK guidein asinglefile.

PDF Version

Copyrights

Copyright © 2001, Sun Microsystems, Inc.

This product or document is protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or document may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any. Third-party software, including font
technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California
UNIX isaregistered trademark in the U.S. and other countries, exclusively licensed through X/Open Company,
Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, Solaris Management Console, and Solaris are trademarks,
registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC

trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in

the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture devel oped by
Sun Microsystems, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and
licensees. Sun acknowledges the pioneering efforts of Xerox in researching and devel oping the concept of
visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK
GUIs and otherwise comply with Sun's written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of
FAR 52.227-14(9)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR
227.7202-3(a).

DOCUMENTATION ISPROVIDED "ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON- INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
I'utilisation, la copie, ladistribution, et la décompilation. Aucune partie de ce produit ou document ne peut étre
reproduite sous aucune forme, par quelque moyen que ce soit, sans I'autorisation préalable et écrite de Sun et de
ses bailleurs de licence, Sil y ena. Lelogiciel détenu par destiers, et qui comprend la technologie relative aux
polices de caractéres, est protége par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systeme Berkeley BSD licenciés par I'Université de
Californie. UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par
X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, Solaris Management Console, et Solaris sont des marques
de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans
d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des
marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. L es produits portant les
marques SPARC sont basés sur une architecture dével oppée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnait |es efforts de pionniers de Xerox pour larecherche et le dével oppement
du concept des interfaces d'utilisation visuelle ou graphique pour I'industrie de I'informatique. Sun détient une
licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également
les licenciés de Sun qui mettent en place I'interface d'utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU
IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS.
CE DENI DE GARANTIE NE SAPPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU
JURIDIQUEMENT NUL ET NON AVENU.

Preface

About This Guide ~ Who Should Read This? ~ How This Guideis
Organized ~ Typographic Conventions ~ PDF Version

About This Guide

This guide provides instructions for using the Solaris™ Management Console 2.1 Software
Development Kit (SMC SDK) to create and port tools and services based on the SMC
distributed application environment. This guide also provides a general overview of the SMC
architecture and JavaBeans™ design considerations as they apply to the SMC SDK.

Thisguideisintended for programmers who want to create or port applications for the SMC
environment. Readers of this guide should be proficient with Java, JavaBeans, and general
object-oriented programming techniques.

Who Should Read This?

Please use this guide in conjunction with the SMC javadocs
(/usr/sadm/lib/smc/docs/javadoc/index.html) as well thesnt (1M , sntregi ster (1M, and

sncconpi | e(1M man pages.

This guide is organized into the general sections listed below, followed by aglossary and alist
of illustrations. All sectionsin the guide can be reached from links in the navigation pane on the
left, which can be toggled between Index and TOC views.

How This Guide is Organized

What's New in 2.1? | Brief descripions of the new features in the
SMC 2.1 SDK

I ntroduction | General introduction to the uses and features of
the SMC SDK

Getting Started | Overview of SMC architecture, tools, services,
and infrastructure; includes high-level
explanations of procedures for creating and
porting tools and services with the SMC SDK

Tools| In-depth instructions on how to build and
package a Tool, from asimple CLI interface to
amore complex GUI, console. Also includes an
overview of some of the more important user
interface components included in the SDK, with
instructions on how and when to use them

Toolboxes | Overview of what atoolbox is, and how to
manage them

Services | In-depth instructions on how to build and
package a Service

Registration | In-depth instructions on how to use smcregister
for registering Tools and Services

Frequently Asked Questions|General FAQ for the SMC SDK
Code Samples| Compiled list of sample code used in this guide

Illustrations | Compiled list of illustrations used in this guide

Glossary | Glossary of termsrelevant to SMC

While it is not necessary to read the sectionsin any particular order, you should be familiar with
the concepts in the Introduction and Getting Started sections before starting to use the SMC

SDK.

o File names, commands, environment variables, class names and methods, and field
valuesaredisplayedinafi xed w dt h font.

Typographic Conventions

« Linksto glossary terms areinindicated by small book icons & in the main text. For
example, @ Sun Management Center. Use the Back button in your browser to return to

the main text.

« Code samples are displayed in separate windows alongside the main text. Code samples
can be displayed by clicking the Sample Code boxes; for example:

Sample Code 2 Hello

g Page

b

PDF Version

To makeit easier to print (or if you simply prefer PDF), thisguideis also available in PDF

file:///F|/stuff/viper/s9v2/SDK-all.pdf

format. The PDF version contains this entire SDK guidein asinglefile.

E What's New in 2.17

Faster Server Configuration ~ Faster Tools ~ New Registration Command ~ Java
Runtime Requirement ~ More Troubleshooting Tips ~ PDF Version

@ Faster Server Configuration

Theinitial server startup configuration has been significantly reduced from several minutesto
just afew seconds.

& Faster Tools
Runtime performance of tools running in the console has been improved by afactor of

approximately 2-3x. This speedup is also available as a patch to all Solaris 8 updates starting
with the Solaris 01/01 update.

& New Registration Command

[usr/ sadni bi n/ sntr egi st er isanew command-line tool for administering the SMC
repository. It isintended to replace/ usr / sadni bi n/ sntconf asthe preferred interface for
managing the repository, as well as for managing toolboxes from within scripts, due to
significant performance enhancements over smcconf. See the registration section for detailed

information on smcregister.

& Java Runtime Requirement

SMC 2.1 requires Java 1.4

& More Troubleshooting Tips

The FAQ has been enhanced with more trouble-shooting tips relative to registration of tools and
services, and the SMC/Wbem server.

& PDF Version

To makeit easier to print (or if you ssmply prefer PDF), thisguide is also available in PDF
format. The PDF version contains this entire SDK guidein asinglefile.

file:///F|/stuff/viper/s9v2/SDK-all.pdf

Introduction

What isthethe SMC SDK? ~ SMC SDK Components ~ Features and Benefits of the SMC
SDK ~ SMC SDK Contents

What is the SMC SDK?

The SMC (Solaris Management Console) SDK is a software devel opment kit designed to give
developers a platform on which to develop and deploy distributed applications. For example,
Sun Microsystems, Inc. isusing the SMC SDK to develop Solaris system management
applications which plug into the Solarism Management Console™ 2.1.

A distinguishing feature of the SMC SDK isits ability to present to the end user a unified
console consisting of user interface components that may have been built using several different
development platforms and middleware services. For example, a user interface created with the
SMC SDK might combine a simple disk management tool with a WBEM -based user
management tool, both of which would appear in the same console on the user's desktop.

SMC SDK Components

The SMC SDK environment comprises five general components:

Tools|Client-side applications; in SMC, all tools are written as sets of
JavaBeans

Consoles| A container for SMC client tools; the SMC "desktop" from
which users perform management tasks

Services | Server-side applications that support SMC tools; native SMC
services are generally a combination of Java and
platform-specific code

L ook and Feel | The presentation layer used in aconsole; in SMC, "Look and
Feel" is apluggable component, and you can use whatever
look and feel -- including a command-line interface -- that is
most appropriate for your tools and customers

Infrastructure| The "glue" that holds everything together; the SMC
infrastructure includes a set of core services and an

I RM I -based communication model, although SMC tools and
services can also be implemented using other infrastructures,
such as @ CIM/EIWBEM, and & SunMC.

See the Getting Started section for a more compl ete description of the SMC architecture.

Features and Benefits of the SMC SDK

The SMC SDK provides several important features and benefits:
o Common platform for all your tools -- Perhaps the biggest benefit the SMC SDK

providesis a common platform for deploying end user components. These components
can all share acommon user model, and look and behave in the same manner, regardless
of the back end services the components might use.

Convenient core services--The SMC SDK also provides a convenient middieware
platform with a set of core services such as authorization, logging, messaging, and others.
See Bundled Common Services for more information about the SMC SDK core services.

Rapid and secur e -- Another benefit of working with the SMC SDK is the rapid
development of secure, distributed applications. For server-side development, the SMC
SDK utilizes Java developers existing knowledge of standard Java RMI (Remote Method
Invocation) and avoids presenting developers with any new paradigms or technologies.
For client-side development, the SMC SDK simply extends the set of lightweight user
interface components found in the Java Foundation Classes (JFC, a.k.a. Swing) with new
components and features such as wizards, property sheet editors, filtering, sorting, and
more.

Pur e Java -- Because the SMC SDK is nearly 100% pure Java, it can be made available
on any platform with a Java2 runtime environment. A completely platform-independent
version of the SMC SDK is possible, asthe only portions of the SMC SDK which are
platform dependent are for functions such as user authentication and authorization. These
portions can be replaced with different implementations on platforms other than Solaris.

SMC SDK Contents

The SMC SDK is acomplete distributed application environment, including a server providing
remote services and alocal console client providing an integrated user interface. The SMC SDK

includes:
e Coreservicessuch as:

= Authentication
= Authorization
= Logging
= Messaging
= User Preferences
= Registration
= Application launch management
» Persistence
JFC extensions such as:
= Dialog
= Wizard
= Property Sheet Editor
JavaDOC -- All public classes documented in HTML
This SDK Guide
Example code demonstrating many key features of the SMC SDK

@Y Getting Started

SMC Architecture ~ Sample User Session ~ How To Proceed ~ Creating Tools ~ Creating
Services ~ Migrating Applications to SMC ~ Starting the Console ~ Starting Services

This section provides an overview of SMC architecture, and explains the basic steps and
considerations involved in creating and porting tools and services for the SMC platform.

SMC is a Java-based application environment designed to facilitate the rapid development of
network management client tools and server-based services.

SMC Architecture

In the simplest terms, the SMC environment is based on three types of JavaBeans components:

Tools| Client-side applications; for example, a date/time tool that shows a
clock and calendar, and which allows the user to change the date
and time on amachine. Tools are the simplest GUI presentationsin
the SMC system.

Consoles| An extension of a Tool, providing a more advanced GUI
presentation, and acting as a container for sets of client Tools. For
example, a Console could provide a common display hierarchy,
toolbar, menu bar, and information pane for the Tools it contains.
The benefit of thismodel isthat Tools can be combined into a
single Console implementation, sharing the common resources
provided by the Console, yet still retain their own complex
hierarchies and behavior.

Services | Server-side components that support SMC tools; native SMC
services are generally a combination of Java and platform-specific
code. SMC includes a set of core services for security,
authentication, authorization, messaging, user preferences,
registration, logging, and launch management.

These three primary components are integrated by means of three sets of meta-components:

oarComponent | Deripion

L ook and Fed

The presentation layer used in a Console -- that is, the
specific window and dialog types, interface widgets, layout,
and so forth. In the SMC, "L ook and Feel" is a pluggable
component, and you can use whatever look and feel --
including a command-line interface -- that is most
appropriate for your tools and customers.

Infrastructure

The "glue" that holds everything together; the SMC
infrastructure includes the core services listed above and an
EE RM I -based communication model, although SMC tools
and services can aso be implemented using other
infrastructures, such as & CIM/EWBEM ,and ! SunMC.

Event Bus

Any tool running in the SMC console can receive events
related to any other tool in the console by means of the
VConsol eAct i onLi st ener interface. Tools that
implement VConsol eAct i onLi st ener aresaidto be
on the event bus because, analogous to a hardware bus, all
events on the bus are public and available to any tool that is
configured to listen for one or more event types. See Events

for more information.

The illustration below provides a general overview of SMC architecture.

KMLHTTP
Rl

Rl

SMC Architecture Overview

Console Description

In the accompanying illustration, the SMC Console contains four tools implemented as
JavaBeans. In this case, two of the tools are SMC native, one is WBEM-based, and the fourth is
SunM C-based. The specific combination of tools hereisfor illustration purposes only -- the
point is that you can integrate native SMC tools with tools based on other object models.

Tools are organized into i toolkits, which are properties files associated with given users,
groups, and/or administrative roles. Toolkits, in turn, are displayed in the console, with the

specific user interface determined by the look and feel implemented for the console.

i Look and feel is a pluggable component that can vary from console to console regardless of
the toolkits used. For example, the look and feel of a given toolkit in one console could
implement the common MS Windows Explorer-like interface, while the same toolkit could
be used in a browser-based interface modeled on Motif property sheets. SMC tools can be
ported as standalone Java applications, and browser-based Java applets. Theillustration
below shows the default SVIC look and feel.

m

—wl G ek B B %]
e (2Tl R P

|] e A
—— 3

S ——— _H g

Ormlim g

[F = =

PR
T —.

— Information pane

Results pana

Navigation pana

Manu bar

Default SMC Look and Fedl

The console provides container and wrapper services for the tools. One of the most important
aspects of this wrapper serviceisto provide a conduit between the toolkit and the
platform-specific APIs. This makesit possible to write tools that have no platform-specific
interfaces.

Communication between the client view -- that is, a browser-based applet, a standalone Java
application, and so forth -- is accomplished via XML and/or HTTP over RMI.

Note that while creating customized consolesis certainly possible, supporting documentation is
not available at thistime.

Server Description

Again, in the architecture illustration above, the SMC server contains the SMC core services

and three tool-specific SMC services. A SunMC server and a CIM object manager
communicate with the SMC server directly. The CIM object manager also communicates with a
WBEM tool in the console.

i Services implemented in the SVIC server can be configured as daemons, singletons, or
multiple-instance processes.

One of the interesting features of the SMC server model is that it supports non-native services
like CIM/WBEM and SunMC. The SMC server acts as wrapper for these non-native services,
providing a model for extending the server infrastructure APIsto support platform-specific
hooks. Moreover, because the SMC server is built from sets of pluggable native and (in this
example) non-native components, dynamic and distributed management of services -- for
example, updating and replacing components -- is relatively quick and easy.

Similar to the model used for SMC client tools, the SMC server infrastructure API isolates
platform-specific code in the server components from the tools by means of the server
infrastructure API. In this model, the tools do not need to know about the underlying platform
on which a given service runs.

= 1deally, to take advantage of SMC's component-oriented design, you should as much as
possible adhere to Model->Viewer->Controller paradigm of separating your client and
server code as much as possible, and rely as little as possible on platform- or
service-specific APIs.

In the SMIC coding model, tools do not have direct access to console components -- for
example, the navigation and results pane. Instead, specific interfaces are provided for
accessing the underlying data model, and for accessing and customizing the console.

Remote Method Invocation

As mentioned previously, SMC uses ! RM| by default for communications between services
and tools. There is nothing in the SMC architectural model that prevents the use of other
communication models, but RMI is recommended for its ease of use, which complements the
SMC goal of enabling rapid development of management applications.

= 1N cases where difficulties using RMI arise -- for example, when operating through some
firewalls -- RMI has the capability to fall back to HTTP as its transport mechanism.

The illustration below shows atypical RMI client/server interaction, in which a skeleton object
Isused for passing client and server parameters. In this model, atypical server application
creates some remote objects, makes references to them accessible, and waits for clientsto
invoke methods on these remote objects. A typical client application gets a remote reference to
one or more remote objects on the server, and then invokes methods on them. RMI provides the
mechanism by which the server and client communicate and pass information.

Faramaiers

Mathcd Indcocabicon
on Cliend

Er T rr r r Y PR R R R R R

Farameters

Method Invocation
o Server

S sssssss s . s s

RMI Client/Server Model

i Writing an SMC application is similar to writing a common RMI application, except that
SMIC developers can ignore the "stub™ and " skeleton™ components shown in the illustration.

Before stepping through the flow of eventsin atypical SMC user session, it is useful to describe
SMC tools and toolkits in slightly more detail.

Sample User Session

r,
> v :
Class | o = 5= Tool Initialization
hame = Parameters
Managed
Scape

Ti(5 1

o)) ! Toolkit

I r

: LD

Tool Initialization Parameters

Toolkits are defined by propertiesfiles, in which sets of tools are specified. In particular, as
shown in theillustration above, an SMC toolkit needs to know three things about a tool before
that tool can be initialized:

« Classname -- Thetool's class hame, as provided by the tool information file (XML
format)

e Server name -- The name of the local or remote server on which the tool islocated

« Managed scope -- The scope, in URL form, that the tool can manage; if that scope
requires a session to some other server, the tool obtains a session to that machine using
get External dient()

With thisin mind, the illustration below shows an example of the flow of eventsin atypical
SMC session.

Tool Parameters

D k=
N e

Authentication

Toolkit View
Downloaded to Console

Typical SMIC Session

Before doing anything in a console, the user must open atoolbox. The console attempts to
construct aview of the toolbox by reading the server location and the class name for each tool
encountered.

For each server on which atool islocated, the SMC console must authenticate the user before
any tool or tool information can be retrieved. This authentication happens through one or more
dialog boxes, depending on where the tools are located.

For example, in theillustration, tools A and B both reside on the same server, so the console
only requires the user to log in once. However, tools C and D reside on two different servers,
and so the user is presented with two separate authentication dialogs. In this example, the user
must log in three times, to three different servers, before the toolkit will load.

It's probably best to understand the main classes that you need to implement and/or will work
with most often in the SMC environment. The reader is urged to consult the SMC SDK
javadocs for details on these classes.

How to Proceed

The primary classes and files are:
e Tool

o Tool Descriptor

o VConsoleProperties
o VConsoleActionListener
o VScopeNode

Creating Tools

The general stepsfor creating an SMC tool are asfollows:
1. Develop a JavaBean implementing the SMC Tool interface

2. Include the Java service interface for the tool's corresponding service (optional)
3. Package and register the tool with the SMC server

4. Add the tool's authorizations to users, profiles, roles, etc.

5. Add thetool to atoolbox

Creating Services

The general stepsfor creating an SMC service are as follows:
1. Develop a Java service interface for the server-side bean
2. Develop a JavaBean service implementation implementing the SMC Ser vi ce interface
and your service interface
3. Package and register the service with the SMC server

4. Add the service's authorizations to users, profiles, roles, etc.

Thefirst question one might ask when considering porting their applicationsto SMC is"How
much of my existing code is salvageable?'. It depends, you might salvage more than half, or
you might salvage nothing. For applications that display their data as simple nodes or in tables,
the SMC engine will handle al the rendering for you; you need only provide your icons and
data. So if your application maintains a clear seperation between it's data model and the
presentation of that data, you can salvage the data model and it's management code, but throw
away the presentation code. Note that applications can still do their own rendering, but that
SMC provides "Windows Explorer-like" rendering services for free for those applications that
need a similar presentation.

Migrating Applications to SMC

Many applications are integrated into a parent console which is proprietary to their product. If
access to that console is provided thru a proxy class which provides the interface to the console,

then only the proxy needs to be changed to "point" to the SMC [console, with little or no

changes to the application. Otherwise, you'll need to specifically port every instance where the
application has specific knowledge of the parent console.

In the SMC framework, applications do not have direct access to console components (eg., the
navigation pane, the results pane). Instead, specific interfaces are provided for accessing the
underlying data model and for accessing and customizing the console.

The SMC Service model is similar to other RPC models. Y ou need to seperate out the
presentation layer from those functions that need to be performed on the server. The
presentation layer becomes the client side tool and the part that runs on the server becomes one
or more services. An interface needs to be defined between the tool and service(s). Some of the
native code on server side can be preserved by adding a JNI interface to it. Click here for details

on working with SMC services.

In most cases, you start the console with the command / usr / sadn bi n/ snc. Thiswill
launch the console and allow you to run tools from the toolboxes you load. By default, SMC
will load the toolbox calledt hi s_conput er . t bx for thelocal machine on which the
console was started.

Starting the Console

IMPORTANT: Note that only upon the first time the console is started after installation, there
will be adelay of several seconds before the toolbox isloaded. Thisis dueto SMC server
configuration taking place. During this time, SMC is bootstrapping it's registry with the tools
and services required for the SMC framework to run properly. It isimportant to be patient and

let this configuration complete, otherwise SMC may not function properly.

SMC services are bundled with WBEM services into asingle JVM, and thus can be started and
stopped thru the WBEM script/ etc/init.d/init.wbhem

Starting Services

To start the services, enter the following command:
[etc/init.d/init.wemstart

To stop the services, enter the command:
[etc/init.d/init.wbem stop

@Y Tools

Overview ~ Tool Model ~ Ul Components ~ Access Resources ~ Packaging ~ Scope
~ Registration ~ Localization

Overview

This section provides detailed information about the SMC client tool model, and describes the
core SMC client classes you must use in your tool implementations.

i dfPage

- !

Tool Model

The SMC tool model defines the basic components of a tool implementation, and how these
components are used to manage the presentation of data. A tool consists of five major
components, as described below.

Tool

The Tool classisthe maininterface client tools must implement, and is the top-level client
class instantiated by the console.

Y ou are not limited to one instance of the Tool class. For example, you can create one instance
each for all your navigation nodes, or create one master instance with which all nodes are
associated, or create one for each of the non-leaf nodes, among other possibilities.

The design you choose depends on how you want to structure your application, and how much
may be in common among your navigation nodes. Navigational nodes are associated with
specific Tool instances by means of VScopeNode. set Tool (Tool).

While you must implement al methodsin the Tool interface, six are of particular interest, and
called in the order as presented here:

Tool . set Tool Cont ext () Provides a handle to the

Tool Context object, used for
retrieving information (such as
It's management scope) about
the environment the tool is run
in,

Tool . set Properties() Provides a handle to the shared
properties object that all
components in the SMC system
can use for property storage

Tool . addConsol eAct i onLi st ener () |Allows other system
components to register to
receive your events, you ssimply
need to maintain alist of these
listeners

Tool .init() Called after the Tool is
instantiated, it is the time when
a Tool should connect to
server-side services.

Tool . start () Called whenever any node
associated with the Tool
instance is clicked; for aone
Tool instance application, itis
asignal that your application
has focus

Tool . stop() Called whenever any node not
associated with the Tool
instance is clicked; for aone
Tool instance application, itis
asignal that your application
has lost focus

I 1t isimportant to know
when your application does
or does not have focus
because it will receive all
events on the [event bus,

even those related to other
applications.

Tool Descriptor

Every tool must have a deployment descriptor before it can be registered and maintained by
SMC. A descriptor includes static information about the tool component that is used by the
SMC console to form a representation of the tool without actually instantiating it, and to
manage the lifecycle of itsinstances.

There are severa attributes common to al tools, such as:

« Tool package path (provider-classtag) -- SMC needs the provider-classin order to

instantiate your Tool.

« Resource bundlelocation -- Defines the base location and name of the Tool's
ResourceBundle (resource-bundle tag). The resource-bundle is used to lookup special
localized properties that are needed in order to present the Tool in the console without
Instantiating it. These special properties are: LARGEI CON, SMALLI CON, BEANNANME,
DESCRI PTI ON, and VENDOR, and are discussed TBD.

« Help filelocation (Optional) -- Defines the base location and name of the JavaHelp help
set for this component. See TBD for details on the policy established by SMC for
packaging of JavaHelp bundles.

« SMC SDK API version (Required) -- Defines the String version number of the SMC
SDK API this component builds against. This must be in the form of :
maj or [. m nor]

« Supported tool display contexts-- Application GUI, applet, CLI.

« Supported Management Scopes (Optional) -- Defines the management scopes this
service supports. Supported management scopes specifies which one or more of the
following name services contents will be accessed and/or changed by this service:

file | nis | nisplus | lIdap | dns
If not specified, f i | e scope is assumed.

« Runtime parameters (optional) -- Defines runtime attributes that effect service
behavior. Unlike global registry properties, these runtime parameters can be different for
each tool.

An SMC tool descriptor is defined as an XM L-based file. Please refer to the " Deployment
Descriptor DTD" @t/ usr/ sadni | i b/ sntc/ i b/ dtds/vi perbean_1 0. dtd for
detailed syntax information.

Sample Code @ Tool Descriptor

VConsoleProperties

VConsol eProperti es representsashared Pr operti es object that all componentsin an
SMC system can use for property storage.

Theset Properti es() methodinyour Tool instanceis called once after instantiation to
provide a handle to the Properties object. Y ou may want to cachetheset Properti es()
reference because you will eventually need it to access console properties.

Sample Code @ Tool . set Properties()

i Additionally, you can register a Pr oper t yChangeli st ener withthe Pr operti es
object so you can be notified when properties change. The easiest way to do thisisto have
your main Tool class also implement Pr oper t yChangelLi st ener.

Sample Code @ Pr oper t yChangeli st ener

In addition to the various console properties as defined in V ConsoleProperties, you can create
your own properties for storage of tool preferences, so that they can be restored in subsequent
sessions. To avoid namespace collisions with similarly named preferences in other tools, or
even within the sametooal, it is recommended that preference names be based on the full class
name of the class in which the preferenceis used.

Sample Code @ Preferences

VConsoleActionListener

Any class that implements Tool should aso implement the VConsol eAct i onLi st ener
interface, which enables the Tool to be notified of various events on the &l event bus. All

events are VConsol eEvent with String-type event IDs.

There are numerous console-specific events which your application can listen for, all of which
are listed under VConsol eAct i ons. Additionally, you can define your own event IDs and
send them to other components in your own application or to other applications that have
knowledge of your event IDs. Y ou just need to ensure your event ID's are globally unique,
similar to system properties -- for example,

com nyconpany. nmyproduct . nyt ool . f or mat Di skNow.

If your application is registered on the event bus, it will receive all console events, even those
related to other applications. Y ou therefore need to make sure your application does not
execute, say, arefresh operation while another application has focus. Y ou can use the

Tool . start () andTool . st op() methods to track whether or not your application has
focus, and then react appropriately when listening for events.

Sample Code @ \/Consol eActi onLi st ener

One of the most significant benefits of the event bus architecture is that it makes it possible to
develop dynamically configured display models with no API-specific dependencies. For
example, when the user selects "large icon view" from the toolbar, the toolbar will modify the

| CONSTYLE property to be LARGE. As soon as this property is modified, all componentsin the
system which have registered for property changes are notified of the property changed and of
the new value. The result pane for instance, will update its view to correspond to the new

| CONSTYLE property setting.

By comparison, if SMC used an API driven model, the toolbar would have to have areference
to the results pane and know the method to call to update its display, as well as any other
component in the system which needed to know the value of the | CONSTYLE change.

An example of a console event would be the user selecting a node in the navigation tree. The
tree view component will create a SCOPESELECTED event and send it on the event bus.
Components which are interested in SCOPESELECTED events will process the event and react

accordingly. For instance, the result pane will display the children of this newly selected node.
Thel nf oBar component will count the number of children the newly selected node has and
setitst ext fi el d display to reflect that, suchas6 |ten(s).

Eliminating APl dependencies thus creates a very flexible display model. Components no
longer need any references to other components in the system, nor do they need to know the
methods to invoke, they simply modify a known property or generate a known event. The other
components in the system that are interested in the event or property will update themselves
accordingly. Display components can easily be added and removed without fear of breaking
API dependencies or passing around references to necessary components. Only one reference
needs to be set to the properties object, and components added as event listeners to create the
event bus.

As mentioned previously, Tool . addConsol eAct i onLi st ener () letsother system
components register to receive your application's events, and you simply need to maintain alist
of these listeners. Y ou use the standard "fire" method to notify all registered listeners of a
particular event.

Sample Code @ Console Listeners

VScopeNode

Perhaps the most widely used classis VScopeNode. Thisisthe classin which you provide
information (like icons, column headers, and so forth) about your data model to the console,
whether that information is rendered in the navigation pane or results pane.

I Use the payload field to associate your application-specific object with the node, so that you
can easly get a handle to your data object when events are received for a specified node.

Y ou create an instance of VScopeNode for every object you want to appear in the navigation
pane. All navigation pane nodes that are children of a given parent node will automatically be
rendered in the results pane when the parent node is selected.

Y ou denote non-leaf nodes by setting the internal root of the node to null

(node. set | nt er nal Root (nul |)). Perhaps a better term for these non-leaf nodesin the
SMC context is exposed nodes, because you are exposing the model completely to the SMC
engine for it to render and manage.

Additionally, SMC manages the opening of the corresponding results pane representation of the
exposed node when it is double-clicked by automatically navigating to its node representation
in the navigation pane. Y ou do not need to do anything special to manage the results panein a
model that does not have an internal root.

Y ou denote leaf nodes by setting the internal root of the node to a VScopeNode instance. L eaf
nodes refer to models that your application will manage -- the model is not completely exposed
to the SMC engine. In the SMC context, thisis referred to as an extended or internal root data
model.

In an extended model, your application is responsible for creating VScopeNode instances for
each object you want to render in the right-side results pane. Each of these nodes must be added
as siblings to the same parent node -- that is, to the internal root node. Whenever you change
thismodel -- for example, by adding deleting or modifying -- you must post an UPDATESCOPE
event.

Sample Code @ UPDATESCOPE

The illustration below shows the default SMC look and feel, and the location of each of its
components. Note that tools do not have direct access to any of the components in the console.
Instead, specific interfaces are provided for accessing the underlying data model and for
accessing and customizing the console.

Ul Components

4E,.l-|'r'- A mEEE P R %}
[(2l Xl a P g
I =Rt im— [—— |=
pye—
S ——r— i—] kred
e~ [
[T,
T g Baiem Mgy =
[T]
T P e
Mo
o —
o 1= hwm
O e—

Fe s

o e A

&
A
"

[i

At an s

’—Dii

Information pane

Results pane

MNavigation pana

Manu bar

Default SMC Console Window

Navigation Pane

The Navigation pane works like aframe in aweb page: clicking an item determines what
appears in the View pane. Before proceeding, it is probably best to have an understanding of the
V ScopeNode class, and how it can be used to manage nodes in the Navigation pane.

While SMC knows how to create a the node representation of your tool in the Navigation pane
without actually instantiating it (viathe Tool Descriptor), atool can re-create or replace this

representation during it's instantiation. It isimportant that this top-level node for your tool be
returned by your Tool . get ScopeNode() method:

Sample Code @ Create Tool Node

To add anode as a child for a specified parent node:
Sample Code @ Add Child Node

To remove anode that is achild of a specified parent:

Sample Code 2 Remove Child Node

View Pane

The View pane (usually the "right-side" pane, and sometimes called the results pane) displays
the contents of the node selected in the Navigation pane, where the contents could consist of
folders or tools. If the node selected in the Navigation pane is afolder, the contents of that
folder are displayed in the View pane. If the node selected isa Tool, the top-level contents for
the tool is displayed, whether that be folders or simply the implementation of that Tool.

SMC supports 4 display stylesin the View pane, accessible viathe
VConsol eProperties. | CONSTYLE property:

S [VConsoleProperties Name

Rows and columns of small icons| SMALL

Rows and columns of largeicons|LARGE

A single column of small icons, one per row |LIST

Tabular view of detailed data arranged in [DETAILS
columns

A tool does not need to do anything to support all these styles. The SMC automatically ensures
that when the user changes display style for the current tool which has focus, changing focus to
another tool will preserve that display style.

A tool can restrict the available styles available for the user to choose from. However, since the
| CONSTYLE property is a shared property amongst al the tools, then a Tool must restore the
previous style when it loses focus.

Sample Code @ Details Style Only

Tools are not limitted to restricting the presentation to asingle style. A tool can restrict more
than one style and still allow the remaining styles to be selected by the user.

Sample Code @ Enable Styles

Information Pane

The Information at the bottom of the console displays either context help for the object selected
in the Navigation pane, or alist of alarm types, depending on whether the Context Help or
Console Events tab is selected.

Context help must be in HTML format. Typically, the help issimply included in the Tool's jar
fileand retrieved viaResour ceManager . get Local i zedText Fi | e().

Sample Code @ Set Context Help

The Console Events log provides aview of events that occur between the console and its tools,
for example authentication events and tool loading problems. There are 3 types of events
defined inthe VLogEvent class: | NFORMATI ON, WARNI NG, and ERROR. Note that console
events are not persistent, and are lost when the console is exitted.

Sample Code % |_og Console Event

Menu bar

The Menu bar includes a series of menus which are common for all tools. Tools can implement
the own menu bars by extending IMenuBar and creating their own menus in the usual manner.
These menus can be added to the console's menus viathe JMenu. set Act i onCommand()
method and the constants defined in the VMenul D class.

Sample Code @ Menubar Integration

Status bar

The Status bar at the very bottom of the Console has 3 distinct panes for displaying certain
kinds of information.

The left pane indicates the number of items (nodes) in the View Pane for the currently selected
node in the Navigation pane. Send an VConsol eAct i ons. UPDATESELI NFOevent to the
console to display your text in the left-side info pane. By default, SMC provides a message of
"# Items':

Sample Code @ Set Left Status Info Pane

The center pane indicates console activity -- for example, a progress meter, or back and forth
"shade" movement. If your tool is not able to determine progress status for along operation,
then enabling the back and forth "shade" movement can be done by simply sending a
VConsol eAct i ons. UPDATEPROGRESS event to the console. Re-send the same event to
disable the movement.

If your tool is able to track progress, then you can specify a JProgressBar instance to be
displayed in this center pane, and simply update the JProgressBar as needed to show progress:

@ Set Center Status Info
Pane

Sample Code

The right pane provides progress information in the form of text messages. Send an
VConsol eAct i ons. UPDATESTATUS event to the console to display your text, similar to

the left-side pane as shown above.

All resources should be loaded using the Resour ceManager and Consol eUtility
classes, and should be located on the same root path as your main Tool class. For example, if
the provider-class name for your main Tool specified in the Tool Descriptor fileis

com nyconpany. nyproduct . nyt ool . cl i ent. VMt ool Myr, then all resources
should be rooted at com nmyconpany.nypr oduct . nyt ool . cli ent, idealy in
subdirectories of this path.

Accessing Resources

i Although the Resour ceManager . get Local i zed* () methods are convenient for
downloading files, these methods do not cache files on the client. Therefore, successive
attempts to access the same resource come at the expense of another download. With thisin
mind, you should implement some sort of caching scheme to minimize the number of
downloads, while at the same time taking into account the memory costs of caching. Itis
anticipated that caching will be a feature of SMC in a future release.

Resource Bundles

Use Resour ceManager . get Bundl e() toload resource bundles,

Sample Code # Resour ceManager . get Bundl e()

Online Help

Online help can be provided in 2 forms. " Spot" or context-sensitive help provides
short-and-simple information for dialog componentsin the form of HTML files. "Extended"
help provides more extensive information and search capabilitiesin the form of JavaHelp
hel psets. For more information, see the sections that discuss these two formats further under
L ocalization.

Use Resour ceManager . get Local i zedText Fi | e() toload basic (non-JavaHelp)
HTML help files. Note the special heuristic used with respect to the current locale and the "C"
default locale. Default English HTML files might best be located inthe &/ ht M of your main
Tool ; for example, com nyconpany. nyproduct . foongr.client. C htnl .

Sample Code # Resour ceManager. getlLocal i zedText Fil e()

file:///F|/stuff/viper/s9v2/sdk-tools.html#localization

Note that SMC does not at this time provide support for hyperlinking between HTML files, nor
to helpsets. Y ou must implement your own hyperlink listening code on the JEditorPane
component of aVOpt i onPane and render the target of the link using

VOpt i onPane. set Hel pHTM.() . Thiswill be provided in afuture release. In the
meantime, you must implement your own link listener.

If you do implement your own link listener, it is possible to hyperlink to a specific helpset target
under the following conditions:

« Dueto aJavalimitation, linking to helpsetsis only useful from non-modal dialogs or
main frames, as modal dialogs will block input and prevent you from using the hel pset
viewer.

« Hyperlinks from within a context-sensitive html file to a helpset target must be of the
form hel pset:// <hel pset fil enanme>/ <t arget >, where<hel pset
f i | ename> may or may not include the. hs extension. For example:
hel pset://ny_hel pset. hs/ ny_target or
hel pset://ny_hel pset/ ny_target.

Then your non-modal dialog or frame must implement aVConsol eAct i onLi st ener to
rout the link event onto the event bus so the console can act on it and launch the help viewer for
the specified target. Note that you need to aso check the link event to make sureit isindeed a
link to an external target, and NOT rout the event if it isn't. The best way to do thisis check that
the URL's protocol specificationishel pset : // and that the URL doesNOT endin. ht m .

Sample Code @ Hyperlink to Hel pset

Exceptions

VExcept i on isthe class used for managing exceptions. It is not necessary to invoke the
ResourceManager directly, asthisis done automatically when you attempt to retrieve the
exception's localized message viaVExcept i on. get Local i zedMessage() .

Y ou should override two methods in your VExcept i on subclass.

Sample Code @ Exceptions

Images

UseConsol eUti lity. | oadl magel con() toloadimageicons.

Sample Code # Consol eUtility. | oadl magel con()

Packaging

Manifest

All tools must include amanifest filein itsjar file. The manifest must include the full package
path of the main Tool class, and the full package file of the Tool Descriptor file:

Sample Code @ Manifest for Tools

i Manifest files are only required for tools which will registered with sncconf . Beginning

with SMIC 2.1, the preferred method for performing tool registrationsisvia
snctregi ster.

Shared interfaces and classes

Includeinthejar file all classes and resources required by the tool. Take extracare NOT to
place the same class or resource in more than tool or service jar - thisis especially important
later on in upgrade situations, as a patch for a resource that has been placed in multiple jar files
will require that all those jar files be upgraded. Thus, it is strongly encouraged that developers
bundle all the common interfaces and classes referenced by multiple tools and servicesinto an
individual jar and register it as a shared library jar across tools, services, or both.

Resource bundles

It's required that all tools provide aresource bundle that contains information like name,
description, icons, vendor, version under predefined message keys.

o BEANNANME -- Localized tool name

o DESCRI PTI ON -- Localized description of the tool

o VENDOR -- Localized vendor name

o VERSI ON -- Localized version number

o LARGEI CON -- Path of large icon relative to this bundle
o SMALLI CON-- Path of small icon relative to this bundle

o <property_nanme>. DESCRI PTI ON-- Optional description of a property this
component defines

o <paranet er _name>. DESCRI PTI ON -- Optional description of a parameter this
component defines

The icon paths specified as LARGEICON and SMALLICON should be relative to this resource
bundl€e's location.

ResourceBundles can be implemented as compilable subclasses of Li st Resour ceBundl e,
oras. properties files.

Sample Code @ Tool Resource Bundle

Classlist

It isrequired that all tools provide afile (better known as aclasslist file) that contains alist of
all componentsin the jar file. Thiswould include class files, images, resource bundles, etc. This
file can be generated by running the sncconpi | e command with the - j option after the jar
fileis created. Consult the smccompile(1M) man page for more information on this command.

@ Generate tool clasdlist with

smccompile
iz Classlist files are only required for tools which will be registered with sncr egi st er,

beginning with SVIC 2.1.

The Adm nMgnt Scope class represents a management scope or domain; that is, aname
service domain or asingle system. Usethe Tool Cont ext instance (obtained via your
Tool.setContext() method) to retrieve context-specific information about the environment the
Tool isrunning in.

Sample Code

Scope

Sample Code @ Scope

If atool uses classes or resources from some other library jars, you need to register them first,
for example:

Registration

sncregister library <path>/nylibrary.jar
<pat h>/nyli braryC asslist.txt ALL

Here we are using the pseudo bean name 'ALL' to represent all tools and services.

Next, you register atool jar to the server repository:

snctregi ster tool <path>/nytool.jar
<pat h>/ nyt ool Cl assl i st.txt <path>/nytool.xmn

Y ou can check the repository to see the tool is successfully imported by doing repository
listing:
sntregister repository I|ist

See the Registration section for more details regarding the smcregister command.

file:///F|/stuff/viper/s9v2/sdk-register.html

Localization
ResourceBundles

L ocalized ResourceBundles are implemented using the standard Java heuristics
(basecl ass_I| anguage_country_vari ant). Consult the JDK docs for detailed

information.

As mentioned ealier, ResourceBundles can be implemented as compilable subclasses of

Li st Resour ceBundl e,oras. properti es files. If youuse. properti es files, they
will not load properly at runtime if the trandlations are in anon Latin-1 based character set
(multi-byte environments) because there is no way to specify a character set encoding.
Therefore, they must be converted to Latin-1 or Unicode-encoded characters using the

nati ve2asci i command.

Sample Code # nati ve2ascii

HTML files

Localized HTML files are implemented using a similar heuristic as ResourceBundles, although
each localization must reside in aunique directory based on locale, with identical filenames
across locales. For example:

com nyconpany/ nyproduct/ C/ ht ml / f oobar . ht m |English
locale; system
default,
referred to as
the"C" locale

com nmyconpany/ nyproduct/fr/htm /foobar. ht M |Frenchlocae

com nmyconpany/ nyproduct/ de/ ht M / f oobar. ht M |German
locale

When translating HTML files, you must specify the proper character set viathe CONTENT
field. Note that this information must be in aline that isNOT embedded withint a
<HEAD></ HEAD> block.

@ Setting Charcter Set
Encodingin HTML

Sample Code

JavaHelp Helpsets

L ocalized JavaHel p hel psets must be structured by locale, as discussed in the JavaHelp User's
Guide. Specifically:

o The. hs file must be named following the

http://java.sun.com/products/jdk/1.2/docs/api/java/util/ResourceBundle.html
http://java.sun.com/products/javahelp/download_binary.html#userguide
http://java.sun.com/products/javahelp/download_binary.html#userguide

basecl ass_| anguage_country_vari ant scheme asfor Java ResourceBundles
(foo_Il ocal e. hs).

« All other files belonging to the helpset must live in a subdirectory named for the locale.
The illustration below shows a sample layout of the filesystem hierarchy of localized

hel psets.
...%help
my_helpset.hs
tny_helpset_de hs
my_helpset_fr.hs
| |
efault vile \fr
by _rnap.jhien fry_mag.jhm tiy_rap.jhiem
Yy _toc=ml ry_toc.=ml tny _toc=ml
fy_indes<ml fy_index.=ml fy_indes<m
LavaHelpSearch LavaHelpSearch ‘WlavaHelpSearch
search dbfiles . search dbfiles . search db files ..
\topics \topics \topics
\topicA \topicA \topicA
topic.html topic.html topic.html
\topicB \topicB \topicB
topic.html topic.html topic.html

JavaHelp Localization Hierarchy

o All referencesto thosefilesinthe. hs file must reflect this subdirectory name.

Sample Code @ |_ocalized Helpset

o URLs must reflect the location of the html files relative to the hel pset, regardless of
locale. For example, if some html fileswere located inthet opi cs/ t opi CA
subdirectory, as shown in the illustration above, then URLs for those files referenced in
Map.] hmwould begin witht opi cs/ t opi cA/ infront of each file referenced.

Sample Code @ Helpset Map File

To trandlate a JavaHelp helpset, edit the specified files as follows:

. hs | Specify proper character set encoding; translate all
<| abel > tag values

* . html | Trandate and also specify the proper character set
viathe CONTENT field, as shown here

I ndex. xm , map. j hm|Specify proper character set encoding

t oc. xm | Specify proper character set encoding; translate all
tocitem "text" fields only (do NOT trandlate
"target" fields)

Thefina step in constructing a helpset is to build the search index. This requires that you have
JavaHelp 1.1 installed on your machine.

Sample Code @ Build Search Index

http://java.sun.com/products/javahelp/download_binary.html

@Y Toolboxes

Overview ~ Starting the Toolbox Editor

Overview

SMC uses the concept of atoolbox to provide aview of various system administration tools or
applications, possibly on different servers, within a common user interface. A toolbox isafile
in XML format, that is registered with the SMC server. It isahierarchical collection of folders,
tools, legacy applications, and links to other toolboxes. This collection defines what you seein
the Console navigation pane.

The root toolbox or container is called "Management Tools". Its default behavior isto look for a
default toolbox on the host machine and link to it when the SMC is started. The default toolbox
Iscalled "This Computer”, with the filenamet hi s_conput er . t bx, and comes
pre-configured with several tools.

Y ou can modify thistoolbox or create additional toolboxes to suit your needs using the SMC
Toolbox Editor. The Editor is essentially the SMC console run in a special mode. Y ou can aso
manage tool boxes via the command-line interfaces smcregister or smcconf.

For more detailed information regarding the SMC Toolbox Editor and management of
toolboxes, start the Editor and consult the extensive online help that is available.

In most cases, you start the editor with the command / usr / sadm bi n/ snt edi t. This
launches the editor and allows you to edit toolboxes you load. By default, the editor will load
thetoolbox calledt hi s_conput er . t bx for the local machine on which the editor was
started. Consult the SMC man pagesnt(1M for additional options for starting the editor.

Starting the Toolbox Editor

@¥ Services

Overview ~ Common Services Model ~ Accessing other services ~ Bundled Common
Services ~ Packaging ~ Reqgistration ~ Debugging ~ Third-Party Integration

Overview

This section provides detailed information about the SMC service model, and describes the core
SMC service functions you can use in your service implementations.

i dfPage

- !

Common Services Model

The SMC service model defines how services are used by clients and the basic components of
service implementation. A service consists of three major components: interface,
Implementation, and descriptor, as described below.

Service Interface

From the client's point of view, serviceis defined only by its public interfaces. A client should
be able to retrieve a service handle by providing information on the public interfaceit is
expecting, without knowing the specific service implementation details. For example, an SMC
client may want to access alogging service in an environment where there may be many
different implementations of logging services available. In this case, the client simply requests a
service that implements some well-known logging interface.

Sample Code @ Accessal og Service

SMC predefines a set of common service interfaces, including log, authorization, message,
persistence and launch. Vendors can define their own public service interfaces and share
between its clients and its implementations, as long as the service interface satisfies the
following rules:

« Extends base interface Ser vi ce; thisinterface servesthe similiar purpose as
j ava. r m . Renot e. The methods defined in its subclasses are considered public
business functions.

« Each method must be public.

« Each method must declarej ava. r m . Renot eExcept i on initsthrows statements;
thisisrequired even if thisinterface is only accessed locally.

Sample Code @ Service Interface Definition

Service Implementation

A service implementation in SMC must satisfy the following rules:
« Implements at |east one service interface

o Implementsinterface Ser vi cePr ovi der ; the SMC SDK provides a convenient base
classfor service implementation, VSer vi ce. Services can optionally override its
methods to plug in their own logic.

« Hasapublic default constructor that takes no parameters. SMC will use this default
constructor to instantiate this service.

Sample Code @ Service Implementation

SMC services can be designed to run on client-side as well as on server-side. A server-side
implementation basically acts as a Java RMI server object. Clients do not have adirect handle
to the service object, and can only remotely access it through an automatically generated stub.
A single instance of such a server-side service can handle all requests from different client
processes. Thisisthe default running mode for service implementation objects.

In some circumstances, it may be preferable to run a service directly in the client process/'VM.
For example, when aclient running inside afirewall tries to access a news service. If the news
service can be downloaded to the client VM and poll an outside server for updates, then the
client won't have to cope with firewall issues. Usually client-side services act as local agents
that preprocess client requests and passes them on to the real backend on remote servers. Thisis
very useful for third party integration. A log service proxy that represents a certain backend
framework service, like WBEM, Jiro, or J2EE, can shield all the details of its backend
framework dependency from its clients. Please see Third-Party Integration for more information

on how a service proxy accesses different framework backends.

Besides the basic requirements of a service implementation, a client-side implementation class
needs to implement the Ser vi cePr oxy interface. The SMC SDK provides a convenient base
class, VSer vi cePr oxy, for vendors to extend.

Service Descriptor

Every service must have a deployment descriptor before it can be registered and maintained by
SMC. A descriptor includes static information about the service component and is used by the
SMC console to manage the lifecycle of its instances.

There are several attributes common to all services, such as:
« Daemon versus Non Daemon

« Service loading sequence

« Public interfaces (Required); an interface element represents a public interface class
through which other components access current service. It should be the fully qualified
interface class name that this service wants to publish.

« Implementation class name (Required); defines the implementation class to instantiate
when a service is being loaded.

« Helpfilelocation (Optional); defines the base location and name of the JavaHelp help set
for this component. See TBD for details on the policy established by SMC for packaging
of JavaHelp bundles.

« SMC SDK API version (Required); defines the String version number of the SMC SDK
API this component builds against. This must be in the form of : maj or [. m nor]

« Singleton versus Multi-Instances (Required); definesif only one instance of the service
should be instantiated to serve al clients, or whether a new instance of the serviceis
needed for every client.

« Supported Management Scopes (Optional); defines the management scopes this service
supports. Supported management scopes specifies which one or more of the following
name services contents will be accessed and/or changed by this service:

file | nis | nisplus | lIdap | dns
If not specified, f i | e scope is assumed.

» Load dependency (optional); defines what other services should be running before this
service can be loaded.

» Runtime parameters (optional); defines runtime attributes that effect service behavior.
Unlike global registry properties, these runtime parameters can be different for each
service,

An SMC service descriptor is defined as an XML -based file. Please refer to the " Deployment
Descriptor DTD" @t/ usr/ sadni | i b/ snt/|i b/ dtds/vi perbean_1 0. dtd for
detailed syntax information.

Sample Code @ Service Descriptor

A service can access other servicesusing get Ser vi ceByNane() cals. Also important in
this context are call delegation and accessing remote services, both of which are described
below.

Accessing other services

Call Delegation

Call delegation iswhen a service needs to call other servicesto fulfill aclient request; for
example, a service may need to pass on the client's identity to the servicesit calls. The service
can specify its access to the other services in this mode by specifying thisin the

get Ser vi ceByNane cal, as:

Sample Code @ Call Delegation

I Be aware that the other service handle running in delegation mode only works in the
current client's calling thread and its child threads. Services should not try to use
delegation mode in any threads that are not triggered by current client call.

Accessing remote services

SMC does not currently support access to remote services running on different servers -- that is,

different VMs on the same or different machines.

The SMC environment bundles several common services in its release. Developers can find
interface definitions for these servicesin the Ser vi ceLi st class. The bundled services are
briefly described below.

Bundled Common Services

Logging

The SMC Log service logs messages into the default system log. When an SMC server runs on
itsown, the default log issysl| 0g. When running with aWBEM server in the same VM (the
SMC default), the default log isthe WBEM | og.

To enablelocalization, it isrequired that all messages |ogged are generated from resource
bundles. The Log service accepts message keys and resource bundle base names as parameters,
rather than directly accepting fixed strings. The real messages are later retrieved from the
resource bundle by the log viewer.

Sample Code @ | ogging

Authorization

The Authorization service is used to decide whether an action towards some critical system
resource is to be allowed or denied, based on the security policy currently in effect. Its public
interface is defined ascom sun. managenent . vi per. servi ces. Aut hori zati on.

Different implementations use different security policies and different policy datastores. The
implementation bundled with SMC is using the Role Based Access Control (r bac(5)) which
was introduced in Solaris 8. See RBAC for details on how to install rightsinto its data store.
Administrators can use one of the SMC tools, Users Tool, to manage the data store and grant

rightsto Solaris users.

In SMC, each action authorization is represented with aVVPer m ssi on object.
VPer m ssi on isdefined by a properly scoped action name string, for example:
sol ari s. adm n. user ngr . r ead definesthe read action in Solaris's User Manager tool.

Sample Code @ Checking Authorizations

Messaging

SMC provides afacility to exchange messages between clients (Tools or Services). There are
two types of messaging interfaces, one is MessagePull Agent and the second is

M essagePushAgent. Once a user gets a handle to the Core Message service, he needsto get a
handle to one of the message services (push or pull), initialize that service with either
ToollnfraStructure or Servicelnfrastructure, create the named channel, subscribe to that channel
and post messages to that channel. Clients need to implement the MessageL istener interface to
get notification from other subscribed users to receive messages.

The user has to make a decision to use either the push or pull message mechanism. Pull
message is preferred if the client is running inside a firewall and needs to use a message service
outside of firewall. The MessagePull Agent interface will contact the message service for
updated list of messages.

Push message service will be notified by the message service through a callback mechanism so
client will get the message immediately after message has been posted.

Sample Code @ Messaging

Persistence

SMC provides afacility to store persistent datato SMC server. Tools and services can
store/restore/del ete persistent data by the Per si st anceAgent utility class. To usethe
Persistance service:

1. Createthe Per si st enceAgent object with either Tool | nf rast r uct ur e or
Servicelnfrastructure

2. Storethe serialized object with key (String) and version number (String); key is used for
indexing to retrieve the object later, and version another piece of information associated
with key for tools or services

3. Restore the data by key
Sample Code @ Persistence
Launching

There are many non-SMC aware applications that provide management functionality

administrators want to use. They can be run on the server and displayed on the client machine
SMC is running on through the Launching Service. This service only supports X protocol, so
appropriate permissions for the X display server are required to launch any application. Y ou can
grant display permission on the X display to the remote machine on which the application is
running viathe following command:

% xhost +<server>

Applications that are launched from this service fall into 3 different types:

Aopicaion Tpe

CLI (TTY-based application) | The Launch service runs these type of
applicationsinsideadt t erm

XAPP (X application) | Applications of this type are executed with the
DI SPLAY environment variable set to the
same X server asthe tool in which the given
application is running.

HTML (URLS) | Thefirst browser that can be found in the
PATH environment set by the client tool will
be launched to load the URL specified. See
sdt webcl i ent (1) for the detal rules of
which browser will be used.

To use the Launch service to run acommand on the server and displayed back on the client:
1. Get ahandle to launching service from infrastructure 'inf'
2. Create a Launchinfo object with information about this request.

If the application needs some environment variables been set, we can specify them in the
environments parameter in the format of <key>=<val ue>, for example:

String[] envs = {"PATH=/usr/bin:/sbin:/usr/ucb/bin",
"EDI TOR=/usr /1l ocal / bin/vinm };

Environment variables PATH, DI SPLAY, HOVE, USER are always set by the service. But
caller can override their values by explicitly specifying the environment parameter.

3. Launch the command; Launch service uses Authorization service to determine whether
current user has enough rights to execute the command.

Sample Code @ |_aunching

Packaging

Manifest

All services must include a manifest filein itsjar file. The manifest must include the full
package path of the main Service class, and the full package path of the Service Descriptor file.
Additionally, many service implementations need some native library support. Y ou can bundle
those native libraries (.so) in the service jar and identify them in the manifest file so they can be
included in the library path.

Sample Code @ Manifest for Native Library

i Manifest files are only required for services which will registered with sncconf .

Beginning with SVIC 2.1, the preferred method for performing service registrationsisvia
snctregi ster.

Shared interfaces and classes

Includeinthe jar file all classes and resources required by the service. Callers of this service
will need the service's public interface classes as well. So we encourage developers to bundle all
the public interfaces and classes they directly reference into an individual jar and register it asa
shared library jar across tools and services. The real implementation of those interfaces can be

bundled and registered as a service jar.

Take extracare NOT to place the same class or resource in more than tool or servicejar - thisis
especially important later on in upgrade situations, as a patch for a resource that has been placed
in multiple jar fileswill require that all those jar files be upgraded. Thus, it is strongly
encouraged that devel opers bundle all the common interfaces and classes referenced by multiple
tools and services into an individual jar and register it as ashared library jar across tools,

services, or both.
Resource bundles

It isrequired that all services provide aresource bundle that contains the certain information
under predefined message keys:

o BEANNANME -- Localized tool name

o DESCRI PTI ON-- Localized description of the tool
o VENDOR -- Localized vendor name

o VERSI ON -- Localized version number

Agent container classes

It isrequired that all services provide agent container classes for the remote service. These
classes can be generated by running the sncconpi | e command with the - ¢ option on the
service implementation before the jar file is created. Consult the smccompile(1M) man page for
more information on this command.

@ Generate agent container
classes with smccompile
i Manual generation of these container classesisonly required for services which will be
registered with sncr eqgi st er , which isthe preferred method for registering services
beginning with SMC 2.1. If sncconf will be used, then these classes are generated
automatically.

Sample Code

Classlist

It isrequired that all services provide afile (better known as a clasdlist file) that contains alist
of all componentsin the jar file. Thiswould include class files, images, resource bundles, etc.
Thisfile can be generated by running the sncconpi | e command with the - | option after the
jar fileis created. Consult the smccompile(1M) man page for more information on this
command.

@ Generate service clasdist with

smccompile
i Classlist files are only required for services which will be registered with sncr egi st er,

beginning with SMC 2.1.

If aservice uses classes or resources from some other library jars, you need to register them
first, for example:

Sample Code

Registration

sncregister library <path>/nylibrary.jar
<pat h>/nyli braryC asslist.txt ALL

Here we are using the pseudo bean name ALL to represent all tools and services.

Next, you register a service jar to the server repository:

snctregi ster service <path>/nyservice.jar
<pat h>/ nyservi ceC assl i st.txt <path>/nyservice.xmn

Y ou can check the repository to see the service is successfully imported by doing repository
listing:
sntregister repository I|ist

See the Registration section for more details regarding thesntr egi st er command.

Multiple Implementations of A Common Service

file:///F|/stuff/viper/s9v2/sdk-register.html

SMC repository supports multiple implementations of one service interface. Y ou can register a
syslog service and aWBEM log service that both implement interface
com sun. managenent . vi per. servi ces. Log.

Get Service By Name

When a service handle is requested through get Ser vi ceByNane() call to the infrastructure,
the repository scans the registered service list, starting from the most recent registered. The first
one that implements the given interface and successfully loadsitself (i ni t () andstart ()
methods are successfully called) isreturned to the caller.

Configure services with Properties

A service can have several properties set to different values to customize the behavior of itself.
The properties are kept in the repository with the service and can be set at registrar time or |ater
onthrough sntregi st er.

& Configure Service with
Properties

Sample Code

The SMC SDK has adebug utility class, com sun. managenent . vi per. uti | . Debug.
This class acts like a delegate to the real implementation of the output manager interface,
VDebug. All service containers will provide an implementation that plug into the class Debug.
Services can awayscall thet r ace() method with proper severity without worrying about
what level of detail should be really displayed or how they should be displayed.

Debugging

Sample Code @ Debugging

The default implementation of Debug in the SMC server can be configured with the
environment variable SMC_DEBUG set to 0- 2 to print out | NFORMATI O+, to ERROR+ |evel

messages.

With one exception, general support for use of other services from third-party frameworksis
not currently provided, and may be provided in afuture release.

Third-Party Integration

The exception to thisis that tools can connect to WBEM providers thru CIM:

Sample Code @ Accessng WBEM

@Y Libraries

Overview ~ Packaging ~ Registration

Overview

This section provides detailed information about creating libraries containing common classes
that can be shared among tools and services.

Any SMC tool or service bean can have pluggable libraries attached to it. These library jars can
be resource bundlesin different locales, as well as function code that needs to be seperately
upgradable. Library jars that are attached to specific beans will be visible to that bean only at
runtime. However, there are three special bean keywords that allow you to control the scope of
library usage on awider scale: ALL alows the library to be used by all tools and services,
ALLTOOL alowsthe library to be used only by other tools, and ALLSERVI CE alowsthe

library to be used only by other services.

Packaging
Classlist

It isrequired that all libraries provide afile (better known as aclasslist file) that contains alist
of all componentsin the jar file. Thiswould include class files, images, resource bundles, etc.
Thisfile can be generated by running the sncconpi | e command with the - | option after the
jar fileis created. Consult the smccompile(1M) man page for more information on this
command.

@ Generate library clasdslist with

smccompile
i Classlist files are only required for tools which will be registered with sncr egi st er
beginning with SMC 2.1.

Sample Code

Shared interfaces and classes

Includeinthejar file all classes and resources which can be shared by more than one tool or
service. Take extracare NOT to place the same class or resource in more than tool or service jar
- thisis especially important later on in upgrade situations, as a patch for a resource that has
been placed in multiple jar fileswill require that al those jar files be upgraded. Thus, the use of
shared librariesis strongly encouraged.

If atool or service uses classes or resources from alibrary jar, you need to register the library
first, for example:

Registration

sncregister library <path>/nylibrary.jar
<pat h>/nyli braryCd asslist.txt ALL

Here we are using the pseudo bean name 'ALL" to represent all tools and services.

Y ou can check the repository to see the library is successfully imported by doing a repository
listing:
sntregister repository Ilist

See the Registration section for more details regarding the smeregister command.

file:///F|/stuff/viper/s9v2/sdk-register.html

@Y Registration

Overview ~ sntregi st er ~sntconf

Overview

The SMC object registry is arepository of object information used by the SMC console to
configure toolboxes, tools, and services. All tools and services must be registered in the SMC
object registry. Tools must be associated with atoolbox before they can appear in an SMC
console.

The SMC registry contains two types of entries: SMC beans and toolboxes. Executable
components, like client side GUI/CL tools, external client providers, server side services, are
considered beans and are deployed in the format or jar files. All the beans can have additional
library jars attached to them. Toolboxes are XML -based files that describe collections of tool
beans and their presentation layout. This section only covers the registration part of those
created toolboxes and several command-line editing commands that shell scripts can use. SMC
comes with a GUI toolbox editor that can help administrators to create toolboxes.

i |MPORTANT CHANGE FOR SMC 2.1: sntr egi st er , a command-line tool for
administering the SVIC repository, isintended to replace the older sncconf tool, which
has been deprecated. sntr egi st er isnow the preferred interface for managing the SVIC
repository as well as toolboxes from within scripts, due to significant performance
enhancements over sncconf . Additionally, sncconf has dependencies on Java
devel oper tools which might not exist on every system. Thesntr egi st er command is
explained more |ater in this section.

Registry Basics

The SMC registry contains information about:
« Registered tools and services
» Resourcejars, if any, attached to tools and services
« Properties (key/value pairs), if any defined for tools, services, and resource jars

If you want the tool be displayed inside an SMC console, you need to:
» Register the tool
« Add the tool to a specific toolbox

These steps are described later in this section.

I SMC-based tools may or may not refer to backend SMC services. If the tool is dependent on
any backend SMC service(s), the service(s) also need(s) to be registered using
sntr egi st er . Unless the dependent service(s) are registered, SVIC will not be able to
invoke or display the corresponding tool.

The name of the tool or service bean can be found in the manifest of the jar file specified on the
command line. The bean name can be used later to unregister the tool or service, or as ahandle

to which libraries/properties may be attached or detached.

Some of the common object registry tasks you can perform with thesntr egi st er tool
include:

o Registering tool and service beans

sncregi ster

o Unreqistering tools and services

o Attaching and detaching library jars

o Adding and removing properties

« Managing toolboxes

o Listing registered tools/services

Each of these tasks is discussed below.

i Al referencesto <cl assl i st fil e>inthissectionrefer to thethe classlist text file
generated fromthe sncconpi | e(1M command with the - j option, which would be run
after thejar fileis created. The reader is urged to consult thesntconpi | e(1M and
sncregi st er (1M man pages for more complete information on these commands.

i All referencesto <al t j ar name> in this section refer to the name in which your jar file
will be copied to the SMC server's codebase area. The reader is urged to consult the
sncregi st er (1M man page for more complete information on this command.

Registering Tool and Service Beans

Registering the tool or service jar file does not remove the jar file from its original location. It
simply makes the tool or service usable from within the SMC by adding the information related
to the new tool or service to the SMC registry.

iz |MPORTANT: You must restart the SVIC server after registering a tool with

sntregi st er. Smply running sntr egi st er does not affect the SVIC repository, but
simply posts the registration request to a queue which then gets processed when the server
IS restarted.

The command used to register atool bean is:

sncregi ster tool [-n altjarnane] <path>/<jarfile>.jar
<pat h>/ <cl asslistfile> <path>/<xmfile>

The command used to register a service beanis:

snctregi ster service [-n altjarnane]
<path>/<jarfile>jar <path>/<classlistfile>
<pat h>/ <xm fil e> <path>/<native |ibrary>

where you can specify up to 4 native libraries required by the service jar.
Unregistering Tools and Services

Unregistering atool or service will make it unavailable from within the SMC. It removes the
registered tool or service information from the SMC registry.

iz |MPORTANT: You must restart the SVIC server after unregistering a tool with

sncregi ster. Smplyrunningsncr egi ster -u doesnot affect the SVIC repository,
but ssimply posts the registration request to a queue which then gets processed when the
server isrestarted.

The command used to unregister atool is:

sncregi ster tool -u <beannane>.j ar

where <beannamne> isthe package path to the registered tool.

For example, to unregister thetool com nyconpany. nypr oduct . MyTool :
sntregi ster tool -u com nyconpany. nyproduct. MyTool .| ar

The command used to unregister aserviceis:

sncregi ster service -u <beannane>.j ar

where <beannane> is the package path to the registered service.

For example, to unregister the servicecom nmyconpany. nypr oduct . MySer vi cel npl :

snctregi ster service -u
com nyconpany. nyproduct. MyServi cel npl . jar

Attaching and Detaching Library Jars

Y ou can attach or detach library jars to or from any of the following:
o Tool/Service Beans
o All Services

All Tools

All Tools and Services

Any SMC bean can have pluggable libraries attached to it. These library jars can be resource
bundlesin different locales, as well as function code that needs to be seperately upgradable.
Library jars that are attached to specific beans will be visible to that bean only at runtime.
However, there are three special bean keywords recognized by sntr egi st er that alow you
to control the scope of library usage on awider scale: ALL allowsthe library to be used by all
tools and services, ALLTOCL alowsthe library to be used only by other tools, and

ALLSERVI CE alowsthelibrary to be used only by other services.

« Attaching Tool/Service beans

The command used to attach alibrary jar to a specific tool or serviceis:
sncregister library [-n altjarnane] <path>/<jarfile>. jar
<pat h>/ <cl assl i stfil e> <beannane>

where <beannamne> isthe package path of aregistered tool or service to which the
library jarfile should be attachedtoand <j arf i | e>. | ar isthelibrary jar.

For example, to attach alocalization library jar / usr /|1 i b/ MyTool _fr .| ar tothe
aready registered bean com nmyconpany. nypr oduct . MyTool :

sncregister library -n MyTool fr.jar /usr/lib/MTool fr.jar
fusr/1ib/ MyTool fr _classlist.txt
com nyconpany. nyproduct . MyTool

« Detaching Tool/Service beans

The command used to detach alibrary jar from a specific tool or serviceis:
sncregi ster library -u <jarfile> jar <beannane>

where <beannane> isaregistered tool and <j arf i | e>. | ar isthelibrary jar.

For example, to detach the localization library MyTool _fr.j ar from the tool
com nyconpany. nmypr oduct . MyTool :

sncregister library -u MyTool fr.jar
com nyconpany. nyproduct . MyTool

o All tools

The command used to attach alibrary jar to al tools:
sncregister library [-n altjarnane] <path>/<jarfile>.jar
<pat h>/<cl asslistfile> ALLTOOL

For example, to add alibrary jar attachment to be shared by all registered tools only, use
the following command:

sncregi ster library -n Tool sLib.jar /usr/lib/Tool sLib.jar
/usr/1ib/Tool sLib classlist.txt ALLTOCL

The command used to detach alibrary jar from all tools:
sncregister library -u <jarfile>jar ALLTOOL

For example, to remove alibrary jar attachment which is shared by all registered tools
only, use the following command:

sncregi ster library -u Tool sLib.jar ALLTOOL

All services

The command used to attach alibrary jar to all services:
sncregister library [-n altjarnane] <path>/<jarfile>. jar
<pat h>/ <cl asslistfil e> ALLSERVI CE

For example, to add alibrary jar attachment to be shared by al registered services only,
use the following command:

sncregi ster library -n ServicesLib.jar
fusr/1ib/ServicesLib.jar /usr/lib/ServicesLib_classlist.txt
ALLSERVI CE

The command used to detach alibrary jar from all services:
sncregi ster library -u <jarfile> jar ALLSERVI CE

For example, to remove alibrary jar attachment which is shared by all registered services
only, use the following command:

sncregi ster library -u Tool sLib.jar ALLSERVI CE

All tools and services

The command used to attach alibrary jar to all tools and services:

sncregister library [-n altjarnane] <path>/<jarfile>. jar
<pat h>/ <cl asslistfile> ALL

For example, to add alibrary jar attachment to be shared by all registered tools and
services, use the following command:

sncregi ster library -n MyProductlLib.jar
[usr/|ib/ MyProductLib.jar

/usr/1ib/ MyProductLib classlist.txt ALL

The command used to detach alibrary jar from all tools and services:
sncregi ster library -u <jarfile> jar ALL

For example, to remove alibrary jar attachment which is shared by all registered tools
and services, use the following command:

sncregister library -u MyProductLib.jar ALL

Adding and Removing Properties

Y ou can define and undefine properties (key/value pairs) for any of the following:
« Tool/Service Beans
o All Services
o All Tools
« All Toolsand Services

i Aswith library jars, the keywords ALL, ALLTOOL, and ALLSERVI CE allow you to control
the scope of properties beyond specific beans.

e Tool/Service Beans

Tools and services can have properties associated to their registry entries. To add
properties to aregistered tool/service, use the commmand below. Note that unlike
sncconf , only one property can be added or removed at atime to the specified
tool/servicewith sntr egi st er.

sncregi ster property <key> <val ue> <beannane>

For example, to add the property key HOMEDI Rwith value/ hone/ kd to the tool
com nmyconpany. nypr oduct . MyTool , use the following command:

sncregi ster property HOMVEDI R / hone/ kd

com nyconpany. nyproduct . MyTool

To remove a property aready defined on the specified registered tool/service, use the
following command:

sncregi ster property -u <key> <beannane>

For example, to remove the property key HOVEDI R from the tool

com nmyconpany. nypr oduct . MyTool , use the following command:

snctregi ster property -u HOVED R
com nyconpany. nyproduct . MyTool

o All tools

To add properties to be shared by all registered tools, use the following command:
sntregi ster property <key> <val ue> ALLTOOL

For example, to add the property key HOMEDI Rwith value/ hone/ kd to all tools, use
the following command:

sncregi ster property HOVEDI R / honme/ kd ALLTOOL

To remove a property aready defined on all tools, use the following command:
snctregi ster property -u <key> ALLTOOL

For example, to remove the property key HOVEDI R from all tools, use the following
command:

sntregi ster property -u HOVEDI R ALLTOOL

o All services

To add properties to be shared by all registered services, use the following command:
sncregi ster property <key> <val ue> ALLSERVI CE

For example, to add the property key HOMEDI Rwith value/ hone/ kd to all services,
use the following command:

sncregi ster property HOMVEDI R / hone/ kd ALLSERVI CE

To remove a property aready defined on services, use the following command:
snctregi ster property -u <key> ALLSERVI CE

For example, to remove the property key HOVEDI R from all services, use the following
command:

sncregi ster property -u HOVEDI R ALLSERVI CE

o All toolsand services

To add properties to be shared by all registered tools and services, use the following
command:

sncregi ster property <key> <val ue> ALL

For example, to add the property key HOMEDI Rwith value/ hone/ kd to all tools and
services, use the following command:

sncregi ster property HOVEDI R / honme/ kd ALL

To remove a property already defined on tools and services, use the following command:
sntregi ster property -u <key> ALL

For example, to remove the property key HOVEDI R from all tools and services, use the
following command:

sntregi ster property -u HOVEDI R ALL

Managing Toolboxes

Managing toolboxes with sntr egi st er isidentical to sncconf with one exception: the
sntregi ster tool box subcommand accepts the - D option which defers execution of the
toolbox command until the SMC server isrestarted. Thisis a convenient option for usein
packaging scripts during install and uninstall. Additionally, the command runs much faster than
if run interactively (without - D).

o Folders

The following command will create the Devi ces folder as a subfolder inside the

Har dwar e folder in the toolbox file/ home/ user / nyTool box. t bx. The specified
icons and description of "Device Mgt. Tools" will be used to represent the folder in the
SMC console.

sncregi ster tool box add [-f] folder "Devices" [-F
"Har dware] "Device Mgt. Tool s" \
smal | Device. gif |argeDevice.gif -B /hone/user/ nyTool box. t bx

To remove that folder from the toolbox:

sncregi ster tool box renove fol der "Devices" [-F "Hardware]
"\
-B / hone/ user/ nyTool box. t bx

To create the same folder non-interactively during the next server restart:

sncregi ster toolbox -D add [-f] folder "Devices" [-F
"Har dware] "Device Mgt. Tool s" \
smal | Device. gif |argeDevice.gif -B /hone/user/ nyTool box. t bx

To remove that folder from the toolbox non-interactively during the next server restart:

sncregi ster tool box -D renove fol der "Devices" [-F
"Hardware] " \
-B / hone/ user/ nyTool box. t bx

e Tools

The following command adds a native SMC tool to the Syst em St at us folder of the
default toolbox. The Java classname of the tool is

com nyconpany. nyproj ect. client. MyTool (thename, description, and icons
visible in the console are provided by the tool itself). When loaded, it will be runin the
NIS domain, syr i nx, which is hosted by the machine, t enpl e, and will be retrieved
from port 2112 on the machine from which the toolbox was |oaded.

snctregi ster tool box add t ool
com nyconpany. nyproj ect.client. MyTool \
-F "/ System Status/" -D nis:/tenple/syrinx -H :2112

To remove that tool from the toolbox:

snctregi ster tool box renove tool
com nyconpany. nyproj ect.client. MyTool \
-F "/ System Status/"

Linksto other toolboxes

The following command adds a link to the default toolbox on the machine di vet to the
"Divet's Tools" folder in thetoolbox / honme/ user / myTool box. t bx:

sntregi ster tool box add [-f] tbxURL
http://divet:898/tool boxes/this conputer.tbx \
-F "/ Divet's Tools/" -B /honme/user/ nyTool box. t bx

L egacy Tools

Any CLI (Command Line Interface) or XAPP (X Applications) tool can also be
registered with the SMC registry. Thiswill alow the SMC to invoke the corresponding
CLI/XAPP tool from within the console; for example:

The following command will register a CLI in the default toolbox which will run the
command/ usr/bin/ls -alR

snctregi ster tool box add legacy -N "Ls Tool" -T CLI -E
/usr/bin/ls -P" -alR ™"

The following command will register athe CDE Calculator in the default toolbox:

sncregi ster tool box add | egacy -N "Calculator” -T XAPP -E
[usr/dt/bin/dtcalc

Listing Registered Tools/Services

To list the contents of registered tools/services/attachments/properties, use the following
command:

sntregi ster repository |ist

This command lists the following information:

Properties defined for all tools and services

Properties defined for all tools only.

Properties defined for all services only.

Resource jars/shared libraries attached to all tools and services

Resource jars/shared libraries attached to all tools

Resource jars/shared libraries attached to all services

Registered services; for each registered service, the following is displayed:
= Nativelibraries

= Properties
= Resource jars/shared libraries attachments and properties, if any are defined on

them.
» Registered tools (no legacy tools are listed here); for each registered tool, the following is
displayed:
= Properties
= Resource jars/shared libraries attachments and properties, if any are defined on
them.
sncconf

Some of the common object registry tasks you can perform with the sncconf tool include:
» Reqistering tool and service beans

o Unregistering tools and services

o Attaching and detaching library jars

« Adding and removing properties

o Managing toolboxes

o Listing registered tools/services

Each of these tasks is discussed below.

i |MPORTANT CHANGE FOR SMC 2.1: sntconf has been deprecated in SMIC 2.1 and
replaced by sncr egi st er.snctregi st er isnow the preferred interface for managing

the SMIC repository as well as toolboxes from within scripts, due to significant performance
enhancements over sncconf . Additionally, sncconf has dependencies on Java

devel oper tools which might not exist on every system. Thesntr egi st er command is
explained earlier in this section.

Registering Tool and Service Beans

Registering the tool or service jar file does not remove the jar file from its original location. It
simply makes the tool or service usable from within the SMC by adding the information related
to the new tool or service to the SMC registry. The command used to register atool or service
beanis:

sncconf repository add bean <path>/<jarfile>.jar
If the tool or service bean has aready been registered, sncconf will not allow you to
overwrite the existing tool/service bean unless you use the - f option as show below.
sncconf repository add -f bean <path>/<jarfile>.jar

where<j arfil e>.) ar isan existing tool or service bean.
For example, toregister / usr/ i b/ MyTool . j ar:
sncconf repository add -f bean /usr/lib/nyTool.jar

Any service jar that requires a native library can simply include the native library in the jar file,
but al'so add an entry for the native library to the manifest file, as discussed in Packaging.

Unregistering Tools and Services

Unregistering atool or service will make it unavailable from within the SMC. It removes the
registered tool or service information from the SMC registry. The command used to unregister a
tool or serviceis:

sncconf repository renove bean <beannane>

where <beannanme> isaregistered tool or service.

For example, to unregister the bean com nyconpany. nypr oduct . MyTool :

sncconf repository renove bean
com nyconpany. nyproduct . MyTool

Attaching and Detaching Library Jars

Y ou can attach or detach library jarsto or from any of the following:
» Tool/Service Beans
o All Services
« All Tools
« All Toolsand Services

Any SMC bean can have pluggable libraries attached to it. These library jars can be resource
bundlesin different locales, as well as function code that needs to be seperately upgradable.
Library jars that are attached to specific beans will be visible to that bean only at runtime.
However, there are 3 special bean keywords recognized by smcconf that allow you to control
the scope of library usage on awider scale: ALL allows the library to be used by all tools and
services, ALLTOCL allowsthe library to be used only by other tools, and ALLSERVI CE allows
the library to be used only by other services.

i Usethe - f (force) option to override any resource jar attachment. The - f option can be
used while attaching a library jar only.

« Attaching Tool/Service beans

The command used to attach alibrary jar to atool or serviceis:

sncconf repository add |ibrary <beannane>
<path>/<jarfile>. jar

where <beannanme> isaregistered tool or serviceand<j arfi | e>. j ar isthelibrary
resource jar.

For example, to attach alocalization library jar / usr /|1 i b/ MyTool _fr .| ar tothe
aready registered bean com nyconpany. nypr oduct . MyTool :

sncconf repository add library
com nyconpany. nmyproduct . MyTool /usr/lib/ M Tool fr.jar

« Detaching Tool/Service beans

The command used to detach alibrary jar from atool or serviceis:

sncconf repository renove library <beannanme> <jarfile>.jar

where <beannanme> isaregistered tool and<j arfi | e>. j ar istheresourcejar.

For example, to detach the localization library My Tool _fr. j ar from thetool
com nmyconpany. nypr oduct . MyTool :

sncconf repository renove library
com nyconpany. nmyproduct . MyTool MyTool .j ar

o All tools

To add alibrary jar attachment to be shared by all registered tools only, use the following
command:

sncconf repository add library ALLTOOL <jarfile>. jar

To remove alibrary attachment which is shared by all registered tools only, use the
following command:

sncconf repository renove library ALLTOOL <jarfile>.jar

o All services

To add alibrary jar attachment to be shared by all registered services only, use the
following command:

sncconf repository add library ALLSERVICE <jarfile>.jar

To remove alibrary attachment which is shared by all registered services only, use the
following command:

sncconf repository renove library ALLSERVICE <jarfile>.jar
o All toolsand services

To add alibrary jar attachment to be shared by all registered tools and services, use the
following command:

sncconf repository add library ALL <jarfile>.jar

To remove alibrary attachment which is shared by all registered tools and services, use
the following command:

sncconf repository renove library ALL <jarfile>.jar

Adding and Removing Properties

Y ou can define and undefine properties (key/value pairs) for any of the following:
o Tool/Service Beans
o All Services

All Tools

o All Toolsand Services

« Specific resource jarsin specific tool/service beans

i Aswith library jars, the keywords ALL, ALLTOOL, and ALLSERVI CE allow you to control
the scope of properties beyond specific beans.

e Tool/Service Beans

Tools and services can have properties associated to their registry entries. To add
properties to aregistered tool/service, use the commmand below. More than one property
could be added at atime to the specified tool/service as shown below by specifying
multiple- P <key=val ue> arguments.

sncconf repository add property -P HOMEDIR=/tnmp -P
MYHOVE=/ hone/ kd <beannanme>

The above command will add two properties (HOVEDI R=/ t np and
MYHOVE=/ honre/ kd to the <beannane> bean).

To remove properties already defined on the specified registered tool/service, use the
following command:

sncconf repository renove property -P HOMVEDI R - P MYHOVE
<beannane>

or

sncconf repository renove property -P HOVMEDIR=/tnp -P
MYHOVE=/ honre/ kd <beannane>l| t : beannane<beannane>gt ;

Any one of the above commands can be used for removing the specified properties.
« All tools

To add properties to be shared by all registered tools, use the following command:

sncconf repository add property -P HOMED R=/tnp ALLTOOL

To remove properties shared by all registered tools, use the following command:
sncconf repository renove property -P HOVEDI R=/tnp ALLTOOL

o All services

To add properties to be shared by all registered services, use the following commmand
sncconf repository add property -P HOMED R=/tnp ALLSERVI CE

To remove properties shared by all registered services, use the following commmand:

sncconf repository renove property -P HOVED R=/tnp
ALLSERVI CE

or
sncconf repository renove property -P HOMVEDI R ALLSERVI CE

o All toolsand services

To add properties to be shared by all registered tools and services, use the following
command:

sncconf repository add property -P HOVEDI R=/tnp ALL

To remove properties shared by all registered tools and services, use the following
command:

sncconf repository renove property -P HOVEDI R=/tnp ALL

or

sncconf repository renove property -P HOVEDI R ALL

« Specificresourcejar in a specific tool/service bean

It is aso possible to add/remove properties to a specified resource jar attachment to a
specified tool/service bean; for example, Cr onTool . cl i ent. VCronTool tool has
two resource jar attachments: Cr onTool _C. j ar and Cr onHel pSet . | ar.

To add propertiesto the Cr onHel pSet . j ar resource jar attachment only, use the
following command:

sncconf repository add property -P HOVEDI R=/tnp \
CronTool . client.VCronTool \
CronHel pSet . j ar

Managing Toolboxes

Managing toolboxes with sntconf isidentical to managing toolboxeswith sntr eqgi st er
with one exception: thesntr egi st er t ool box subcommand accepts the - D option which
defers execution of the toolbox command until the SMC server isrestarted. Thisis a convenient
option for use in packaging scripts during install and un-install. Additionally, the command runs
much faster than if run interactively (without - D). In all other aspects, the toolbox arguments
for sncconf andsnctr egi st er arethe same.

Listing Registered Tools/Services

To list the contents of registered tool 5/services/attachments/properties, use the following
command:

sncconf repository Ilist

This command lists the same repository information as smcregister.

Frequently Asked Questions

« How Much of My Existing Code Can | Salvage?
« How Do | Load Images, ResourceBundles, and Online Help?

e How Do | Accessthe Console Frame Parent for Dialogs?

« How Do | Accessthe Selection Set in the Results Pane?

o How Dol Set Selectionsin the Results Pane?

o How Do | Get the Currently Selected Node in the Navigation Pane?

o How Do | Specify System Properties on the Console Command Line?

o How Do | Update the Console Display to Show Changes in the Data M odel ?
o How Do | Integrate Menubars and Toolbars?

o How Do | Create Diaogs?

o How Do | add an About Box for my Tool?

o How Do | Save and Restore User Preferences?

« How Do | Manage Sorting Preferences?

o How Do | Customize the First Column Header in Details View?

o How Do | Align Column Vauesin Details View?

o Canl UseGlobal Static Variables

o Why Can't SMC find my new jar file | just registered?

o | Re-Registered My | ar File, But | Get a ClassNotFoundException at Runtime.
« How do | determine the management scope?

e I'musing anon-SMC service in my backend. How do | connect to it?

o | keep getting service connection failures to my SMC service.

o Server status seems unstable. How can | fix it?

How Much of My Existing Code Can | Salvage?

See the section Migrating Applications to SMC.

How Do | Load Images, ResourceBundles, and Online Help?

See the section Accessing Resources.

How Do | Access the Console Frame Parent for Dialogs?

If you descend from one of the AWT or Swing top-level windows (for example, W ndow,
Franme, Di al og, JFrane, JDi al 0g), you limit the contexts in which your code will run,
which is often not required. Using the VConsol ePr operti es. DI ALOGTYPE property will
do the following:

« Allowsyour tool to know the environment it isin, either FRAME or | NTERNAL FRAME.

« Letsyou know the type of top level container in which to place your component; for
example, JFr ane/JDi al og or aJi nt er nal Fr ane.

If the DI ALOGTYPE setting is FRAME, (SMC style), you need the parent frame to create
dialogs. If the DI ALOGTYPE setting is| NTERNAL FRANE (as in the "desktop” console), you
need the Swing desktop pane to add your J1 nt er nal Fr ane.

Console Frame Parent for
Dialogs

Sample Code

How Do | Access the Selection Set in the Results Pane?

Obtain ahandleto the VDI spl ayMbdel andcall get Sel ect edNodes() .

@ Getting Selections in Results
Pane

Sample Code

There several methods for effecting the selection set, depending on the what you want to do.
Each require obtaining a handle to the VDi spl ayModel .

How Do | Set Selections in the Results Pane?

@ Setting Selections in Results
Pane

Sample Code

How Do | Get the Currently Selected Node in the Navigation
Pane?

Obtain ahandleto the VDI spl ayMbdel andcall get Sel ect edNavi gat i onNode() .

@ Get Selected Navigation
Pane Node

Sample Code

How Do | Specify System Properties on the Console Command
Line?

snt J-Dnanel=val uel -J-Dnane2=val ue2 ...

Thisis convenient if you want to dynamically effect application behavior without having to
change code. However, your application will by default only have access to the standard
properties (or whatever access is permitted by the security policy in effect).

To grant r ead permission for application-specific properties, you can create apolicy filein
your home directory (. j ava. pol i cy).

% Specify Properties on
Command Line

Sample Code

How Do | Update the Console Display to Show Changes in the
Data Model?

Send an UPDATESCOPE event to the console.
Sample Code @ UPDATESCOPE

Y ou can specify your own menubar and toolbar on a per-navigation-node basis, viathe
VScopeNode constructor. Y ou should also do thisfor the root node of each internal-root
model. Y our menu/toolbar will appear to the right of the console's menu/toolbar.

How Do | Integrate Menubars and Toolbars?

See the Menu bar section for details on how to integrate your menu items with the console
menus.

oldf Page

e

How Do | Create Dialogs?

Extend VOpt i onPane to create your own dialogs. When you need to display it, create a
VDi al og or VFr ane, placethe VOpt i onPane inside it and then display your VDi al og or
VFr anme.

Sample Code @ Creating aDiaog

X dfPoge

N

How Do | add an About Box for my tool?

First integrate an About menu item into the Help menu, as discussed in the Menu bar section.

When you receive the event (inthe Act i onLi st ener for the menu item) associated with this
menu item, instantiate a VAbout Box dialog, set the title and description information relative to
your tool, and display the dialog.

Sample Code @ About Box

X dfPoge

N

How Do | Save and Restore User Preferences?

See the section V Consol eProperties.

Y our tool isresponsible for tracking what the sort attribute (column identifier) and sort order
(ascend or descend) are, and saving them as a property. Sort preferencesarein [+/ - | # format,
where:

« + impliesascending sort order
« - implies descending sort order
« # isthe column number to sort by

How Do | Manage Sorting Preferences?

For example, +2 means to sort column 2 in ascending order, - 1 means to sort column 1 (the
first column) in descending order.

Sample Code @ Manage Sorting Preferences

How Do | Customize the First Column Header in Details View?

By default, SMC assigns the title for the first column in details view to be Nane. Y ou can use
the VConsol ePr operti es. DEFAULTCOLUMNHEADER property to customize the title.

If your tool isnot limitted to the Details view only, then at the same time you customize the first
column, you might also want to customize the width of the column grid for the other views
using VConsol eProperti es. DEFAULTCOLUVNW DTH. Specifiy the value as a pixel
width in String format.

@ Customize first Column
Header

Sample Code

See VScopeNode. col unmmHeader s inthe SMC SDK Javadocs for detailed information
about how to specify column headers and their widths.

How Do | Align Column Values in Details View?

Specifying alignment involves adding fixed values to the desired column widths:
o Width values >20000 will be right-aligned.
o Width values>10000 and <20000 will be center-aligned.
o Width value <10000 will be left-aligned.

Sample Code # Align Column Values

The short answer is no. Depending on user-specific console configuration, your application may
be instantiated more than once, and no variable should have scope beyond the instance for
which it was originally set, otherwise you may get very strange results. Furthermore, you
cannot use iV ConsoleProperties for per-application global data because the Pr operti es

object is a console-wide shared object.

Why Can't SMC find my new jar file | just registered?

Can | Use Global Static Variables?

Newly registered jar files require that the SMC server be restarted. See the Starting Services

section for how to do this.

| Re-Registered My j ar File, But | Get a
ClassNotFoundException at Runtime.

Thisisacommon error during development, typically after you've added a new class or new
propertiesfile. It is especially common during GUI development, where named and anonymous
inner classes are used quite frequently, and often without the developer even realizing that this
resultsin additional . cl ass files. New classes and properties files require that the SMC server
be restarted. See the Starting Services section for how to do this. Additionally, make sure

packaging for tool and service jars has been done properly.

U

[gp'c Poge
How do | determine the management scope?

Call get Par anet er (Tool Cont ext . MGMITSCOPE) on the Tool Cont ext object, which
Is passed to the tool viaTool . set Tool Cont ext () upon loading by the SMC console.

U

oo Poge

I'm using a non-SMC service in my backend. How do | connect
to it?

See the section Third-Party | ntegration.

U

[gp'd Page
| keep getting service connection failures to my SMC service.

Make sure the service has been properly packaged and registered. A common mistake with
SMC 2.1 isto forget to generate the agent container classes and the classlist.

U

[gp'o Page
Server status seems unstable. How can | fix it?

With SMC 2.0, it was possible to stumble into catch-22 situations wherei ni t . wbem st op
indicated the server was not running and so there was no server to stop, yeti ni t . wbem

st art indicated it already was running and so would not attempt to start it. Effective with
SMC 2.1, this situation should occur much less frequently, but if it does happen to occur, hereis
the guaranteed cure for al your problems:

e Suroot
« kill al instances of the smcboot process
« kill al instances of the cimomboot process

« kill al instances of SMC-related JVMs. These will contain either "-Dviper.fifo.path=" or
"-Djava.security.policy="in their command paths.

e SMC 2.1: rm -rf /var/run/smc<port> where <port> is usually 898

e SMC 2.0: rm -rf /tmp/smc<port> where <port> is usually 898

Theninvoking/etc/init.d/init.wbem start will successfully start the server.

& Code Samples

This page provides links to the code samples used in numerous placesin this guide. Code
samples are listed below in alphabetical order. Numbersin thislist are provided for ease of
reference only, and do not refer to the order in which the code is presented in the guide.

1. About Box

Accessing alLog Service
Accessing WBEM

Add Child Node

Align Column Values
Build Search Index

Call Delegation
Checking Authorization

© © N o gk~ WD

Configure Services with Properties

=
o

Connect to External Client Provider

=
=

. Console Listeners

. Create Tool Node

. Creating aDiaog

Customize 1st Column Header

. Debugging

. Details Style Only

. Enable Styles

. Exceptions

. External Client Provider

. Generate agent container classes with smccompile

=
N

=
w

=
o

=
o o

|_\
\l

el
© 0

N
o

N
=

. Generate library clasdslist with smccompile

N
N

Generate service clasdlist with smccompile

N
w

. Generate tool classlist with smccompile

N
o

Get Frame Parent

. Getting Selected Navigation Pane Node
. Getting Selections

. Getting Sort Preferences

N
ol

N
(0)]

N
~J

28.
29.
30.
31.
32.
33.

35.
36.
37.
38.
39.
40.
41.

& R &8

46.
47.
48.
49.
50.
ol.
52.
93.

95.
56.
S7.
58.
99.
60.

Hello

Helpset Map File
Hyperlink to Hel pset
Launching

Loading Help Files
L oading Images

L oading Resource Bundles

L ocalized Helpset

Log Console Event

Logging

Manifest for External Client Provider
Manifest for Native Library

Manifest for Tools

Menubar Integration

Messaging

native2ascii

Persistence

Preferences
PropertyChangeL istener
Remove Child Node

Scope
Service Descriptor

Service |mplementation

Service Interface Definition
Set Center Status Info Pane
Set Context Help

Set Left Status Info Pane

Setting Character Set Encoding in HTML

Setting Selections
System Properties on Command Line

Tool Descriptor

Tool Resource Bundle
Tool.setProperties

61. Update Display with UPDATESCOPE
62. UPDATESCOPE
63. VConsoleActionListener

]

Sample Code: About Box

/'l Create About Box, setting title and description
Il
VAbout Box about Box = new VAbout Box() ;
about Box.setTitle("My Tool 1.0");
about Box. set Descri pti on(
"Long-w nded Copyright notice\nthat only a | awer can conprehend");

/'l Add sonme extra space bel ow the copyright text, otherw se
/1l the default icons at the bottomw ||l crop sone of the text.
/'l The space we add nust be relative to the current font.

Il

Di mensi on d = about Box. get M ni nunti ze() ;

Font Metrics fm = about Box. get Font Met ri cs(about Box. get Font ()) ;
d. height += (2 * fmgetHeight());

about Box. set M ni munti ze(d);

/Il Create container for About box

/1

JFrame consol eFrane =

(Jframe) (properties. get PropertyQObj ect (VConsol eProperties. FRAMVE)) ;
VD al og contai ner = new VD al og(consol eFrane, true);

about Box. set Cont ai ner (cont ai ner) ;

/[l Set title for container
/1
container.setTitle("About My Tool");

/[l Put it all together and render

/1

cont ai ner. get Cont ent Pane() . set Layout (new Bor der Layout ());
cont ai ner. get Cont ent Pane() . add(about Box, Bor der Layout . CENTER)
cont ai ner. pack() ;

cont ai ner. showCent er (consol eFrane) ;

el

Sample Code: Accessing a Log Service

met hodl () {
Log | ogsvc = (Log)

i nfrastructure. get Servi ceByNane("com myconpany. nypr oduct . MyLogSer vi ce");
| ogsvc. writelLog(...);
}

Thei nf rast ruct ur e handleisgiven to the client upon loading by the SMC console.

[M oot

Sample Code: Accessing WBEM

Tool Infrastructure inf = ...
Tool Cont ext tool Context = ...
Adm nMgt Scope scope = (Adm nMyt Scope) t ool Cont ext . get Par anet er (
Tool Cont ext . MGMTSCOPE) ;
String ngtServer = scope. get Mgnt Server Nane() ;
String authenHost = inf.getldentity().getAuthenHost ();
Cl MNaneSpace cns = new Cl MNaneSpace(ngt Server, "root\\cim2");
bj ect[] parans = {cns, new String(CMJdient.CIMRM)};
CCMJdient cinClient = (CMJient)inf.getExternal dient(
Ext ernal Cl i ent Li st. JAVAXWBEM par ans) ;

Thei nf andt ool cont ext handles are given to the client upon loading by the SMC console.

[M oot

Add Child Node

VScopeNode parent = ...

VScopeNode child = new VScopeNode(null, null, null,
myMenuBar, nyTool Bar, nyPopupMenu,
smal | I con, |argelcon, "Child Node",

“A child node for sone parent”,
null, -1, chil dDataQbject);

/'l Associate the node with our Tool's instance.

/1 This allows node selection notification to be handl ed by the
/'l console's engine thru the Tool's start/atop nethods.

chil d. set Tool (nyTool) ;

/'l Add the node as a child of the parent
par ent . add(chil d)

/'l Notify console that Navi gati on pane shoul d be updat ed.
/'l (Assunes a general nmethod for firing events).
VConsol eEvent ev = new VConsol eEvent (

nmyTool , VConsol eActi ons. UPDATESCOPE, parent);
fireConsol eAction(ev);

Lo

Sample Code: Align Column Values

private final Qbject[][] colummHeaderConfig = {
/1 Colum key and colum width in characters units
{"My Colum 1", new Integer(20)}, /1l First colum, left-aligned
{"My Colum 2", new Integer(10013)}, // Second colum, center-aligned
{"My Colum 3", new Integer(20015)}, // Third colum, right-aligned

b

int nCols = col umHeader Confi g. | engt h;
String[][] columHeaders = new String[nCol s][3];

/'l Get FontMetrics for header. Since we don't have access to the

/| header conponent, create a dummy conponent that uses the sane

/1l font as the header. Then get the FontMetrics for the dumy

/| conponent.

/1

JLabel dummy = new JLabel ();

dunmmy. set Font (Resour ceManager . | abel Font) ;

Font Metrics fnHeader = dummy. get Font Met ri cs(Resour ceManager . | abel Font) ;

/'l Do the sane to get FontMetrics for the data
I
dumy. set Font (Resour ceManager . bodyFont) ;
Font Metrics fnData = dummy. get Font Metri cs(Resour ceManager . | abel Font) ;
for (int i =0; i <nCols; i++) {
/| Get actual header string
col umHeaders[i][0] = (String)col unmHeader Config[i][O0];

[l First conpute the width of the localized col um header.
/1l Note that this includes a 2-character margin on each

/1 side, based on the character "A'.

/1

int headerWdth = fnHeader. stringW dt h(col umHeaders[i][0]);
header Wdt h += fnHeader. stri ngW dt h(" AAAA") ;

/1 Extract the alignment value fromthe colum w dth:
/[l width values > 20000 -> right aligned
/1 width values > 10000 -> center aligned
/1 width values > 0 -> | eft aligned
I
i nt col umWdt h ((I'nteger)col umHeaderConfig[i][1]).intValue();
int alignnmentValue = 0;
if (columWdth > 20000) {
al i gnnent Val ue = 20000;
} else if (columWdth > 10000) {
al i gnnment Val ue = 10000;

}

columwWdt h -= alignnent Val ue;

/[l Then conpute the preferred wwdth of the colum's data. This too,
/'l is based on the character 'A' .

/1

int datawdth = fnData.stringWdth("A");

dataWw dth *= col umW dt h;

datawdth += al i gnnent Val ue;

/'l Actual width is max of header/data width, but in String format.
col umHeaders[i][1] = new String(
String.val ued (vat h. max(header Wdth, datawWwdth)));

/1 The col umHeaders object array can then be set on a VScopeNode,
/[l whether it is the internal root for your data nodel, or a node
/1 in the navigation pane.

node. set Col uitmHeader s(col umHeaders) ;

]

Sample Code: Build Search Index

To build the search index for a helpset for a specified | ocal e and placeit in the Sear chl ndex subdirectory,
assuming the helpset isrooted at ${ HOVE} / hel pset , and the html filesarein the ht m subdirectory:

setenv JHHOVE <path where JavaHelp 1.1 is installed>

setenv JAVA HOVE <path where the JDK is installed>

set env PATH ${JAVA HOVE}/ bi n: ${ PATH}

cd ${HOVE}/ hel pset

rm-rf | ocal e/ Sear chl ndex

${JHHOVE} / j avahel p/ bi n/ j hi ndexer -1ocal e |ocale -db |ocal e/ Sear chl ndexl ocal e
| ocal e/ htm /*

[M oot

Sample Code: Call Delegation

/'l pass on caller identity to other service
/'l by specifying delegation to true
O her Service os = (O her Servi ce)
I nfra. get Servi ceByNanme(Q her Servi ce. cl ass. get Nane(), true);

6é:doSonething();

ol

Sample Code: Checking Authorization

/1l This exanple illustrates how to check authorizations
/1 for a service that supports read and wite authorizations

public static final String AUTH MYSERVI CE_ WRI TE
"sol aris.admnin. myservice.wite";
public static final String AUTH MYSERVI CE_READ

"sol ari s. adm n. nyservice.read";

Per m ssi onCol | ecti on permni ssionCollection = null;
Tool Infrastructure infrastructure = <gotten from SMC;

/] Get authorizations.
try {
Aut hori zation auth = (Authori zation)infrastructure. getServi ceByNamg(
Servi ceLi st. AUTHORI ZATI ON) ;
per m ssionCol | ecti on = auth. readUser Perm ssi ons(
infrastructure.getldentity());
} catch (Exception ex) {
/1l Report exception
}

/**

* Determne if user is authorized for "wite" access.

*

* @eturn true if user has wite authorization, otherw se fal se
*/

publ i ¢ bool ean hasWiteAut horization() {

[l Allowonly if explicitly authorized.

/1
VPer mi ssi on perm = new VPerm ssi on(AUTH_ MYSERVI CE_WRI TE) ;
if ((permssionCollection != null)

&& perm ssionCol | ection.inplies(perm)
return true;

[/ Ot herw se, deny
return fal se;

} /1 hasWiteAuthorization

/**

* Determine if user is authorized for "read" access.

*

* @eturn true if user has read authorization, otherw se false
@]
publ i ¢ bool ean hasReadAut hori zation() {

[l Allowonly if explicitly authorized.
I

VPer ni ssi on perm = new VPerm ssi on(AUTH_MYSERVI CE_READ) ;

if ((permssionCollection != null)
&& perni ssionCol | ection.inplies(pern))

return true;

/1 O herw se, deny
return fal se;

} /1 hasReadAut hori zation

[et

Sample Code: Configure Services with Properties

Set the architecture and port properties after a service has been registered
snctregi ster property ARCH “unane -p com nyconpany. myproduct. MyServi ce. j ar
snctregi ster property PORT 8080 com nmyconpany. nyproduct. MyService. j ar

At runtime, the service retrieves the properties through the ServiceContext that is given to the service via the method
set Context():

i nport com sun. managenent . vi per. VSer vi ce;
public class MyServicel npl extends VService inplenents MyService {

public void init() {
super.init();
Servi ceCont ext context = super.getContext();
String arch = context.getRegi stryProperty("ARCH");
String port = context.getRegistryProperty("PORT")

[R ot

Sample Code: Connect to External Client Provider

Tool Infrastructure tinf; // Set by SMC consol e

/Il Get external client proxy reference for WBEM

/'l W pass the target host in the nane space paraneter.

Cl MNaneSpace cns = new Cl MNanmeSpace(host nane, "root/cinm2");

| nt eger protocol new I nteger(CIMJient.RM);

bj ect [] parans {cns, protocol};

CCMiient cc = (COMIlient)tinf.getExternal dient("C MABEM', parans);
/'l Access providers through this C MJient

]

Sample Code: Console Listeners

public class VProcMyr inplenments Tool, VConsol eActi onLi stener {

private Vector consol eListeners = new Vector();

/**
* Adds the specified console actions |listener to receive events for actions

* by our subconponents.
*

* @aramlistener the console action listener to forward events to
*/
publ i c voi d addConsol eActi onLi st ener (VConsol eActi onLi stener |istener) {

if (listener !'= null)
consol eLi steners. addEl enent (| i stener);

} /1 addConsol eActionli st ener

/**

* Notify all registered |isteners of the specified consol e event.
*

* @aram e t he consol e acti on event
*/
public void fireConsol eActi on(VConsol eEvent e) {
for (int i = 0; i < consoleListeners.size(); i++) {
VConsol eActi onLi stener | = (VConsol eActi onLi st ener)

consol eLi steners. el ement At (i) ;
| . consol eAction(e);

}

} /1 fireConsol eAction

VConsol eEvent ev = new VConsol eEvent(...);
fireConsol eAction(ev);

i)

Create Tool Node

public class MyTool inplenents Tool ... {

VScopeNode nyTool Node;

/'l Notice how we |eave the first 3 paranmeters as null.
/'l This neans the console's rendering engine will take
/'l over for us and handle the rendering of our child
/'l nodes.
nmyTool Node = new VScopeNode(null, null, null,

myMenuBar, nyTool Bar, nyPopupMenu,

smal |l I con, largelcon, "My Cool Tool",

"A tool that does cool stuff",

null, -1, nyDataCbject);

/| Associate the node with our Tool's instance.

/1 This allows node selection notification to be handl ed by the
/'l console's engine thru the Tool's start/atop nethods.

MyTool Node. set Tool (t hi s);

public void get ScopeNode() {
/1l Return the root node of our data nodel
return nmyTool Node;

]

Sample Code: Creating a Dialog

public class MyD al og extends VOpti onPane {

get Cont ent Pane() . set Layout (...);
add conponents ...

VFrane contai ner = new VFrame();
set Cont ai ner (cont ai ner);
container.setTitle(...);

JFrame f = (JFrane) (properties. get PropertyQbj ect (VConsol eProperties. FRAME)) ;
cont ai ner. showCenter (f);

[M oot

Sample Code: Customize 1st Column Header

Properties properties = ...

/'l Header for the default colum in details view
properties. set PropertyQbj ect (

VConsol eProperti es. DEFAULTCOLUVNHEADER,

"My Col um");

/1 Pixel width of the colum grid during |arge/small icon view
/1 Typically, you wouldn't hardcode the value as shown here, but
/'l should conpute the val ue based on the font used in the View
/'l pane.
properties. set Property(

VConsol eProperti es. DEFAULTCOLUVNW DTH,

"28");

il

Sample Code: Debugging

I nport com sun. managenent . vi per. util . Debug;
public class MyServicel npl extends VService inplenments MyService {

publ Ic void doit() throws RenoteException {
try {

} cai.c.h (Exception ex) {
Debug. trace(" MyServi cel npl ",
Debug. ERROR, "Exception during doit() ",
ex) ;

[ot

Details Style Only

public class MyTool inplenents Tool ... {

String style = ;
public void start() {

/'l Save the current style set in the console
style = properties. getProperty(VConsol eProperties.| CONSTYLE);

/'l Since we're only allow ng one view, we need to disable

/'l style nenu itenms, so user can't change style

properties. set Property(VConsol eProperties. | CONVI ENGENABLED,
VConsol eProperties. FALSE);

/'l Set style property for Details only

properties. set Property(VConsol eProperties. | CONSTYLE,
VConsol eProperties. DETAILS);

}
public void stop() {

/'l Reset style back to original setting
properties. set Property(VConsol eProperties. | CONSTYLE, style);

[M oot

Enable Styles

/'l Enabl e on LARGE | CON and DETAI LS styles
properties. set Property(VConsol eProperties. | CONVI EWSENABLED,
VConsol eProperties. LARGE + VConsol eProperties. DETAILS);

il

Sample Code: Exceptions

public class MyException extends VException {

try

/'l Resource class for Exceptions.properties.
private static final String RESOURCECLASS =
"com nyconpany. myproduct . myt ool . resour ces. Excepti ons";

/**

* Protected nethods to return the base nane of the resource
* bundl e property file.
*
protected String getBundl eName() ({
return RESOURCECLASS;
}

/**

* Protected nmethod to return the O assLoader for this class.
*/
prot ected C assLoader get ResourceC assLoader () {
try {
return this.getC ass().getC assLoader();
} catch (Exception e) {
return Cl assLoader. get Syst enCl assLoader () ;
}

{

I f (sonme error)
t hrow new MyException("errorKey");

} catch (Exception e) {

Systemout.println("Error doing sonething. Exception nmsg is
+ e. get Local i zedMessage();

]

Sample Code: External Client Provider

public class ClMJientProvider inplenents External ientProvider {
private static String nyType =

"com sun. managenent . vi per.client. External CientList.Cl M\BEM ;

public Cbject getExternal dient(

Stri
Stri
Stri
Stri
Stri
Stri

ng
ng
ng
ng
ng
ng

xcType,

host ,

user,
credenti al ,
rol e,

rol eCredenti al ,

bject[] paranms) throws Exception {

if (!xcType. equal s(nyType))

t hrow new VExcepti on("Unknown xc type");

/1l validate paraneter array skipped

Cl MNaneSpace ns = (Cl MNaneSpace) par ans[0] ;

Sol ari sUser Pri nci pal

up = new Sol ari sUser Pri nci pal (user

role),;

Sol ari sPasswor dCredential pc = new Sol ari sPasswor dCr edenti al (

credential, roleCredential);

return new Cl M ient(ns, up, pc);

[R ot

Sample Code: Generate agent container classes with smccompile

cd <CLASSPATH r oot > # parent directory of com nyconpany/ myproduct
[usr/ sadni bi n/ sncconmpil e -¢ com nyconpany. nypr oduct . MyServi ce. j ar

[et

Sample Code: Generate library classlist with smccompile

[usr/sadn bi n/sncconpile -j library -n com nmyconpany. nyproduct. MyLi brary.jar \
MyLi brary.jar > MyLibrary_cl asslist.txt

[et

Sample Code: Generate service classlist with smccompile

[usr/sadn bi n/ sntcconpile -j service -n com myconpany. nyproduct. MyService.jar \
MyService.jar > MyService_classlist.txt

el

Sample Code: Generate tool classlist with smccompile

/ usr/ sadni bi n/ sntconpile -j tool -n com nmyconpany. nyproduct. MyTool . jar \
MyTool .jar > MyTool cl asslist.txt

PRt

Sample Code: Accessing the Frame Parent

Assuming you already have areference to the GV Consol eProperties object:

String dial ogType = (String)(properties. getProperty(VConsol eProperties. DI ALOGTYPE)) ;
if ((dialog. Type == VConsol eProperties. FRAVE) {
JFrame frame =(JFrane) (properties. get Propertyj ect (VConsol eProperties. FRAVE) ;

} el se if ((dialog.Type == VConsol eProperties. | NTERNALFRAME) ({

JDeskt opPane p =
(JDeskt opPane) (properti es. get PropertyGhj ect (VConsol eProperti es. DESKTOPPANE)) ;

}

Lo

Sample Code: Getting Selected Navigation Pane Node

Assuming you have areference to the 'V Consol eProperties object:

VDi spl ayModel nodel =
(VDi spl ayModel) (properties. get PropertyQbj ect (VConsol eProperties. DI SPLAY) ;

VScopeNode node = nodel . get Sel ect edNavi gat i onNode() ;

Lo

Sample Code: Getting Selections in Results Pane

Assuming you already have a reference to the iV Consol eProperties object:

VDi spl ayModel nodel =
(VDi spl ayModel) (properties. get PropertyQbj ect (VConsol eProperties. DI SPLAY) ;

Vector vSel ected = nodel . get Sel ect edNodes() ;

wherevSel ect ed isaVector of VScopeNode objects.

il

Sample Code: Getting Sort Preferences

String sortPreferenceskKey = getd ass().getNane() + ".sortPreferences”;
Properties properties = ...

/'l Save the current sort properties as a preference.
properties.setProperty(sortPreferencesKey,
properties. get Property(VConsol eProperties. SORTEDCOLUW)) ;

/'l CGet previously saved preferences. |f none exist, then
/'l presumably the user disabled sorting in the previous
/'l session, and we should honor that.

Il
String sortPreferences = properties.getProperty(sortPreferencesKey);
if ((sortPreferences != null) && !sortPreferences.equal s("null")) {

/'l Sort preferences are in "[+/-]#" format, where:

/1 + inplies ascendi ng sort order
/1l - inplies descending sort order
/1l # is the colums nunber to sort by

/'l Extract the sort order

String sortOrder = VConsol eActi ons. SORTUP

if (sortPreferences.indexOr("-") >= 0)
sort Order = VConsol eActi ons. SORTDOWN,;

/'l Extract the sort colum

Integer[] sortColum = new Integer[1];

try {
int n = Integer.parselnt(sortPreferences.substring(l));
sort Col um[0] = new Integer(n);

} catch (Exception e) {
/'l Shoul d never get here, but Mirphy's Law. ..
sort Col um[0] = new Integer(0);

}

/'l Apply sort criteria to display nodel
VConsol eEvent e = new VConsol eEvent (nyTool, sortOrder, sortColum);
myTool . fireConsol eAction(e);

/'l Update console U controls on applied sort criteria
properties. set Property(VConsol eProperties. SORTEDCOLUMN, sort Preferences);

[M oot

Sample Code: Hello

Sample code is displayed in this window.

/**

* Comrent s? Questions?
*/

PRt

Sample Code: Helpset Map File

This shows an example helpset map file, where some of the HTML filesresideinthet opi cs/ t opi cA subdirectory of the
hel pset.

<?xm version='"1.0" encoding='"|S0O 8859-1'" ?>
<I DOCTYPE map PUBLIC "-//Sun M crosystens Inc.//DID JavaHel p Map Version 1.0//EN'
"http://java. sun. com products/javahel p/map_1 0.dtd">

<map version="1.0">
<mapl D target="nyt ool _topi cA cool stuff_htm " url="topics/topi cAcoolstuff.htm" />
<mapl D target ="nytool topicA hotstuff _htm " url="topics/topicAhotstuff.htm" />

</ map>

]

Sample Code: Hyperlink to Helpset

public class MyD al og extends VOpti onPane {

public MyDi al og() {

final ... app = <handle to sone class that has the event routing method>
addConsol eAct i onLi st ener (
new VConsol eActi onLi stener () {
public voi d consol eActi on(VConsol eEvent e) {
if (e.getlD().equal s(VConsol eActi ons. HYPERLI NKEVENT) &&
myLi nkLi stener. i sExternal Link((String) (e.getPayload())))

app. fireConsol eAction(e);

1),

i)

Sample Code: Launching

/'l Exanpl e code for launching the Mtif application 'wsinfo

I nport com sun. managenent . vi per. servi ces. Launch;
I nport com sun. managenent . vi per. servi ces. Launchl nf o;
I nport com sun. managenent . vi per. servi ces. Servi celLi st

Launch launcher = (Launch)inf. get Servi ceByNane(Servi ceLi st. LAUNCH) ;
Launchl nfo wsi nfo = new Launchl nf o(
“/usr/openwi n/ bin/wsinfo", // application path
Launchl nf o. APP_TYPE_XAPP, // type null
nul | /1,
envi ronnments);
try {
| auncher . | aunch(wsi nf 0) ;
} catch (LaunchException le) {
/'l problens |ike conmand not found, no display
} catch (Authorizati onException ae) {
/'l current user has no authorization to |aunch this comand
} catch (RenoteException re) {
/1 Ot her connection problem
}

[M oot

Sample Code: Loading Help Files

bundl e = Resour ceManager. get Local i zedText Fi | e(
“htm /addUser Hel p. ht ml ",
t ool C ass);

wheret ool Cl ass isaclass object that has the same codebase asthe HTML file to be loaded.
Itistypically -- but not always -- the class object of your main Tool instance

(myTool . get A ass()). For example, a project-wide common dialog, subclassed from

JDi al og, that existsin alibrary jar file could passt hi s. get Cl ass().

[M oot

Sample Code: Loading Images

| mgel con = Consol eUtility. | oadl magel con(
"i mages/foobar.gif",
tool C ass);

wheret ool C ass isaclass object that has the same codebase as the icon image to be loaded.
It istypically -- but not always -- the class object of your main Tool isntance. For example, a
proj ect-wide common dialog, subclassed from JDi al og, that existsin alibrary jar file could
passt hi s. get C ass().

[M oot

Sample Code: Loading Resource Bundles

Resour ceBundl e bundl e = Resour ceManager . get Bundl e(
"com sun. product . foongr.client.resources. Resources”,
this.getd ass());

wheret hi s isahandleto your main Tool instance.

PRt

Sample Code: Localized Helpset

This shows an example helpset file localized for the French (fr) locale.

Note how references to other files in this helpset are based on the local e-based subdirectory name.

<?xm version="1.0" encodi ng="1S0O 8859-1'

?>

<! DOCTYPE hel pset PUBLIC "-//Sun M crosystens |Inc.//DTD JavaHel p Hel pSet Versi on
1.0//EN' "http://java. sun.com products/javahel p/ hel pset _1 0.dtd">

<hel pset version="1.0">
<title>My Tool Help</title>
<maps>
<honel D>about _mny_t ool _htn </ honel D>
<mapref |ocation="fr/map.jhnt />
</ maps>

<vi ew>
<nanme>TOC</ nane>
<l abel >Tabl e of Contents</I| abel >
<t ype>j avax. hel p. TOCVi ew</ t ype>
<dat a>fr/toc. xnl </ dat a>

</ vi ew>

<vi ew>
<nanme>| ndex</ nane>
<| abel >I ndex</| abel >
<t ype>j avax. hel p. | ndexVi ew</ t ype>
<dat a>f r/ i ndex. xm </ dat a>
</ vi ew>

<vi ew>
<name>Sear ch</ nane>
<l abel >Sear ch</| abel >
<t ype>j avax. hel p. Sear chVi ew</ t ype>
<dat a engi ne="com sun. j ava. hel p. search
</ vi ew>

</ hel pset >

. Def aul t Sear chEngi ne" >f r/ Sear chDat a</ dat a>

[M oot

Log Console Event

/'l Presune we have an Exception which contains the error nessage
Exception ex = <the exception to be | ogged>;

VLogEvent | ogEvent = new VI ogEvent (
nmyTool , VWl ogEvent. ERROR, new Date(),
"Connection Failure",

"Connection to server XXX failed",
ex. get Message(),

ex,

nul |);

/'l Log the consol e event
VConsol eEvent ev = new VConsol eEvent (

nmyTool , VConsol eActi ons. LOGEVENT, | ogEvent);
fireConsol eActi on(ev);

[et

Sample Code: Logging

i mport com sun. managenent . vi per. servi ces. Log;
i mport com sun. managemnent . vi per. servi ces. LogExcepti on;
private static final String MYLOGRESOURCES = "ny. service. Servi ceResources”;

try {
Log logsvc = (Log) infra. get Servi ceByNane(Log. cl ass. get Nane());

| ogsvc. writeLog(" BEANNAME",
Log. CATOGERY_APPLI CATI ON,
Log. SEVERI TY_ERROR,
"Fai | ureSummar yKey1l",
"Fai |l ureDet ai | Key1",
MYLOGRESOURCES,
nul ') ;
} catch (LogException le) {
Systemerr.println("can't | og nessage");
} catch (VException ve) {
Systemerr.println("can't get |og svc");
}

[M oot

Sample Code: Manifest for External Client Provider

Nanme: com nyconpany. nypr oduct . XXXXCl i ent Provi der. cl ass
Java- Bean: True

Nanme: com nmyconpany. nypr oduct . XXXXC i ent Provi der | nf o. xm
Vi per-Info: True

[M oot

Sample Code: Manifest for Native Library

Nane: coni nmyconpany/ nypr oduct/ MySer vi ce. cl ass
Java- Bean: True

Nane: coni myconpany/ nypr oduct/ MyServi ce. xni
Vi per-Info: True

Nanme: conif nmyconpany/ myproduct/|ibprint.so
Vi per-Lib: True

[M oot

Sample Code: Manifest for Tools

Nane: coni nmyconpany/ nypr oduct/ MyTool . cl ass
Java- Bean: True

Nane: coni nmyconpany/ nypr oduct/ MyTool . xni
Vi per-Info: True

bl

Menubar Integration

public class MyMenuBar extends JMenuBar {

JMenu acti onMenu;
JMenu vi ewMenu;
JMenu hel pMenu;

public MyMenuBar () {

JMenultem m ;
MyAct i onsLi st ener actionLi stener = new MyActi onsLi stener(...);

acti onMenu = new JMenu("Action");

acti onMenu. add(m = new JMenultenm("Action Item1"));
m . set Acti onCommand("acti onl");
m . addAct i onLi st ener (acti onLi stener);

actionMenu. add(m = new JMenulten("Action Item 2"));
m . set Acti onCommand("acti on2");
m . addAct i onLi st ener (acti onLi st ener);

acti onMenu. set Act i onCommand(VMenul D. ACTI ON) ;
add(acti onMenu) ;

vi ewenu = new JMenu(" Vi ew');

vi ewenu. add(m = new JMenultem("View Item 1"));
m . set Acti onCommand(" vi ewl");
m . addAct i onLi st ener (acti onLi st ener);

vi ewenu. add(m = new JMenulten("View Item 2"));
m . set Acti onCommand(" vi ew2") ;
m . addAct i onLi st ener (acti onLi st ener);

Viémﬂ@nu.setActioannnand(VanulD.VIEMV;

add(vi ewmvenu) ;

hel pMenu = new JMenu(" Hel p");

hel pMenu. add(m = new JMenul ten(" About My Tool "));

m . set Acti onCommand(" about ") ;
m . addAct i onLi st ener (acti onLi stener);

heI pMenu. set Act i onCommand(VMenul D. HELP) ;
add(hel pMenu) ;

[M oot

Sample Code: Messaging

publ ic Chat extends VTool inplenents VConsol eActi onLi st ener,
Messageli st ener {
Message ns;
MessagePushAgent ca;

public void init(ToolInfrastructure inf) {

try {
nms = (Message)
I nf. get Servi ceByNane(Servi ceLi st. MESSACE) ;
ca = (MessagePushAgent)
ns. get MessagePushAgent (); ca.init(inf);
ca. cr eat eChannel (" Chat Channel _EVERYBQDY) ;
ca. subscri be(" Chat Channel _EVERYBODY", this);

} catch (Exception e) {

}
}

public voi d handl eMessage(VMessage nessage) {
String str = nessage. get Message() ;
}

[M oot

Sample Code: native2ascii

nati ve2ascii Resources_<l| ocal e>. properties /tnp/ nbe. properties
cp /tnp/ nbe. properties Resources_<I| ocal e>. properties

[M oot

Sample Code: Persistence

prefs = new PersistenceAgent (inf);
prefs.store(obj, version, key);
(bj ect obj = (oject)prefs.restore(key);

[M oot

Sample Code: Preferences

/1 Qur "size" preference can be "small", "nediunt, or "large"
/'l Assunme user selected "large".

String sizeKey = getd ass().getNanme() + ".size";

properties. setProperty(sizeKey, "large");

Later on, possibly in the next SMC session, get the preference

String sizePreference = properties. getProperty(sizeKey);
I f (sizePreference == "l arge")

/!l do sonething for "Ilarge"
else if (sizePreference == "nedi um')

]

Sample Code: PropertyChangeListener

public class MyTool inplenents Tool, PropertyChangelListener {

/**

* Property change |istener, used to be notified when property
* val ues change.

*

* @aram e t he property change event

*/

public void propertyChange(PropertyChangeEvent e) {

String key = e.getPropertyNane();
i f (key.equal s(VConsol eProperties. DI SPLAYMODEL))
di spl ayMbdel = (VD spl ayModel) properties. get PropertyQbj ect (
VConsol eProperti es. DI SPLAYMODEL) ;

el se if (key.equal s(VConsol eProperties. FRAME))
consol eFrane = (JFrane) properties. get PropertyQoj ect (
Vconsol eProperties. FRAMVE) ;

else if (...

[M oot

Remove Child Node

VScopeNode parent = ...
VScopeNode child = ...

/1l Add the node as a child of the parent
parent.renove(child)

/'l Notify console that Navi gati on pane shoul d be updat ed.
/'l (Assunes a general nethod for firing events).
VConsol eEvent ev = new VConsol eEvent (

myTool , VConsol eActi ons. UPDATESCOPE, parent);
fireConsol eAction(ev);

[R ot

Sample Code: Scope

Adm nMgnt Scope scope =
(Adm nMgnt Scope) t ool Cont ext . get Par anet er (Tool Cont ext . MGMTSCOPE) ;

/1l Connect to renote service, ... nmaybe pass scope to service
MyServi ce nyService = (MyService)infrastructure. get Servi ceByNane

("com nmyconpany. nyproduct . MyServi cel npl ") ;
nmyService.initialize(scope, ...);

/'l Get scope type
Adm nMgnt Scope ngnt Scope =
(Adm nMgnt Scope) t ool Cont ext . get Par anet er (Tool Cont ext . MGMI'SCOPE) ;
scopeType = ngmt Scope. get Mgnt ScopeType();
i f (scopeType. equal s(Adm nMynt Scope. ADM SCOPE_DNS))
System out . println("managi ng DNS")

/'l Get the nmanagenent server nane.
String serverNanme = scope. get Mynt Ser ver Nane() ;

[Rt

Sample Code: Service Descriptor

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE conponent PUBLIC '-//Sun M crosystens, Inc.//Viper Conmponent//EN
"http://ww. sun. conf sol ari s/ managenent / dt ds/ vi perbean_1_0.dtd' >
<conponent version="1.0">
<service>
<i nt erface>com nyconpany. nypr oduct . MyServi ce</interface>
<provi der - cl ass>com myconpany. nypr oduct . MySer vi cel npl </ pr ovi der - cl ass>
<api - ver si on>1. 0</ api - ver si on>
<i s-singl eton>true</is-singl eton>
<scope>fil e</ scope>
</ service>
<r esour ce- bundl e>com nmyconpany. nypr oduct . MySer vi cel npl Resour ces</ r esour ce- bundl e>

bl

Sample Code: Service Implementation

I nport com sun. managenent . vi per. Servi ce;
I nport java.rm . Renot eExcepti on;

public class MyServicel npl extends VService inplenents MyService {
public MyServicelnpl () throws RenoteException, M/Exception {

}

public void nethodl(int i) throws MyException, RenoteException {

}

[ot

Sample Code: Service Interface Definition

I nport com sun. managenent . vi per. Ser vi ce;
I nport java.rm . Renot eExcepti on;

public interface MyServi ce extends Service {
public void nethodl(int i) throws MyException, RenpteException;

[M oot

Sample Code: Set Center Status Info Pane

bool ean showPr ogress = true;

final JProgressBar progressBar = new JProgressBar (0, 100);
progressBar. set Val ue(0);
progressBar. set Stri ngPai nted(true);

(bject[] args = new Object[1];

args[0] = new I nteger(progressBar. getVal ue());
progressBar.set Stri ng(MessageFormat. format ("{0}% , args));
progr essBar . set Vi si bl e(showPr ogr ess) ;

nmyTool . fireConsol eActi on(new VConsol eEvent (
myTool , Vconsol eActi ons. UPDATEPROGRESS,
showProgress ? progressBar : null));

/'l As the operation proceeds (presunmably in a seperate thread),
/| update the progress bar.
/[l W assune "count” and "total" are integer variables
/'l that represent the cunul ative status thus far and the total
/'l expected.
i f (count >= total)
progressBar. set Val ue(100);
el se
progressBar. set Val ue((count * 100)/total);
bject[] argsl = new hject[1];
args1[0] = new I nteger (progressBar. getVal ue());
progressBar.set Stri ng(MessageFormat. format ("{0}% , argsl));

/'l Later when the operation is conplete, we want to disable
/'l the progress neter and renove it fromthe center pane.
nmyTool . fireConsol eActi on(new VConsol eEvent (

nmyTool , VConsol eActi ons. UPDATEPROGRESS, null));

[M oot

Set Context Help

VScopeNode node = ...

/'l Here we retrieve the HTM. file fromthe jar file.

/'l Note how the path to the file is relative to the

/'l package path of the specified Tool class.

String html = ResourceManager. get Local i zedText Fi | e(
“htm /nyhel p. htm ", nyTool);

node. set HTM_Text (htm) ;

[R ot

Sample Code: Set Left Status Info Pane

String format = "{0} Networks";
bject[] args = new (bject[1];
args[0] = new I nteger(<the nunber of network objects in View pane>);

String status = MessageFormat. format(format, args);

VConsol eEvent e = new VConsol eEvent (
nyTool ,
VConsol eAct i ons. UPDATESELI NFO,
st at us)

myTool . fireConsol eAction(e);

Lo

Sample Code: Setting Character Set Encoding in HTML

<ht m >

<neta http-equi v="Content-Type" content="text/htm ; charset=gh2312">
<head>

<title>This title would be translated into the appropriate locale</title>
</ head>

<body>

<p>Thi s body would be translated into the appropriate |ocale.

</ p>

</ body>

</htm >

[Rt

Sample Code: Setting Selections in Results Pane

Assuming you already have a reference to the BV Consol eProperties object, you first need to to get areference to the
display model:

VDi spl ayModel nodel =
(VD spl ayModel) (properties. get PropertyQbj ect (VConsol eProperties. DI SPLAY) ;

To select specific nodes, wherevSel ect ed isaVector of VScopeNode objects:

nodel . set Sel ect edNodes(vSel ect ed) ;

To select arange of nodes by index:

nodel . set Sel ecti onl nterval (i ndex0, indexl);

To select al nodes:

nodel . sel ect Al l ();

To unselect all nodes:

nodel . cl ear Sel ection();

i

Sample Code: Specifying System Properties on Console Command Line

Create a.java.policy filein your home directory. Y ou can also grant afiner granularity of permissions on
specific properties (for example, myt ool . denoMode), rather than all properties.

grant {
perm ssion java.util.PropertyPerm ssion "nytool.*", "read";
i

Add code in your tool to access the property:

String serviceType = "Weni;
try {
String serviceTypeProp = System get Property("nytool.serviceType");
I f (serviceTypeProp != null)
servi ceType = serviceTypeProp;
} catch (Exception ex) {

}
if (serviceType == "Wentl)

/'l do sonething for Wiem
else if (serviceType == "Denn")

/'l do sonething for Deno

Start SMC, and specify property on command line:

[usr/sadm bi n/snt -J- Dyt ool . servi ceType=Deno

[t

Sample Code: Tool Descriptor

<?xm version="1.0" encodi ng="UTF-8"7?>
<! DOCTYPE conponent PUBLIC '-//Sun M crosystens, Inc.//Viper Conponent//EN
"http://ww. sun. coni sol ari s/ managenent / dt ds/ vi perbean_1 0.dtd' >
<conponent version="1.0">
<t ool >
<i nterface>com myconpany. nyproduct. MyServi ce</interface>
<provi der - cl ass>com nyconpany. nypr oduct . MyTool </ provi der - cl ass>
<hel p- base>com myconpany. nypr oduct . hel pset. nyhel pset </ hel p- base>
<api - ver si on>1. 0</ api - ver si on>
<scope>fil e</ scope>
<t ool - cont ext >TC _APPLI CATI ON_GUI </t ool - cont ext >
</tool >
<r esour ce- bundl e>com nmyconpany. nypr oduct . MyTool Resour ces</r esour ce- bund| e>
</ conponent >

]

Sample Code: Tool Resource Bundle

BEANNAMVE=My Cool Managenent Tool

DESCRI PTI ON=A cool tool for creating and managi ng | otsa of information.
VERSI ON=2. 0

VENDOR=My Conpany

HHH AT AR R R AR AR R R AR R AR R R R AR R AR e e i
lcon imges, used only by SMCin order to render a "stub" of the

application in the console before actually instantiating it.

DO NOT LOCALI ZE!

#

LARGEI CON=. . /i mages/ | ar geProgram gi f

SMALLI CON=. . /i mages/ smal | Program gi f

#

HEH AR AR R AR R R R AR R R R R AR R R R R

HEH AR A R R AR R R R R R R R AR R R R R
DO NOT LOCALI ZE!

#

| ocale file _version=1.0

#

HRHBHHBHBHHBHBH B HBH B H B R R R R R R R R R R R R

el

Sample Code: Tool.setProperties()

VDi spl ayModel di spl ayModel = nul | ;
VConsol eProperties properties = null;
JFranme consol eFrane = nul |

*

~~

* 0% %k X X X %

This nethod will be called by the consol e engine when this Tool is
created. It sets the properties object which contains the properties
of the environnent which the tool is running in.

@ar am properties the properties object

~~

public void setProperties(VConsol eProperties properties) {

this. properties = properties;
if (properties = null)
return;

/[l CGet the display nodel
di spl ayModel = (VD spl ayModel) properti es. get PropertyQbj ect (
VConsol eProperties. DI SPLAYMODEL) ;

/! Get the main console frane

consol eFrane = (JFrane) properties. get PropertyQbject (
Vconsol eProperties. FRAME) ;

} // setProperties

[M oot

Sample Code: Updating Display to Reflect Data Model Changes

VConsol eEvent ev = new VConsol eEvent (
src, VConsol eActi ons. UPDATESCOPE, node);
myTool . fireConsol eActi on(ev);

fireConsol eActi on(ev) might be autility method in your main Tool classfor firing
console events.

For models that have an internal root, node isthe parent node (the internal root) for all

() VV ScopeNode objects you are managing in the right-side results pane. For models without an
internal root, node isthe node in the navigation tree that is associated with the content in the
right-side results pane.

Click here for adiscussion on the differences between models with and without an internal root.

bl

UPDATESCOPE

v(bj ects = <vector of application data objects>
exposedNode = <navigation tree node associated with this results pane>
r oot Node = new VScopeNode() ;
exposeNode. set | nt er nal Root (r oot Node) ;
for (int i=0; i<vQObjects.size(); i++) {
MyQbj ect myCbject = (MyObj ect)vObjects. el enent At (i);
VScopeNode node = new VScopeNode(
... fill in fields as appropriate ...
myGbj ect) ;
r oot Node. add(node) ;
}
VConsol eEvent ev = new VConsol eEvent (
src, VConsol eActi ons. UPDATESCOPE, exposedNode);
nyTool . fireConsol eActi on(ev);

[M oot

Sample Code: VConsoleActionListener

public class MyTool inplenments Tool, VConsol eActionLi stener {
bool ean hasFocus = fal se;

public void start() {
hasFocus = true;

}

public void stop() {
hasFocus = fal se;

}

public void consol eActi on(VConsol eEvent ev) {
i f (!hasFocus)
return;
I f (ev.eventlD. equal s(VConsol eActi ons. XXX)) {

} else if (ev.eventlD. equal s(VConsol eActions. YYY)) {

é@ lllustrations Used In this Guide

This page provides links to the illustrations used in this guide. Illustrations are listed below in
aphabetical order. Numbersin thislist are provided for ease of reference only, and do not refer
to the order in which the illustrations are presented in the guide.

1. Architectural Overview

Console Overview

Default Console Window

Event Bus

JavaHelp L ocalization Hierarchy
RMI Client/Server Model
Sample Application Data M odel
Tool Initialization Parameters

© ©o N o ok~ WD

Tool/Service I nteraction
Typical SMC Session

=
o

& SMC Architecture

¥MLHTTP
IAMI

RAMI

& SMC Console

& Default Console Window Layout

Do A e e e El
ri"_l'_ < BTN S s i

[E—— |-

%3 =R m—

& Event Bus

& JavaHelp Localization Hierarchy

my_helpset.hs
my_helpset_de.hs
tny_helpset_fr.hs

vilefault
fiy_map.jhem
fny_toc =ml
fny_indes<ml
WavaHelpsearch

search dhb files ..

\topics
\topicA
topic.html

\topicB
topic.html

e

fiy _map.jhem

fiy _toc=ml

Yy _indes=ml
WavaHelpSearch

search dhbfiles ..

\topics
\topicA
topic.html

\topicB
topic.html

Mir

fry_mag.jhm

fry_toc =l

fy_indes=mil

WavaHelpsearch
search db files ...

\topics
\topicA

topic.html

\topicB
topic.html

& RMI Client/Server Model

& Sample Application Data Model

Tool TreeNodeData
r.-rf.sf, 1 -
1
a
Mavigation &y
VScopeNode .= I
. . Conternl :
-:EE \.____VI;___.-
)) Content
Tol - kY
A« fr— .(_% A
Payload Ii

Mavigation Node

“Ecapeﬂn-d:/-;uiﬂw
%

VScopeNode VScopeNode VScopeNode

o o o

Data Object Data Object Data Object

& Tool Initialization Parameters

Tool Initialization
Parameters

Toolkit

& Tool/Service Interaction

<> i
A

MErTACE
SRR

& Typical SMC Session

Tool Parameters

! i Managesd
) [l Scope I
| Managed
E) [|-—»|Sm
) I anaed
LF % Iq—)-l
) 1 Scope
lMu'la.gl.-d I
Scope

il
¥
El

I
k-

-
il
¥
ol

Toolkit View
Downloaded to Console

Glossary

Click on the term for which you want a definition. Click on the up arrows (@) to return to the
top of thislist.

o authentication

o authorization
« CIM
e CONsole

o event bus

« infrastructure
« JavaBean

« launch

« loggin

« Look and Feel
e m in

« properties

« RBAC
 registration
« RMI

-« Service

« Sun Management Center

o tool
e Tool class
e Tool Descriptor class

o toolkit
o VConsoleActionListener class

o VConsoleProperties class
o VScopeNode class
« WBEM

& authentication

The service that is used to verify auser's login credentials, such as a username and
password.

& authorization

The service that is used to decide whether an action towards some critical system
resource is to be allowed or denied, based on the security policy currently in effect.
See Authorization for more information.

& CIM

Common Information Model; a set of templates (schemas) specifying a data format
for enterprise management information that is independent of platform and
management application.

& console

A container for SMC client tools; the SMC "desktop” from which users perform
management tasks.

& event bus

In SMC, achain that allows components to create, send, and listen for eventsto or
from other components in the console. Every component in the console is given a
reference to these properties and is added to the event bus; components then can
get and set properties to effect behavior. They may also send and receive events
which may/may not correspond directly with user interaction.

GONSOg

L el
,\ /q -l_'an
Properties =

&
VAR &
£ foay >

Event Bus

Tool 2

& infrastructure

Collective term for the object model, communications protocols, platform-specific
APIs, and core services used as the "glue" layer between client and server
components; for example, native SMC tools and services used JavaBeans
communicating over RMI, with server components having some Solaris-specific

dependencies, and using the core SMC authentication, authorization, security,
messaging, logging, preferences, and launch services.

& JavaBean
A portable, platform-independent reusable component model; native SMC tools

are written as sets of JavaBeans, while SMC services are often written as a
combination of JavaBeans and platform-specific code.

@ launch

The act of starting a computer application. With respect to SMC, thisrefersto the
service for launching legacy (non-SMC aware) applications. See Launching for

more information.
& logging

The service for posting and tracking messages that pertain to important system
events. See Logging for more information.

& Look and Feel

A pluggable user interface component in the SMC system; SMC includes a default
Explorer-like look and feel for the Solaris Management tools, with atree view on
the left, aresults pane on the right, and an information pane on the botton. See Ul

Components for more information.

& messaging

A mechanism for exchanging messages between 2 or more clients. See Messaging
for more information.

& properties
Named values that effect application behavior and/or presentation, and which can

persist from one session to the next. Properties are managed by the
V ConsoleProperties class.

& RBAC

Determining the authorization for an access request by mapping to an attribute of
the requestor, such as membership in agroup, job function, or organizational level,
rather than on the individual's unique identity; assumes that a person will take on
different roles over time, and different responsibilitiesin relation to IT systems,

access control based on specific rules relating to the nature of the subject and
object, beyond just their identities.

@ registration

The process by which atool or service is made known to the SMC console. All
tools and services must be registered in the SMC object registry and associated
with atoolbox before they can appear in an SMC console.

I Sncr egi st er isacommand-line tool to administer the application registry.
It provides the capability to manipulate the toolbox and perform
registry-related tasks.

See Registration for more information.

& RMI

Remote Method Invocation; a distributed object model for communication between
Java programs, in which the methods of remote objects written in Java can be
invoked from other Java virtual machines, possibly on different hosts. RMI isthe
native communications model used by SMC tools and services.

T service

Server-side applications that support SMC tools; native SMC services are
generally a combinatation of Java and platform-specific code.

& SunMC

Sun Management Center; an open, extended, standards-based server monitoring
and management solution that uses JavaTM and SNMP protocols to provide an
integrated and comprehensive enterprise-wide management of Sun server products
and their subsystems, components, and peripheral devices.

& tool

Client-side applications; in SMC, all tools are written as sets of JavaBeans.

@ Tool class

The top-level client class instantiated by the Console; the main interface that SMC
clients must implement. See Tool for more information.

& Tool Descri ptor

Provides information to represent atool without actually instantiating the tool. See
Tool Descriptor for more information.

@ toolkit

Collections of Etools associated with a given user, group, or administrative role.

Toolkits are defined with toolkit properties files, which specify tool names,
locations, and managed scope.

& VConsol eActi onLi st ener class

Provides the interface through which tools can be notified about various eventsin
the system. See V ConsoleActionListener for more information.

& VConsol eProperti es class

Shared properties object used by al componentsin an SMC system for property
storage. See V ConsoleProperties for more information.

& VScopeNode class

The most common (and arguably the most important) SMC tool class; provides
information (icons, column headers, payload, etc.) about a data model to the
console, whether that information is rendered in the |eft-side navigation pane, or
the right-side results pane. See V ScopeNode for more information.

& WBEM

Web-Based Enterprise Management; standard for defining platform-independent
management information across platforms; initiated by the Distributed
Management Task Force (DMTF) to define a Common Information Model (CIM),
and further refined by Sun Microsystems; management information is made
available to management applications via eXtensible Markup Language (XML)
over the common Web protocol HyperText Transport Protocol (HTTP).

| ndex

about box

about this guide
architectural overview
authentication
authorization

bean

CIM

code samples

column alignment
column one header
console overview
console, creating
console, starting
console, starting
console

copyrights

data model

DDE LINK1

default console window layout
dialogs

event bus

event bus

eventbus

frequently asked questions

getnode

getselect

getting started

global static variables
glossary

how to proceed
illustrations
infrastructure
infrastructure
introduction

jar files

JavaHelp localization hierarchy

launch
localization
loggin

look and feel
look and feel
menu bar

menus and to

ols

messaging

navigation pane

new features

in DK 2.1

organization,

this quide

packaging resour ces

packaging
parent

PDF version
preface
preferences
properties

properties
RBAC

re-registering
registration, overview

registration
registration
registration

registry basics

resources
resources

RMI client/server model

RMI
salvage

sampl e application data model

Sample Code:

: About Box

Sample Code

: Accessing a Log Service

Sample Code:

: Add Child Node

Sample Code

. Align Column Values

Sample Code:

Build Search I ndex

Sample Code:

Call Delegation

Sample Code:

Checking Authorization

Sample Code:

Configure Services with Properties

Sample Code:

Connect to External Client Provider

Sample Code:

Console Listeners

Sample Code:

Create Tool Node

Sample Code:

Creating a Dialog

Sample Code:

Customize 1st Column Header

Sample Code:

Debugging

Sample Code:

Details Syle Only

Sample Code:

Enable Syles

Sample Code:

Exceptions

Sample Code:

External Client Provider

Sample Code:

Get Frame Parent

Sample Code:

Getting Selected Navigation Pane Node

Sample Code:

Getting Selections

Sample Code:

Getting Sort Preferences

Sample Code:

Hello

Sample Code:

Helpset Map File

Sample Code:

Hyperlink to Helpset

Sample Code:

Launching

Sample Code:

Loading Help Files

Sample Code:

Loading Images

Sample Code:

Loading Resource Bundles

Sample Code:

Localized Helpset

Sample Code:

Log Console Event

Sample Code:

Logaing

Sample Code:

Manifest for External Client Provider

Sample Code:

Manifest for Native Library

Sample Code:

Manifest for Tools

Sample Code:

Menubar Integration

Sample Code:

Messaging

Sample Code:

native2ascii

Sample Code:

Persistence

Sample Code:

Preferences

Sample Code:

PropertyChangel.istener

Sample Code:

Remove Child Node

Sample Code:

Scope

Sample Code:

Service Descriptor

Sample Code:

Service |mplementation

Sample Code:

Service Interface Definition

Sample Code:

Set Center Satus Info Pane

Sample Code:

Sat Context Help

Sample Code:

St Left Satus Info Pane

Sample Code:

Satting Character Set Encoding in HTML

Sample Code:

Setting Selections

Sample Code:

System Properties on Command Line

Sample Code: Tool Descriptor

Sample Code: Tool Resource Bundle

Sample Code: Tool.setProperties

Sample Code:

Update Display with UPDATESCOPE

Sample Code:

UPDATESCOPE

Sample Code: VConsoleActionListener

sample Ul flow

Scope

server, starting

service, starting

service

services, accessing delegated

services, accessing other

Services, accessing remote

services, authorization

services, bundled

services, common descriptor

services, common implementation

services, common interface
SErvices, common

services, creating

services, debugging

services, launch

services, logs

Services, messages

services, migrating

SErVIiCes, overview

services, package-dependent
services, package resource
services, packaging

SErvices, persistence

Services, register config service
SErVices, register servicename
Services, registering multiservice
SErvices, registering

services, shared packaging
Services

setselect

SMC architecture

SMC, components

SMC, description

SMC, features

SMC, toolkit

smcconf, listing resources
smcconf, properties

smcconf, registering

smcconf, toolbox

smecconf, unregistering
smcconf

smeregister, jar files
smeregister, legacy applications
smeregister, listing resources
smereqgister, properties
smeregister, registering
smeregister, toolbox
smeregister, unregistering
smeregister

third-party applications

Tool class

tool class

tool initialization parameters
tool model

tool/service interaction

tool

toolbox, editor

toolboxes, overview
toolboxes

Toolinfo class

Toollnfo class

toolkit

tools, creating

tools, overview

tools

typical SMC session
typographic conventions
Ul components

user session, typical
VConsoleActionListener class
VConsoleActionListener class
VConsoleProperties class
VConsoleProperties
VScopeNode class
VScopeNode

WBEM

what's new?

who should read this?

e

Contents

Copyrights

Preface

* About This Guide

* Who Should Read This?

* How This Guide is Organized
* Typographic Conventions

* PDF Version

What'sNew in 2.17?

I ntroduction

* What isthe SMIC SDK?

* VIC SDK Components

* Features and Benefits of the SVIC SDK
* SVIC SDK Contents

Getting Started

* SMIC Architecture

* Sample User Session
* How To Proceed

* Sarting the Console
* Sarting Services

Tools

* OQverview

* Tool Model

* Ul Components

* Accessing Resources

* Packaging

* Scope

* Reqgistration
* |_ocalization

Toolboxes

¥ Overview
* Sarting the Toolbox Editor

Services

* Overview
* Common Services Model
* Accessing other services

* Bundled Common Services

* Packaging

* Registration

* Debugaing

* Third-Party Integration

Libraries

¥ Overview

* Packaging
* Registration

Registration

* Qverview
*sncreqgi ster
*spcconf

Frequently Asked Questions

Code Samples

[llustr ations

Glossary

	SMC SDK Programming Guide
	Contents
	Copyrights
	Preface
	About This Guide
	Who Should Read This?
	How This Guide is Organized
	Typographic Conventions
	PDF Version

	What's New?
	Introduction
	What is the SMC SDK?
	SMC SDK Components
	Features and Benefits
	SMC SDK Contents

	Getting Started
	SMC Architecture
	Sample User Session
	How To Proceed
	Starting the Console
	Starting Services

	Tools
	Overview
	Tool Model
	UI Components
	Accessing Resources
	Packaging
	Scope
	Registration
	Localization

	Toolboxes
	Overview
	Starting the Toolbox Editor

	Services
	Overview
	Common Services Model
	Accessing Other Services
	Bundled Common Services
	Packaging
	Registration
	Debugging
	Third-Party Integration

	Libraries
	Overview
	Packaging
	Registration

	Registration
	Overview
	smcregister
	smcconf

	Frequently Asked Questions
	Code Samples
	Sample Code: About Box
	Sample Code: Accessing a Log Service
	Sample Code: Accessing WBEM
	Sample Code: Add Child Node
	Sample Code: Align Column Values
	Sample Code: Build Search Index
	Sample Code: Call Delegation
	Sample Code: Checking Authorization
	Sample Code: Configure Services with Properties
	Sample Code: Connect to External Client Provider
	Sample Code: Console Listeners
	Sample Code: Create Tool Node
	Sample Code: Creating a Dialog
	Sample Code: Customize 1st Column Header
	Sample Code: Debugging
	Sample Code: Details Style Only
	Sample Code: Enable Styles
	Sample Code: Exceptions
	Sample Code: External Client Provider
	Sample Code: Generate agent container classes with smccompile
	Sample Code: Generate library classlist with smccompile
	Sample Code: Generate service classlist with smccompile
	Sample Code: Generate tool classlist with smccompile
	Sample Code: Get Frame Parent
	Sample Code: Getting Selected Navigation Pane Node
	Sample Code: Getting Selections
	Sample Code: Getting Sort Preferences
	Sample Code: Hello
	Sample Code: Helpset Map File
	Sample Code: Hyperlink to Helpset
	Sample Code: Launching
	Sample Code: Loading Help Files
	Sample Code: Loading Images
	Sample Code: Loading Resource Bundles
	Sample Code: Localized Helpset
	Sample Code: Log Console Event
	Sample Code: Logging
	Sample Code: Manifest for External Client Provider
	Sample Code: Manifest for Native Library
	Sample Code: Manifest for Tools
	Sample Code: Menubar Integration
	Sample Code: Messaging
	Sample Code: native2ascii
	Sample Code: Persistence
	Sample Code: Preferences
	Sample Code: PropertyChangeListener
	Sample Code: Remove Child Node
	Sample Code: Scope
	Sample Code: Service Descriptor
	Sample Code: Service Implementation
	Sample Code: Service Interface Definition
	Sample Code: Set Center Status Info Pane
	Sample Code: Set Context Help
	Sample Code: Set Left Status Info Pane
	Sample Code: Setting Character Set Encoding in HTML
	Sample Code: Setting Selections
	Sample Code: System Properties on Command Line
	Sample Code: Tool Descriptor
	Sample Code: Tool Resource Bundle
	Sample Code: Tool.setProperties
	Sample Code: Update Display with UPDATESCOPE
	Sample Code: UPDATESCOPE
	Sample Code: VConsoleActionListener

	Illustrations
	Architectural Overview
	Console Overview
	Default Console Window Layout
	Event Bus
	JavaHelp Localization Hierarchy
	RMI Client/Server Model
	Sample Application Data Model
	Tool Initialization Parameters
	Tool/Service Interaction
	Typical SMC Session

	Glossary
	Index

