
RMI-IIOP Load Balancing and Failover

This chapter describes using high-availability features for remote EJB references and JNDI
objects over RMI-IIOP in GlassFish Server.

n “Overview” on page 195
n “InitialContext Load Balancing” on page 196
n “Per-Request Load Balancing (PRLB)” on page 200

Overview

With RMI-IIOP load balancing, IIOP client requests are distributed to di erent server instances
or name servers. The goal is to spread the load evenly across the cluster, thus providing
scalability. IIOP load balancing combined with EJB clustering and availability also provides EJB
failover.

The following topics are addressed here:

n “General Requirements for Con!guring Load Balancing” on page 195
n “Load BalancingModels” on page 196

General Requirements for Con guring LoadBalancing

Oracle GlassFish Server provides high availability of remote EJB references and NameService
objects over RMI-IIOP, provided all the following apply:

n Your deployment has a cluster of at least two instances.

n Java EE applications are deployed to all instances and clusters that participate in load
balancing.

n RMI-IIOP client applications are enabled for load balancing.

12C H A P T E R 1 2

195

GlassFish Server supports load balancing for Java applications executing in the Application
Client Container (ACC). See “Enabling RMI-IIOPHardware Load Balancing and Failover” on
page 197.

Note –GlassFish Server does not support RMI-IIOP load balancing and failover over secure
sockets layer (SSL).

LoadBalancingModels

GlassFish Server supports two general models for load balancing:

“InitialContext Load Balancing” on page 196
When a client performs a JNDI lookup for an object, the Naming Service creates a
InitialContext (IC) object associated with a particular server instance. From then on, all
lookup requests made using that IC object are sent to the same server instance.
InitialContext load balancing can be con!gured automatically across an entire cluster.

“Per-Request Load Balancing (PRLB)” on page 200
Per Request Load Balancing (PRLB) is amethod for load balancing stateless EJBs that
enables load-balancing for each request to an EJB instance. PRLB chooses the !rst node in a
cluster to use on each request. PRLB is con!gured on a per-EJB basis.

InitialContext LoadBalancing
The following topics are addressed here:

n “InitialContext Summary” on page 196
n “InitialContextAlgorithm” on page 197
n “Enabling RMI-IIOPHardware Load Balancing and Failover” on page 197

InitialContext Summary

When InitialContext load balancing is used, the client calls the InitialContext()method
to create a new InitialContext (IC) object that is associated with a particular server instance.
JNDI lookups are then performed on that IC object, and all lookup requests made using that IC
object are sent to the same server instance. All EJBHome objects looked up with that
InitialContext are hosted on the same target server. Any bean references obtained henceforth
are also created on the same target host. This e ectively provides load balancing, since all clients
randomize the list of live target servers when creating InitialContext objects. If the target
server instance goes down, the lookup or EJBmethod invocation will failover to another server
instance. All objects derived from same InitialContextwill failover to the same server
instance.

InitialContext Load Balancing

Oracle GlassFish Server 3.1 High Availability Administration Guide • February 2011196

IIOP load balancing and failover happens transparently. No special steps are needed during
application deployment. IIOP load balancing and failover for the GlassFish Server supports
dynamically recon!gured clusters. If the GlassFish Server instance on which the application
client is deployed participates in a cluster, the GlassFish Server !nds all currently active IIOP
endpoints in the cluster automatically. Therefore, you are not required tomanually update the
list of endpoints if a new instance is added to the cluster or deleted from the cluster. However, a
client should have at least two endpoints speci!ed for bootstrapping purposes, in case one of the
endpoints has failed.

InitialContextAlgorithm

GlassFish Server uses a randomization and round-robin algorithm for RMI-IIOP load
balancing and failover.

When an RMI-IIOP client !rst creates a new InitialContext object, the list of available
GlassFish Server IIOP endpoints is randomized for that client. For that InitialContext object,
the load balancer directs lookup requests and other InitialContext operations to an endpoint
on the randomized list. If that endpoint is not available then a di erent random endpoint in the
list is used.

Each time the client subsequently creates a new InitialContext object, the endpoint list is
rotated so that a di erent IIOP endpoint is used for InitialContext operations. The rotation is
randomized, so the rotation is not to the next endpoint in the list, but instead to a random
endpoint in the list.

When you obtain or create beans from references obtained by an InitialContext object, those
beans are created on the GlassFish Server instance serving the IIOP endpoint assigned to the
InitialContext object. The references to those beans contain the IIOP endpoint addresses of
all GlassFish Server instances in the cluster.

The primary endpoint is the bean endpoint corresponding to the InitialContext endpoint
used to look up or create the bean. The other IIOP endpoints in the cluster are designated as
alternate endpoints. If the bean's primary endpoint becomes unavailable, further requests on
that bean fail over to one of the alternate endpoints.

You can con!gure RMI-IIOP load balancing and failover to work with applications running in
the ACC.

EnablingRMI-IIOPHardware LoadBalancing and
Failover

You can enable RMI-IIOP load balancing and failover for applications running in the
application client container (ACC).Weighted round-robin load balancing is also supported.

InitialContext Load Balancing

Chapter 12 • RMI-IIOP Load Balancing and Failover 197

t ToEnable RMI-IIOPHardware LoadBalancing for theApplicationClient
Container

This procedure provides an overview of the steps necessary to enable RMI-IIOP load balancing

and failover with the application client container (ACC). For additional information on the

ACC, see “Developing Clients Using the ACC” inOracle GlassFish Server 3.1 Application

Development Guide.

The !rst !ve steps in this procedure are only necessary if you are enabling RMI-IIOP load

balancing on a system other than the DAS. This is common in production environment, but less

common in a development environment. For example, a developer who wants to experiment

with a cluster and load balancingmight create two instances on the same system onwhich the

DAS is running. In such cases, steps 1-5 are unnecessary.

Go to the install_dir /bindirectory.

Run package-appclient.

This utility produces an appclient.jar !le. Formore information on package-appclient, see

package-appclient(1M).

Copy the appclient.jar le to themachinewhere youwant your client and extract it.

Edit the asenv.conf or asenv.bat path variables to refer to the correct directory values on that

machine.

The !le is at appclient-install-dir /config/.

For a list of the path variables to update, see package-appclient(1M).

If required,make the appclient script executable.

For example, on UNIX use chmod 700.

Find the IIOP listener port number for at least two instances in the cluster.

You specify the IIOP listeners as endpoints in Step 7.

For each instance, obtain the IIOP listener ports as follows:

a. Verify that the instances forwhich youwant to determine the IIOP listener port numbers are

running.

asadmin> list-instances

A list of instances and their status (running, not running) is displayed.

The instances for which you want to display the IIOP listener ports must be running.

BeforeYouBegin

1

2

3

4

5

6

InitialContext Load Balancing

Oracle GlassFish Server 3.1 High Availability Administration Guide • February 2011198

b. For each instance, enter the following command to list the various port numbers usedby the

instance.

asadmin> get servers.server.instance-name.system-property.*.value

For example, for an instance name in1, you would enter the following command:

asadmin> get servers.server.in1.system-property.*.value

Add at least two target-server elements in the sun-acc.xml le.

Use the endpoints that you obtained in Step 6.

If the GlassFish Server instance on which the application client is deployed participates in a

cluster, the ACC !nds all currently active IIOP endpoints in the cluster automatically. However,

a client should have at least two endpoints speci!ed for bootstrapping purposes, in case one of

the endpoints has failed.

The target-server element speci!es one ormore IIOP endpoints used for load balancing. The

address attribute is an IPv4 address or host name, and the port attribute speci!es the port

number. See “client-container” inOracle GlassFish Server 3.1 Application Deployment Guide.

As an alternative to using target-server elements, you can use the endpoints property as

follows:

jvmarg value = "-Dcom.sun.appserv.iiop.endpoints=host1:port1,host2:port2,..."

If you requireweighted round-robin loadbalancing, perform the following steps:

a. Set the load-balancingweight of each server instance.

asadmin set instance-name.lb-weight=weight

b. In the sun-acc.xml, set the com.sun.appserv.iiop.loadbalancingpolicy property of the

ACC to ic-based-weighted.

...

<client-container send-password="true">

<property name="com.sun.appserv.iiop.loadbalancingpolicy" \

value="ic-based-weighed"/>

...

Deploy your client applicationwith the --retrieve option to get the client jar le.

Keep the client jar !le on the client machine.

For example:

asadmin --user admin --passwordfile pw.txt deploy --target cluster1 \
--retrieve my_dir myapp.ear

Run the application client as follows:

appclient --client my_dir/myapp.jar

7

8

9

10

InitialContext Load Balancing

Chapter 12 • RMI-IIOP Load Balancing and Failover 199

Setting Load-BalancingWeights for RMI-IIOPWeighted Round-Robin Load

Balancing

In this example, the load-balancing weights in a cluster of three instances are to be set as shown
in the following table.

InstanceName Load-BalancingWeight

i1 100

i2 200

i3 300

The sequence of commands to set these load balancing weights is as follows:

asadmin set i1.lb-weight=100
asadmin set i2.lb-weight=200
asadmin set i3.lb-weight=300

To test failover, stop one instance in the cluster and see that the application functions normally.
You can also have breakpoints (or sleeps) in your client application.

To test load balancing, usemultiple clients and see how the load gets distributed among all
endpoints.

See “Enabling the High Availability Session Persistence Service” on page 176 for instructions on
enabling the session availability service for a cluster or for aWeb, EJB, or JMS container
running in a cluster.

Per-Request LoadBalancing (PRLB)
The following topics are addressed here:

n “PRLB Summary” on page 200
n “Enabling Per-Request Load Balancing” on page 201

PRLBSummary
Per Request Load Balancing (PRLB) is amethod for load balancing stateless EJBs that enables
load-balancing for each request to an EJB instance. PRLB chooses the !rst node in a cluster to
use on each request. By contrast, InitialContext (hardware) load balancing chooses the !rst
node to use when the InitialContext is created, and each request thereafter uses the same
node unless a failure occurred.

Example 12–1

Next Steps

SeeAlso

Per-Request Load Balancing (PRLB)

Oracle GlassFish Server 3.1 High Availability Administration Guide • February 2011200

PRLB is enabled bymeans of the boolean per-request-load-balancing property in the
glassfish-ejb-jar.xml deployment descriptor !le for the EJB. If this property is not set, the
original load balancing behavior is preserved.

Note – PRLB is only supported for stateless session beans. Using PRLBwith any other bean types
will result in a deployment error.

EnablingPer-Request LoadBalancing

You can enable Per-Request Load Balancing (PRLB) by setting the boolean
per-request-load-balancing property to true in the glassfish-ejb-jar.xml deployment
descriptor !le for the EJB. On the client side, the initContext.lookupmethod is used to access
the stateless EJB.

t ToEnable RMI-IIOPPer-Request LoadBalancing for a Stateless EJB
This procedure describes how to enable PRLB for a stateless EJB that is deployed to clustered
GlassFish Server instances. This procedure also provides an client-side example for accessing a
stateless EJB that uses PRLB.

Choose or assemble the EJB that youwant to deploy.

In this example, an EJB named TheGreeter is used.

For instructions on developing and assembling an EJB for deployment to GlassFish Server, refer
to the following documentation:

n Chapter 8, “Using Enterprise JavaBeans Technology,” inOracle GlassFish Server 3.1
Application Development Guide

n “EJBModule Deployment Guidelines” inOracle GlassFish Server 3.1 Application
Deployment Guide

n “Assembling andDeploying an Application ClientModule” inOracle GlassFish Server 3.1
Application Deployment Guide

Set the per-request-load-balancing property to true in the glassfish-ejb-jar.xml

deployment descriptor le for the EJB.

Formore information about the glassfish-ejb-jar.xml deployment descriptor !le, refer to
“The glass!sh-ejb-jar.xml File” inOracle GlassFish Server 3.1 Application Deployment Guide

For example, the glassfish-ejb-jar.xml !le for a sample EJB named TheGreeter is listed
below.

<glassfish-ejb-jar>

<enterprise-beans>

<unique-id>1</unique-id>

1

2

Per-Request Load Balancing (PRLB)

Chapter 12 • RMI-IIOP Load Balancing and Failover 201

<ejb>

<ejb-name>TheGreeter</ejb-name>

<jndi-name>greeter</jndi-name>

<per-request-load-balancing>true</per-request-load-balancing>

</ejb>

</enterprise-beans>

</glassfish-ejb-jar>

Deploy the EJB.

If the EJB was previously deployed, it must be redployed.

For instructions on deploying EJBs, refer to the following documentation:

n “ToDeploy an Application orModule” inOracle GlassFish Server 3.1 Application

Deployment Guide

n “To Redeploy an Application orModule” inOracle GlassFish Server 3.1 Application

Deployment Guide

(Optional)Verify the PRLB con guration by looking for the following FINEmessage in the

CORBA log le:

Setting per-request-load-balancing policyfor EJB EJB-name

Con gure a client application to access the PRLB-enabled EJB.

For example:

public class EJBClient {

public static void main(String args[]) {

:

:

:

try {

// only one lookup

Object objref = initContext.lookup("test.cluster.loadbalancing.ejb.\

TestSessionBeanRemote");

myGreeterRemote = (TestSessionBeanRemote)PortableRemoteObject.narrow\

(objref,

TestSessionBeanRemote.class);

} catch (Exception e) {

:

}

for (int i=0; i < 10; i++) {

// method calls in a loop.

String theMessage = myGreeterRemote.sayHello(Integer.toString(i));

System.out.println("got"+": " + theMessage);

}

}

}

3

4

5

Per-Request Load Balancing (PRLB)

Oracle GlassFish Server 3.1 High Availability Administration Guide • February 2011202

See “Enabling the High Availability Session Persistence Service” on page 176 for instructions on
enabling the session availability service for a cluster or for aWeb, EJB, or JMS container
running in a cluster.

SeeAlso

Per-Request Load Balancing (PRLB)

Chapter 12 • RMI-IIOP Load Balancing and Failover 203

