
2
Implementing CIP event types

This chapter describes how to define and implement CIP event types and corresponding event processing
triggers.

This chapter covers the following topics:

• Overview of CIP events

• Structure of CIP events and event types

• Files and directories used in CIP events

• Tasks for defining CIP event types

19 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Overview of CIP events
In order for CIP to process data records received through a CIP channel, those data records must first be
written to a CIP collect queue in the CIP collect subsystem. For each defined event type, the CIP collect
subsystem launches a corresponding CIP event-type pset, which reads the collect queue, performs required
preprocessing, and then routes the data records to one or more enrichment queues for further transformation,
enrichment, and other processing.

The following figure illustrates this process:

A CIP event consists of the instantiation of a CIP collect queue and an associated event-type pset that reads
from that queue. CIP event-type psets implement the logic by which channel data records are subsequently
routed to one or more downstream enrichment queues.

20 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

In the CIP UI, event types and event-type fields (derived from the event-type record formats) provide the
building blocks that users can use as inputs when the they create eligibility or fulfillment rules. For example,
the following figure shows an Activation event in the Eligibility Rule dialog for a journey stage.

For example, you may have an inbound channel through which customers can send text messages with
technical support questions. Depending on the type of support contract the customer has, you may want
to route their support questions to one or another support team. Similarly, you may want to route questions
separately from corporate accounts and personal accounts, or separate hardware issues from website issues,
or triage issues by reported severity.

The following figure illustrates this kind of workflow:

21 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Structure of CIP events and event types
The software elements that make up CIP events and event types are summarized in the following table:

Description Element

Provides CIP event collection and processing capabilities. The CIP collect subsystem runs as
a service, and must be running in order for any CIP event processing to occur.

The collect subsystem is driven by two primary plans:

• $COLLECT_INTEGRATE_PLAN/collect_event_subsystem.plan — Looping plan that starts
common CIP event collection and routing services, and that initiates customer-specific
event service plans.

• $public-project-prefix_PLAN/collect_integrate.plan — Plan that initiates customer-specific
event collection and routing.

CIP collect
subsystem

CIP inbound, outbound, and fulfillment channels through which channel data records are
transmitted.

CIP channels

Queues to which channel data records are received and to which preprocessed data records
are routed as part of CIP event handling:

• Collect queues — Queues to which CIP channel data records are written and then
consumed by CIP event handler graphs.

• Enrichment queues — Queues to which CIP event handler graphs route and write
preprocessed data records for subsequent enrichment and processing.

Collect and
enrichment queues

Record formats for the collect and enrichment queues associated with your defined event
types.

By default, all customer-specific queue DML files should be stored in
$public-project-prefix_DML/source_event_types ($CIP_COMMON_EVENT_DML).

Collect and
enrichment queue
DML files

Event handler service graphs that implement event-specific psets:

• $COLLECT_INTEGRATE_MP/collect_event.mp — Generic CIP graph.

• $public-project-prefix_MP/collect_event.mp — Customer-specific graph created for your
implementation environment. Note that this graph is named collect_event.mp by default,
but you can use a different name if you prefer.

Event handler
graphs

22 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Description Element

Event-specific psets, implemented by collect_event.mp, that contain the logic for
preprocessing event data records before handing off to one or more enrichment queues for
subsequent processing.

All event-specific psets must be stored in
$CIP_COMMON_PRIVATE_PSET/collect_integrate/event. The collect subsystem service
iterates over this event directory, and all psets in the directory are automatically run by the
subsystem plan.

Your event-specific psets must be stored in the event directory; if they are not,
they will not be processed by the CIP collect subsystem plan.

CAUTION!

Event-specific psets

DML files that define the record formats for the event types that you want make available
in CIP. Each event type must have a corresponding DML file.

Event-type DML files are stored in the following locations:

• $CIP_COMMON_DML/event_types — Common event-type DML files that are included
with CIP.

• $public-project-prefix_DML/event_types ($CIP_COMMON_EVENT_DML) —
Customer-specific event-type DML files.

Event-type DML files

DML files containing numeric IDs and name strings that correspond to the event types that
you have defined. These numeric IDs and name strings are used to reference event-type DML
during event processing. The name strings are also presented to users in the CIP UI.

Event-type enumerations are defined in the following DML files:

• $CIP_COMMON_DML/event_type_ids.dml — Enumerations for the common event types
defined in $CIP_COMMON_DML/event_types.

• $public-project-prefix_DML/event_type_ids.dml — Enumerations for the customer-specific
event types defined in $public-project-prefix_DML/event_types
($CIP_COMMON_EVENT_DML).

Event-type
enumerations

References to the record formats defined in event_types DML files, made by means of include
declarations and conditional statements in the $public-project-prefix_DML/event.dml
($CIP_COMMON_EVENT_DML) file.

Event-type DML file
references

Transforms used by CIP to generate a unique key — an event hash — based on a defined
set of fields for each event. These hashes map to event IDs defined in event_type_ids.dml.

CIP ships with a default cip_event_hash() function in
$CIP_COMMON_XFR/common_functions.xfr, but you must define your event type-specific
hash functions in one or both of the following files:

• $AI_XFR/event_hash.xfr — Hash functions for customer-specific event types.

• $CIP_COMMON_XFR/private_stub/event_hash.xfr — Stub file for common event hash
functions.

Event hash
transforms

23 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Description Element

Transform functions for keys, or dimensions.

The default event types that are shipped with CIP do not support dimensioning. However,
if you want to define dimensioning functions for your project-specific event types, CIP
includes a prototype transform template that you can use.

The prototype transform template is named
$CIP_COMMON_XFR/prototype/getEventParamKeys.xfr. After defining any dimensioning
functions for your project-specific events, you must save your transform file as
$AI_XFR/getEventParamKeys.xfr.

In the context of CIP event handling, dimensions are primarily used to enable aggregations.
For example, you may want to perform reloads based on several dimensions.

Dimensioning
transform functions

Entries for event-type definitions in the CIP database. These database entries are required
in order to present events and event fields in the CIP UI. The affected tables are the following:

• dml_entity

• dml_entity_field

• dml_entity_measures

• dml_entity_field_value

You update the CIP database by adding a SQL file to $public-project-prefix_SQL/cip_db_data
and then running $AI_PSET/utility/create_environment/cip_db_data/upgrade_database.pset.

CIP database entries

In the CIP UI, event types and event-type fields (derived from the event-type record formats).
These fields provide the building blocks that CIP users can use to create rules based on events.

CIP user interface

24 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Files and directories used in CIP events
CIP collect and event processing features rely on a number of plan, graph, pset, transform, and SQL files
that are spread across various locations in your project sandbox trees. Listed below are the most important
of these files and locations.

This is not meant to be a comprehensive list of every file and directory involved in CIP collect and event
processing, but rather only a summary of the files and locations that you will most likely need to know
about when you implement CIP events.

TIP:

Description Sandbox path Filename/directory

Directory containing SQL scripts for adding
event definitions to the CIP database.

$public-project-prefix_SQL cip_db_data directory

Event handler service graphs that implement
event-specific psets.

$public-project-prefix_MP
($COLLECT_INTEGRATE_MP)

collect_event.mp

Looping plans that start common CIP event
collection and routing services.

$COLLECT_INTEGRATE_PLAN collect_event_subsystem.plan

Plan that initiates customer-specific event
collection and routing services.

$public-project-prefix_PLAN
($CIP_COMMON_PRIVATE_PLAN)

collect_integrate.plan

Default CIP cip_event_hash() function. $CIP_COMMON_XFR common_functions.xfr

Event-type DML reference file; contains
references to the event-type DML files
defined in the event_types directory.

$public-project-prefix_DML
($CIP_COMMON_EVENT_DML)

event.dml

Hash functions for customer-specific event
types, and stub file for common hash
functions, respectively.

$AI_XFR

$CIP_COMMON_XFR/private_stub

event_hash.xfr

Enumerations for common and
customer-specific event types.

$CIP_COMMON_DML

$public-project-prefix_DML
($CIP_COMMON_EVENT_DML)

event_type_ids.dml

Directories containing DML record format
files for common and customer-specific
event types, respectively.

$CIP_COMMON_DML

$public-project-prefix_DML
($CIP_COMMON_EVENT_DML)

event_types directory

25 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Description Sandbox path Filename/directory

Directory containing all event-specific psets.
All event-specific psets must be stored in the
event directory; if they are not, they will not
be processed by the CIP collect subsystem
plan.

$CIP_COMMON_PRIVATE_PSET/
collect_integrate

event directory

Directory containing all DML record format
files for the queues associated with your
defined event types.

$public-project-prefix_DML
($CIP_COMMON_EVENT_DML)

source_event_types directory

Database upgrade script for adding your
event-type entries to the CIP database.

$AI_PSET/utility/
create_environment/cip_db_data

upgrade_database.pset

26 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Tasks for defining CIP event types
For each event type that you want to enable in CIP, you must create or modify a number DML files, psets,
parameters, and CIP database entries. The following is a summary of the tasks involved in defining and
implementing CIP event types. The rest of this section describes these tasks in more detail.

Be sure to check in your implementation code to the technical repository. Ensure that other CIP
developers then check out your code as needed.

NOTE:

• Task 1: Add event-type entries to the event_type_ids.dml file

• Task 2: Define or obtain queue details

• Task 3: Create queue DML files

• Task 4: Create event-type DML files

• Task 5: Update the event.dml file

• Task 6: Create event-specific psets

• Task 7: Update CIP event hash transform files

• Task 8: Define dimensioning transforms

• Task 9: Update the public project .sandbox.pset file

• Task 10: Add a list of event-specific psets to project pset files

• Task 11: Update the CIP database

Task 1: Add event-type entries to the event_type_ids.dml file
The event_type_ids.dml file contains numeric IDs and descriptive name strings that correspond to the CIP
event types that you will define in “Task 4: Create event-type DML files”. Each CIP event type that you
define must have a corresponding entry in event_type_ids.dml.

File locations

event_type_ids.dml files are located in the following two directories:

• $CIP_COMMON_DML — Enumerations for the common event types defined in the
$CIP_COMMON_DML/event_types directory. These are the default event types that are shipped with
CIP.

• $public-project-prefix_DML ($CIP_COMMON_EVENT_DML) — Enumerations for the customer-specific
event types defined in the $public-project-prefix_DML/event_types directory. All entries for
customer-specific event types should be created in this file.

Be sure to put all customer-specific event-type enumerations in
$public-project-prefix_DML/event_type_ids.dml. In most cases, you should not modify
$CIP_COMMON_DML/event_type_ids.dml.

NOTE:

Customer-specific event-type files are maintained by the customer and are not promoted with CIP. TIP:

27 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

File syntax

For each CIP event type, you must create a pair of corresponding entries in event_type_ids.dml. The first
entry in the pair is a unique name=integer constant for the event type. The second entry in the pair is
corresponding name=description constant.

The syntax for each entry pair is as follows:

constant int_t ET_event-type = integer;
constant string_t ETN_event-type = description;

where:

• ET_event-type is the ET_ prefix followed by unique name for the event type.

• integer is a unique integer ID for the event type. For customer-specific event types, this integer value
must be greater than 1000. Integer values 1000 and below are reserved for the common default event
types that are shipped with CIP.

• ETN_event-type is the ETN_ prefix followed by the same event-type name that you used for ET_event-type.

• description is a descriptive name for the event type. This name will be displayed in the CIP UI.

For example, to define an event type named HANDSET_CHANGES with a numeric ID of 1008, you would
add the following pair of entries to $public-project-prefix_DML/event_type_ids.dml:

constant int_t ET_HANDSET_CHANGES = 1008;
constant string_t ETN_HANDSET_CHANGES = "HANDSET_CHANGES";

Required include statement

If the $public-project-prefix_DML/event_type_ids.dml file does not already contain it, be sure to add the
following line to the top of the file:

include "~$CIP_COMMON_DML/common_types.dml";

Example event_type_ids.dml files

This section lists the default event_type_ids.dml files that are included in various directories in a default
CIP installation.

$CIP_COMMON_DML/prototype directory

The following shows the contents of the default event_type_ids.dml file that is included in the
$CIP_COMMON_DML/prototype directory:

include "~$CIP_COMMON_DML/common_types.dml";

constant int_t ET_EVENT1 = 1001;
constant int_t ET_EVENT2 = 1002;

constant string_t ETN_EVENT1 = "EVENT1";
constant string_t ETN_EVENT2 = "EVENT2";

28 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

$CIP_COMMON_DML directory

The following example shows the contents of the default event_type_ids.dml file that is included in the
$CIP_COMMON_DML directory:

include "~$CIP_COMMON_DML/common_types.dml";

constant int_t ET_LOG = 50;
constant int_t ET_ERROR = 51;
constant int_t ET_ERROR_ENRICHED = 52;
constant int_t ET_TRACING = 53;
constant int_t ET_SYS = 100;
constant int_t ET_TIMER = 101;
constant int_t ET_CAMPAIGN_EVENT = 102;
constant int_t ET_CAMPAIGN_EVENT_CAMPAIGN_START = 102; /* this is essentially an
alias of ET_CAMPAIGN_EVENT. See transpile_rules.xfr for more details */
constant int_t ET_BATCH_TRIGGER = 103;
constant int_t ET_CAMPAIGN_EVENT_CAMPAIGN_ENDED = 104;
constant int_t ET_AGGREGATION_QUERY_SPEC = 6;
//constant int_t ET_FULFILLMENT_RESPONSE = 9;
constant int_t ET_NBOS_FULFILLMENT_REQUEST = 19;
constant int_t ET_NBOS_DELIVERY_REPORT = 20;
constant int_t ET_OUTBOUND_CHANNEL_FULFILLMENT_REQUEST = 24;
constant int_t ET_ACTIVATION = 0;
constant int_t ET_SMS_REPLY = 2;
constant int_t ET_NBOS_OUTBOUND_EVENT = 3;

constant string_t ETN_SYS = "SYS";
constant string_t ETN_TIMER = "TIMER";
constant string_t ETN_CAMPAIGN_EVENT = "CAMPAIGN";
constant string_t ETN_CAMPAIGN_EVENT_CAMPAIGN_START = "CAMPAIGN_START";
constant string_t ETN_CAMPAIGN_EVENT_CAMPAIGN_ENDED = "CAMPAIGN_ENDED";
constant string_t ETN_BATCH_TRIGGER = "BATCH_TRIGGER";
constant string_t ETN_AGGREGATION_QUERY_SPEC = "AGGREGATION_QUERY_SPEC";
//constant string_t ETN_FULFILLMENT_RESPONSE = "FULFILLMENT RESPONSE";
constant string_t ETN_NBOS_FULFILLMENT_REQUEST = "ET_NBOS_FULFILLMENT_REQUEST";
constant string_t ETN_OUTBOUND_CHANNEL_FULFILLMENT_REQUEST =
 "ET_OUTBOUND_CHANNEL_FULFILLMENT_REQUEST";
constant string_t ETN_ACTIVATION = "ACTIVATION";
constant string_t ETN_SMS_REPLY = "SMS_REPLY";
constant string_t ETN_NBOS_OUTBOUND_EVENT = "NBOS_OUTBOUND_EVENT";

// Special signalling events within graphs, intended for use when parts of graphs
process
// their own log event streams (e.g. state_machine.mp)

constant string_t INTRNL_USER_EVT_AICIP_3181_RELOAD_PROFILE =
 'AICIP_3181_SYS_RELOAD_PROFILE';

29 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

$PUBLIC_PROTOTYPE_DML directory

The following shows the contents of the default event_type_ids.dml file that is included in the
$PUBLIC_PROTOTYPE_DML directory.

The integer ID for each customer-specific event type that you define in
$public-project-prefix_DML/event_type_ids.dml must have a unique value greater than 1000.

NOTE:

include "~$CIP_COMMON_DML/common_types.dml";

constant int_t ET_EVENT1 = 1001;
constant int_t ET_EVENT2 = 1002;
constant int_t ET_EVENT3 = 1003;
constant int_t ET_UTF8_EVENT = 1008;

constant int_t ET_USAGE_VOICE = 1004;
constant int_t ET_USAGE_SMS = 1005;
constant int_t ET_RELOAD = 1006;
constant int_t ET_CAMPAIGN_START = 1007;

constant string_t ETN_EVENT1 = "EVENT1";
constant string_t ETN_EVENT2 = "EVENT2";
constant string_t ETN_EVENT3 = "EVENT3";

// Example Event definitions for CIP2 Real-time aggregate integration tests

constant string_t ETN_USAGE_VOICE = "voice_usage";
constant string_t ETN_USAGE_SMS = "sms_usage";
constant string_t ETN_RELOAD = "reload";
constant string_t ETN_CAMPAIGN_START = "campaign_start";

Task 2: Define or obtain queue details
You must define or obtain the following details about the collect and enrichment queues that you want to
use for reading and writing CIP channel data sets. For information about creating queues, see “Managing
Ab Initio Queues” in the Continuous>Flows Guide.

• Collect queues — For each event type:

• CIP channel

• Queue name

• Event-type name

• Queue filesystem type

• Queue landing directory

• DML requirements

• Enrichment queues — For each enrichment type:

• Queue name

• Queue filesystem type

• Queue landing directory

• DML requirements

• All queue types — For all queue types:

• Landing filesystem username(s)/authorization(s)

• Any environment-specific guidelines or requirements; for example, for DEV, PROD, SIT and so forth

30 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Task 3: Create queue DML files
Create a DML file for each of the collect and enrichment queues that are associated with your defined event
types. These DML files must use record formats that meet the requirements determined in “Task 2: Define
or obtain queue details”.

Queue DML file location

By default, all queue DML files should be stored in $public-project-prefix_DML/source_event_types
($CIP_COMMON_EVENT_DML). However, you can store queue DML files in a different directory of your
choice — for example, sources — under $public-project-prefix_DML.

Queue DML file naming

We recommend that you name your queue DML files using the following naming pattern:

event-type_queue.dml

where event-type is the name of an event type listed in the $public-project-prefix_DML/event_type_ids.dml
file.

For example, for an event type named handset_change, you would name its corresponding queue DML file
handset_change_queue.dml.

Queue DML file syntax

Queue DML files use common DML syntax for defining record formats. For detailed information about
writing and working with DML, see the DML Guide and Reference.

Example queue DML files

The following shows the contents of the default placeholder event1.dml file that is included in the
$PUBLIC_PROTOTYPE_DML/source_event_types directory in the CIP prototype project:

include "~$CIP_COMMON_DML/common_types.dml";

type source_event1_t =
record
 long_t cust_prof_id;
 datetime("YYYY-MM-DD HH24:MI:SS") event_timestamp;
 string_t f1;
 string_t f2;
end;

metadata type = source_event1_t;

The following is an example of a complete queue DML file:

// Server: example-server-name
// Queue directory : $example-dir_QUEUE/example-event-type_queue

type output_type =
record
 datetime("YYYY-MM-DD HH24:MI:SS.NNNNNN")("\x01") sys_creation_date = NULL("");

31 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

 date("YYYY-MM-DD")("\x01") process_date = NULL("");
 decimal("\x01") customer_id = NULL("");
 decimal("\x01") subscriber_id = NULL("");
 utf8 string("\x01", maximum_length=2) event_type = NULL("");
 utf8 string("\x01", maximum_length=40) prim_resource_val = NULL("");
 decimal("\x01") pps_new_balance = NULL("");
 decimal("\x01") pps_amt = NULL("");
 utf8 string("\x01", maximum_length=200) cd_main_id = NULL("");
 utf8 string("\x01", maximum_length=200) l9_dealer_cgi = NULL("");
 utf8 string("\x01", maximum_length=200) soc_cd = NULL("");
 decimal("\x01") file_id = NULL("");
 utf8 string("\x01", maximum_length=200) session_counter = NULL("");
 datetime("YYYY-MM-DD HH24:MI:SS")("\x01") charging_date = NULL("");
 utf8 string("\x01", maximum_length=200) session_id = NULL("");
 decimal("\x01") source_id = NULL("");
 utf8 string("\x01", maximum_length=20) pym_cat = NULL("");
 string(1) newline = "\n";
end;

metadata type = output_type;

Task 4: Create event-type DML files
Create a DML file for each defined event type that you want to make available in the CIP UI. Each event
type must have a corresponding DML file. These DML files must use record formats that correspond with
the queue DML for the event type, as defined in “Task 3: Create queue DML files”.

Event-type DML file locations

CIP event-type DML files are located in the following two directories:

• $CIP_COMMON_DML/event_types — Common event-type DML files that are included with CIP.

• $public-project-prefix_DML/event_types ($CIP_COMMON_EVENT_DML/event_types) — Customer-specific
event-type DML files.

Customer-specific event-type DML files are maintained by the customer and are not promoted with
CIP.

TIP:

Event-type DML file naming

We recommend that you name your event-type DML files using the following naming pattern:

event-type.dml

where event-type is the name of an event type listed in the $public-project-prefix_DML/event_type_ids.dml
file.

For example, for an event type named handset_change, you would name its corresponding event-type DML
file handset_change.dml.

32 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Event-type DML file syntax

Event-type DML files use common DML syntax for defining record formats. For detailed information about
writing and working with DML, see the DML Guide and Reference.

The field formats defined in any given event-type DML file must correspond to field formats that are defined
in a related queue DML file. For example, the following table shows some hypothetical event-type field
formats and their corresponding queue formats.

Queue fields Event-type fields

string("\x01") brand = NULL("");
string("\x01") model = NULL("");
string("\x01") imei = NULL("");
string("\x01") imsi = NULL("");
string("\x01") target_segment = NULL("");

string_t brand = NULL("");
string_t model = NULL("");
string_t imei = NULL("");
string_t imsi = NULL("");
string_t target_segment = NULL("");

The string types that you should use, such as string_t, string(little_int_t), or string(tiny_int_t), will depend
on the original data specifications — for example, contexts such as varchar max length=200.

Required include statement

If an event-type DML file does not already contain it, be sure to add the following line to the top of the file:

include "~$CIP_COMMON_DML/common_types.dml";

Example event-type DML files

The following shows the contents of a default placeholder DML file, named event1.dml, that is included in
the $PUBLIC_PROTOTYPE_DML/event_types directory in the CIP prototype project:

include "~$CIP_COMMON_DML/common_types.dml";

type event1_t =
record
 string_t f1;
 string_t f2;
end;

metadata type = event1_t;

The following is an example of a complete event-type DML file:

include "~$CIP_COMMON_DML/common_types.dml";

type nbos_delivery_report_t =
record
 long_t subscriber_id = NULL;
 long_t msisdn;
 string_t campaign_id;
 dec_t cycle_number = 0;
 string_t offer_id;
end;

metadata type = nbos_delivery_report_t;

33 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Task 5: Update the event.dml file
For each customer-specific CIP event type that you want to enable, you must create a corresponding set
of references in the public project event.dml file ($CIP_COMMON_EVENT_DML/event.dml).

event.dml file locations

event.dml files are located in the following directories:

• $CIP_COMMON_DML — For common event types that are included with CIP. You should not need to
modify the event.dml file in this directory.

• $CIP_COMMON_DML/prototype — Template file that you can use to create customer-specific event.dml
files. You should not modify any of the files4 in this directory.

• $public-project-prefix_DML ($CIP_COMMON_EVENT_DML) — For customer-specific event types. The
event.dml file in this directory is the only one you should modify.

Be sure to put all customer-specific event types in $public-project-prefix_DML/event.dml only. In
most cases, you should not modify $CIP_COMMON_DML/event.dml.

NOTE:

Customer-specific event-type files are maintained by the customer and are not promoted with CIP. TIP:

34 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Structure and syntax of the event.dml file

The event.dml file contains the following sections:

Description Section

A set of include statements that point to event-type DML files. These include statements
reference both cip_common and public project DML; for example:

include "~$CIP_COMMON_DML/event_types/batch_trigger.dml";
include "~$CIP_COMMON_DML/event_types/campaign_event.dml";
include "~$CIP_COMMON_PRIVATE_DML/event_types/activation.dml";
include "~$CIP_COMMON_PRIVATE_DML/event_types/reload.dml";

Be sure to include in this block all of the entries listed in “Required include
statements for common CIP event types”.

NOTE:

References to event-
type DML files

include statements that point to the event_type_ids.dml files that are associated with
the CIP event types that you want to enable. These include statements must reference
the event_type_ids.dml files in both the cip_common project and your public project;
for example:

include "~$CIP_COMMON_DML/event_type_ids.dml";
include "~$CIP_COMMON_PRIVATE_DML/event_type_ids.dml";

References to
event_type_ids.dml files

Specific event types (and optionally methods) that are triggered by means of conditional
statements that output a record named event_details. The record format for event_details
is the same in all event.dml files, and must take the following form:

type event_details_t = record
 int_t event_type_id;
 string_t event_type;
 ts_t event_time = NULL("");
 ts_t received_time = NULL("");

 event-type-conditionals
 event-type-methods
end;

Primary event_details
record format

35 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Description Section

Conditional if statements that walk through the list of event types in order to output
the record to the correct event handler. These conditional statements use the following
syntax:

if(event_type_id == ET_event-type) format field;

where:

• ET_event-type-name is the event-type name, including the ET_ prefix, as defined in
event_type_ids.dml.

• format is the event-type record format, as defined in the DML file for the event type.

• field is the target database field name for the record.

For example:

if(event_type_id == ET_CAMPAIGN_EVENT) campaign_event_t
campaign_event;
if(event_type_id == ET_ACTIVATION) activation_t activation;

Event-type conditional
statements

Format definitions for common subrecords.

Every event.dml file must include several common subrecord format definitions, which
are required for CIP event-handling features. For a detailed listing of these record formats,
see “Required subrecord formats for CIP event handling”.

Common subrecord
formats

The following metadata declarations, which every event.dml file must end with:

metadata type = event_t;

Metadata type
declaration

Required include statements for common CIP event types

If the $public-project-prefix_DML/event.dml file does not already contain the following lines, in addition to
customer-specific event types, be sure to add them to the top of the file. These include statements are
required to enable common CIP event types:

include "~$CIP_COMMON_DML/aggregates/aggregates.dml";
include "~$CIP_COMMON_DML/campaign_key_types.dml";
include "~$CIP_COMMON_DML/common_types.dml";
include "~$CIP_COMMON_DML/event_engine/engine_types.dml";
include "~$CIP_COMMON_DML/event_type_ids.dml";
include "~$CIP_COMMON_DML/event_types/aggregation_query_spec.dml";
include "~$CIP_COMMON_DML/event_types/batch_trigger.dml";
include "~$CIP_COMMON_DML/event_types/campaign_ended.dml";
include "~$CIP_COMMON_DML/event_types/campaign_event.dml";
include "~$CIP_COMMON_DML/event_types/nbos_fulfillment_request.dml";
include "~$CIP_COMMON_DML/event_types/outbound_channel_fulfillment_request.dml";
include "~$CIP_COMMON_DML/event_types/SYS.dml";
include "~$CIP_COMMON_DML/event_types/timer_event.dml";
include "~$CIP_COMMON_DML/fulfillment/fulfillment_response.dml";
include "~$CIP_COMMON_DML/subscriber_profile/subscriber_profile_payloaded.dml";
include "~$CIP_COMMON_PRIVATE_DML/event_type_ids.dml";
include "~$CIP_COMMON_PRIVATE_DML/event_types/activation.dml";

Despite the *_PRIVATE_* part of the name, the $CIP_COMMON_PRIVATE_DML variables resolve to
the customer’s public project.

NOTE:

36 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Required subrecord formats for CIP event handling

Every event.dml file must include the following subrecord format definitions. These record formats are
required for CIP event handling features:

/* used for the state engine types */
type event_details_subset_t =
record
 int_t event_type_id;
 string_t event_type;
 ts_t event_time = NULL("");
 ts_t received_time = NULL("");
 system_event_t SYS = NULL;
 campaign_event_t campaign_event = NULL;
 timer_event_t timer_event = NULL;
end;

type event_t =
record
 key_types_t keys;
 event_details_t event;
end;

type partial_enriched_event_t =
record
 key_types_t keys /*@ BizName:"Triggering Event Keys" @*/;
 event_details_t event /*@ BizName:"Triggering Event" @*/;
 query_aggregate_result_instance_t[int_t] aggregate_results /*@ BizName: "Aggregate
Query Results" @*/;
 long_t partial_enrich_time /*@ BizName:"Partial Enrich Time" @*/;
end;

type enriched_event_t =
record
 key_types_t keys /*@ BizName:"Triggering Event Keys" @*/;
 subscriber_profile_payloaded_t subscriber_profile /*@ BizName:"Subscriber Profile"
@*/;
 event_details_t event /*@ BizName:"Triggering Event" @*/;
 query_aggregate_result_instance_t[int_t] aggregate_results /*@ BizName: "Aggregate
Query Results" @*/;
 name_value_pair_t[int] personal_params = NULL;
 long_t aggregates_enrich_time /*@ BizName:"Aggregate Time" @*/;
 long_t enrich_time /*@ BizName:"Enrich Time" @*/;
end;

type partial_eligible_enriched_event_t =
record
 key_types_t keys /*@ BizName:"Triggering Event Keys" @*/;
 subscriber_profile_payloaded_t subscriber_profile /*@ BizName:"Subscriber Profile"
@*/;
 event_details_t event /*@ BizName:"Triggering Event" @*/;
 query_aggregate_result_instance_t[int_t] aggregate_results /*@ BizName: "Aggregate
Query Results" @*/;
 name_value_pair_t[int] personal_params = NULL;
 long_t aggregates_enrich_time /*@ BizName:"Aggregate Time" @*/;
 long_t enrich_time /*@ BizName:"Enrich Time" @*/;
 long_t eligible_time /*@ BizName:"Eligible Time" @*/;
 string_t[int_t] eligible_campaigns;
 string_t[int_t] fulfillment_campaigns;
 string_t[int_t] taker_campaigns;
 string_t subscriber_reply;
 vvoid_t event_context_payload = NULL("");
end;

37 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

type eligible_enriched_event_t =
record
 key_types_t keys /*@ BizName:"Triggering Event Keys" @*/;
 long_t msisdn = NULL(0) /*Field: MSISDN_SUBS*/ /*@BizName:msisdn@*/;
 name_value_pair_t[int] personal_params = NULL;
 event_details_subset_t event;
 string_t[int_t] eligible_campaigns;
 string_t[int_t] fulfillment_campaigns;
 string_t[int_t] taker_campaigns;
 string_t subscriber_reply;
 long_t aggregates_enrich_time /*@ BizName:"Aggregate Time" @*/;
 long_t enrich_time /*@ BizName:"Enrich Time" @*/;
 long_t eligible_time /*@ BizName:"Eligible Time" @*/;
 vvoid_t event_context_payload = NULL("");
end;

Depending on when your CIP deployment was created, you may need to manually modify the
partial_eligible_enriched_event_t and eligible_enriched_event_t formats so they include a string_t

NOTE:

subscriber_reply field. Ensure that the partial_eligible_enriched_event_t and
eligible_enriched_event_t record formats are exactly as shown in the preceding example.

Example event.dml file

The following shows the contents of the default event.dml file that is included in the
$PUBLIC_PROTOTYPE_DML directory in the CIP prototype project:

include "~$CIP_COMMON_DML/common_types.dml";
include "~$CIP_COMMON_DML/aggregates/aggregates.dml";
include "~$CIP_COMMON_DML/event_engine/engine_types.dml";
include "~$CIP_COMMON_DML/fulfillment/fulfillment_response.dml";
include "~$CIP_COMMON_DML/event_types/timer_event.dml";
include "~$CIP_COMMON_DML/event_types/SYS.dml";
include "~$CIP_COMMON_DML/event_types/batch_trigger.dml";
include "~$CIP_COMMON_DML/event_types/campaign_event.dml";
include "~$CIP_COMMON_DML/event_types/campaign_ended.dml";
include "~$CIP_COMMON_DML/campaign_key_types.dml";
include "~$CIP_COMMON_DML/event_type_ids.dml";
include "~$CIP_COMMON_DML/event_types/aggregation_query_spec.dml";
include "~$CIP_COMMON_DML/event_types/nbos_fulfillment_request.dml";
include "~$CIP_COMMON_DML/event_types/outbound_channel_fulfillment_request.dml";

include "~$CIP_COMMON_PRIVATE_DML/event_type_ids.dml";
include "~$CIP_COMMON_DML/subscriber_profile/subscriber_profile_payloaded.dml";

include "~$CIP_COMMON_PRIVATE_DML/event_types/activation.dml";
include "~$CIP_COMMON_PRIVATE_DML/event_types/event1.dml";
include "~$CIP_COMMON_PRIVATE_DML/event_types/event2.dml";

type event_details_t = record
 int_t event_type_id;
 string_t event_type;
 ts_t event_time = NULL("");
 ts_t received_time = NULL("");

 // Standard events
 //if(event_type_id == ET_FULFILLMENT_RESPONSE) fulfillment_response_t
fulfillment_response;
 if(event_type_id == ET_SYS) system_event_t SYS;
 if(event_type_id == ET_TIMER) timer_event_t timer_event;
 if(event_type_id == ET_AGGREGATION_QUERY_SPEC) aggregation_query_spec_t

38 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

aggregation_query_spec;
 if(event_type_id == ET_CAMPAIGN_EVENT) campaign_event_t campaign_event;
 if(event_type_id == ET_CAMPAIGN_EVENT_CAMPAIGN_ENDED) campaign_ended_t campaign_ended;
 if(event_type_id == ET_BATCH_TRIGGER) batch_trigger_t batch_trigger;
 if(event_type_id == ET_NBOS_FULFILLMENT_REQUEST) nbos_fulfillment_request_t
nbos_fulfillment_request;
 if(event_type_id == ET_OUTBOUND_CHANNEL_FULFILLMENT_REQUEST)
outbound_channel_fulfillment_request_t outbound_channel_fulfillment_request;
 if(event_type_id == ET_ACTIVATION) activation_t activation;

 // Customer Events
 if(event_type_id == ET_EVENT1) event1_t event1;
 if(event_type_id == ET_EVENT2) event2_t event2;

 int_t accumulator_event() = event_type_id == ET_ACTIVATION || event_type_id ==
ET_EVENT1 || event_type_id == ET_EVENT2 || event_type_id == ET_CAMPAIGN_EVENT;

 long_t bytes() = 0;

 long_t amount() = 0;

 long_t remaining_bal() = 0;

 long_t usage_units() = 0;

 int_t enrich_event() = event_type_id == ET_SYS || event_type_id ==
ET_AGGREGATION_QUERY_SPEC ? 0 : 1;
end;

/* used for the state engine types */
type event_details_subset_t =
record
 int_t event_type_id;
 string_t event_type;
 ts_t event_time = NULL("");
 ts_t received_time = NULL("");
 system_event_t SYS = NULL;
 campaign_event_t campaign_event = NULL;
 timer_event_t timer_event = NULL;
end;

type event_t =
record
 key_types_t keys;
 event_details_t event;
end;

type partial_enriched_event_t =
record
 key_types_t keys /*@ BizName:"Triggering Event Keys" @*/;
 event_details_t event /*@ BizName:"Triggering Event" @*/;
 query_aggregate_result_instance_t[int_t] aggregate_results /*@ BizName: "Aggregate
Query Results" @*/;
 long_t partial_enrich_time /*@ BizName:"Partial Enrich Time" @*/;
end;

type enriched_event_t =
record
 key_types_t keys /*@ BizName:"Triggering Event Keys" @*/;
 subscriber_profile_payloaded_t subscriber_profile /*@ BizName:"Subscriber Profile"
@*/;
 event_details_t event /*@ BizName:"Triggering Event" @*/;
 query_aggregate_result_instance_t[int_t] aggregate_results /*@ BizName: "Aggregate

39 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Query Results" @*/;
 name_value_pair_t[int] personal_params = NULL;
 long_t aggregates_enrich_time /*@ BizName:"Aggregate Time" @*/;
 long_t enrich_time /*@ BizName:"Enrich Time" @*/;
end;

type partial_eligible_enriched_event_t =
record
 key_types_t keys /*@ BizName:"Triggering Event Keys" @*/;
 subscriber_profile_payloaded_t subscriber_profile /*@ BizName:"Subscriber Profile"
@*/;
 event_details_t event /*@ BizName:"Triggering Event" @*/;
 query_aggregate_result_instance_t[int_t] aggregate_results /*@ BizName: "Aggregate
Query Results" @*/;
 name_value_pair_t[int] personal_params = NULL;
 long_t aggregates_enrich_time /*@ BizName:"Aggregate Time" @*/;
 long_t enrich_time /*@ BizName:"Enrich Time" @*/;
 long_t eligible_time /*@ BizName:"Eligible Time" @*/;
 string_t[int_t] eligible_campaigns;
 string_t[int_t] fulfillment_campaigns;
 string_t[int_t] taker_campaigns;
 string_t subscriber_reply;
 vvoid_t event_context_payload = NULL("");
end;

type eligible_enriched_event_t =
record
 key_types_t keys /*@ BizName:"Triggering Event Keys" @*/;
 long_t msisdn = NULL(0) /*Field: MSISDN_SUBS*/ /*@BizName:msisdn@*/;
 name_value_pair_t[int] personal_params = NULL;
 event_details_subset_t event;
 string_t[int_t] eligible_campaigns;
 string_t[int_t] fulfillment_campaigns;
 string_t[int_t] taker_campaigns;
 string_t subscriber_reply;
 long_t aggregates_enrich_time /*@ BizName:"Aggregate Time" @*/;
 long_t enrich_time /*@ BizName:"Enrich Time" @*/;
 long_t eligible_time /*@ BizName:"Eligible Time" @*/;
 vvoid_t event_context_payload = NULL("");
end;

metadata type = event_t;

Task 6: Create event-specific psets
Create your event-specific psets and put them in the $CIP_COMMON_PRIVATE_PSET/collect_integrate/event
directory. All event-specific psets must be stored in this directory. The CIP collect subsystem service iterates
over the event directory, and all psets in the directory are automatically run by the subsystem plan.

When you create your psets, use the following naming pattern:

collect_event.queue-name.pset

where queue-name is the name of the collect queue for the event type.

For example psets that you can use as starting points for your event-specific psets, look in the
$AI_PSET/collect_integrate/event directory.

TIP:

40 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

Task 7: Update CIP event hash transform files
For each event, CIP generates a unique key — an event hash — based on a defined set of fields for each
event. These hashes map to event IDs defined in the event_type_ids.dml file.

CIP ships with a default cip_event_hash() function in $CIP_COMMON_XFR/common_functions.xfr, but you
must define your event-type-specific hash functions in one or both of the following files:

• $AI_XFR/event_hash.xfr — Hash functions for customer-specific event types.

• $CIP_COMMON_XFR/private_stub/event_hash.xfr — Stub file for common event hash functions.

Task 8: Define dimensioning transforms
The default event types that are shipped with CIP do not support dimensioning. However, if you want to
define dimensioning functions for your project-specific event types, CIP includes a prototype transform
template that you can use.

The prototype transform template is named $CIP_COMMON_XFR/prototype/getEventParamKeys.xfr. After
defining any dimensioning functions for your project-specific events, you must save your transform file as
$AI_XFR/getEventParamKeys.xfr.

In the context of CIP event handling, dimensions (keys) are primarily used to enable aggregations. For
example, you may want to perform reloads based on several dimensions.

Task 9: Update the public project .sandbox.pset file
For each event type, add corresponding event queue and queue subscriber parameters to the public project
.sandbox.pset file; for example:

CUST3_COLLECT_INTEGRATE_SOURCE_QUEUE_DIR_CREDITCARD_EVENT = $CIP_COMMON_LOCAL_MFS_QUEUE
CUST3_COLLECT_INTEGRATE_SOURCE_SUBSCRIBE_ID_CREDITCARD_EVENT = cip
CUST3_COLLECT_INTEGRATE_SOURCE_QUEUE_DIR_CHKSAV_EVENT = $CIP_COMMON_LOCAL_MFS_QUEUE
CUST3_COLLECT_INTEGRATE_SOURCE_SUBSCRIBE_ID_CHKSAV_EVENT = cip
CUST3_COLLECT_INTEGRATE_SOURCE_QUEUE_DIR_CUSTOMER_REPLY_EVENT = $CIP_COMMON_LOCAL_SERIAL_QUEUE
CUST3_COLLECT_INTEGRATE_SOURCE_SUBSCRIBE_ID_CUSTOMER_REPLY_EVENT = cip

Task 10: Add a list of event-specific psets to project pset files
Add a list of your event-specific psets as an @cip_common override to the
CIP_COMMON_COLLECT_INTEGRATE_EVENT_PSETS parameter in the public project .project.pset file. If
there are environment-specific public project psets, add the override to the project psets that are relevant
in the given environment. For example, you may need to add the list of psets to a dev.pset, sit.pset, and
prod.pset.

41 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

For example, the following is an override containing references to five event-specific psets:

CIP_COMMON_COLLECT_INTEGRATE_EVENT_PSETS@cip_common =
cust3_collect_event.creditcard.pset
cust3_collect_event.chksav.pset
cust3_collect_event.customer_reply.pset
cust3_collect_event.mobile_app.pset
cust3_collect_event_dsg.geofence.pset

Task 11: Update the CIP database
You must add your event-type definitions to the CIP database. You do this by creating a SQL file with
relevant event-specific entries, and then running
$AI_PSET/utility/create_environment/upgrade_all_databases.pset.

► To update the CIP database:

1. Create a SQL file in with relevant event-specific entries in $public-project-prefix_SQL/cip_db_data.

For each event type, your SQL file must insert entries into the following tables in the CIP database:

• dml_entity

• dml_entity_field

• dml_entity_measures

• dml_entity_field_value

For example, the following is an SQL file containing entries for an event named Event2:

insert into dml_entity_field(dml_entity_id, dml_type, field_name, business_name, is_nullable)
VALUES ((select id from dml_entity where entity_name = 'Event2'), 'datetime_t', 'timestamp',
 'Event Time', true);

insert into dml_entity_field(dml_entity_id, dml_type, field_name, business_name, is_nullable)
VALUES ((select id from dml_entity where entity_name = 'Event2'), 'int_t', 'int_flag',
 'International Flag', true);

insert into dml_entity_field(dml_entity_id, dml_type, field_name, business_name, is_nullable)
VALUES ((select id from dml_entity where entity_name = 'Event2'), 'string_t', 'trans_type',
 'Transaction Type', true);

insert into dml_entity_field(dml_entity_id, dml_type, field_name, business_name, is_nullable)
VALUES ((select id from dml_entity where entity_name = 'Event2'), 'dec_t', 'trans_amount',
 'Transaction Amount', true);

insert into dml_entity_field(dml_entity_id, dml_type, field_name, business_name, is_nullable)
VALUES ((select id from dml_entity where entity_name = 'Event2'), 'dec_t', 'trans_duration',
 'Transaction Duration', true);

INSERT INTO "public"."dml_entity_measures" (entity_id,entity_field_name,measure_name,
measure_description,measure_type) VALUES ((select id from dml_entity where entity_name =
 'Event2'),'trans_amount','monetary_value','Monetary Value','long_t');
INSERT INTO "public"."dml_entity_measures" (entity_id,entity_field_name,measure_name,
measure_description,measure_type) VALUES ((select id from dml_entity where entity_name =
 'Event2'),'trans_duration','duration','Duration','long_t');

INSERT INTO "public"."dml_entity_dimensions" (entity_id,entity_field_name,dimension_name,
dimension_description,key_code) VALUES ((select id from dml_entity where entity_name =
 'Event2'),'int_flag','International Flag','International Flag (true/false)','I');

42 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

INSERT INTO "public"."dml_entity_dimensions" (entity_id,entity_field_name,dimension_name,
dimension_description,key_code) VALUES ((select id from dml_entity where entity_name =
 'Event2'),'trans_type','Transaction Type','Transaction Type','T');

2. Open a Korn shell on the Co>Operating System run host for the private project sandbox, and then
change to the $AI_RUN directory.

3. Verify that there are no leftover recovery files from previous runs of the pset:

ls -altr * upgrade_all_databases*.rec

If there are any leftover recovery files, delete them before proceeding.

4. Run the pset:

air sandbox run $AI_PSET/utility/create_environment/upgrade_all_databases.pset

43 AB INITIO CONFIDENTIAL AND PROPRIETARY — DO NOT COPY

