
Chapter 4

UNIX For
Microsoft

Windows Users

Chapter 4 � UNIX For MicrosoftWindows Users 79

UNIX gets a bad rap for being difficult to use, from the standpoint of
the general user. This is unfair—after all, it’s really not much more

difficult than DOS….

User-friendly – adj. Programmer hostile. Generally
used by hackers in a critical tone, to describe systems

that hold the user’s hand so obsessively that they
make it painful for the more experienced and

knowledgable to get any work done.

– Eric Raymond, The New Hacker’s Dictionary, 1991

By implication, UNIX is a very powerful operating system, and many
programmers (but not all: see the Hacker’s Dictionary entry for “UNIX
weenie”) find UNIX to be a more technically satisfying operating system in
which to program.

But truly, UNIX is not so difficult when you compare it to DOS. Most
UNIX commands are no less mnemonic and no more arcane than their
DOS counterparts, and in many ways the flexibility of UNIX makes things
easier than DOS for the user, not more difficult. Many of the difficulties
in UNIX are simply a consequence of the fact that UNIX does much,
much more than DOS.

The joy of Wabi is that you don’t need to worry much about the UNIX
underpinnings—you can continue to live in your happy world of Windows
“productivity applications” while still reaping the benefits of a robust
multiuser operating environment that can also, by the way, run many
powerful programs. The goal of this chapter, then, is to give you just
enough information about UNIX to be dangerous (or tedious) at parties….

Wabi 2: OpeningWindows80

In This Chapter

Topic Page

About UNIX 81

Basic UNIX Concepts 82

The UNIX File System 83

Climbing Into Your Shell 92

Basic Networking Concepts 94

What Is a Network? 94

Local Versus Remote 95

Servers and Clients 96

Logging In 96

Naming Network Drives 98

About X Window 100

X Window Terminology 101

Don’t Worry, Be Wabi 104

AUTOEXEC.BAT and CONFIG.SYS 104

Extended and Expanded Memory 104

386 Enhanced Mode 105

PIF Files 107

Chapter 4 � UNIX For MicrosoftWindowsUsers 81

About UNIX

UNIX is the most widely used multiuser, multitasking, general-purpose
operating system in the world today. It can run on an extraordinarily
wide variety of computer equipment—from PCs to microcomputers to
mainframes—and is, in fact, the lingua franca of the world’s largest
computer network, the Internet.

The UNIX operating system was created in 1969 at Bell Laboratories by
Ken Thompson. Rumor has it that Thomson invented UNIX so he could
play games on his PDP-7 computer, which he salvaged after Bell Labs
abandoned its MULTICS (the big brother of UNIX) project.

Dennis Ritchie (the C programming language deity) is generally
considered to be the coauthor of UNIX. In the years 1972-74, UNIX was
reimplemented almost entirely in C, which made it the first operating
system that was truly portable—that is, it became relatively easy to port
UNIX to different hardware platforms by recompiling its C source code.
(The programmers in the audience may be cringing just now—nothing is
that easy—but UNIX is a heck of a lot easier to port than most other
operating systems.)

As UNIX evolved, it was embraced by the academic and scientific
communities. Because of the generally experimental mind-set in those
populations, and because of the wide availability of UNIX source code,
UNIX was hacked and extended and tweaked and refined for different
purposes, the product of which was a veritable tower of babbling
operating systems. Eventually, by the mid 1980s, AT&T consolidated the
various flavors of UNIX into a standard operating system. These efforts
resulted first in System III, and finally in System V—the phylum from
which the most popular strains of UNIX today are descended.

UNIX System V Release 4.0, released in 1989, and its ancillary System V
Interface Definition (SVID), form the standard on which SunOS™,
HP/UX®, IBM/AIX®, and SCO/UNIX are based. The bare-bones
command-line interfaces of these systems have, in turn, been augmented
by graphical, windowing environments (no, Microsoft did not invent such
environments) like OPEN LOOK, OSF/Motif, and HP OpenVue™ (these
particular environments are, in turn, implementations of the X Window
System standard—see “About X Window” on page 100).

Wabi 2: OpeningWindows82

Basic UNIX Concepts

UNIX is founded on the concepts of multiple users, multiple tasks,
timesharing, and interoperability. Before going any further, let’s define
these terms, because they are totally foreign to DOS.

• Multiple users – This one is easy: it means more than one user.
The implications, however, are more complex. To support
multiple users, an operating system must have some means of
identifying those users, preventing them from getting in each
other’s way, and making it difficult for them to wreck each
other’s stuff. On the more optimistic side, it means providing
tools with which multiple users can share data and programs,
exchange messages, and generally apprise one another of each
other’s existence. Hence the concepts of logins, user names,
privileges, protections, file locking, email, and so forth.

• Multiple tasks – Again, nominally simple: it means doing more
than one thing at a time. Again, however, the implications are
complex, and the details of their implementation are beyond the
scope of this book. For the purposes of running Wabi, all you
need to know is that, unlike Microsoft Windows, UNIX provides
true preemptive multitasking. Program threads can operate
independently of each other and other programs. This makes it
possible, for example, for one program to update the display
(using the video subsystem) while another program does a
database lookup (using CPU and disk resources). By contrast,
under Microsoft Windows, you would get the dreaded hourglass
until one or the other activities was completed.

• Timesharing – The ability to allow authorized user access to
programs, data, and resources (like printers, modems, and
disks) on a system. Equally important is that users can gain
such access when they need it; a user does not have to wait for
other users to get off the system, within certain volume limits,
before being allowed access.

• Interoperability – The sharing of programs, data, and
resources among different machines in a relatively seamless
way. UNIX’s portability is also the basis for its interoperability.

Chapter 4 � UNIX For MicrosoftWindowsUsers 83

At its highest level, UNIX can be divided into three primary components:

• Kernel – Provides core operating system functions

• File system – Hierarchical naming structure for files and
directories

• User shell – The user interface through which you interact with
the operating system

Of these three components, the file system and the user shell are of the
greatest interest to Wabi users.

TheUNIX File System

The basics of getting around in the UNIX file system are of interest to
Wabi users because Wabi, Windows, and any Windows applications you
install under Wabi will reside in UNIX.

Like DOS, UNIX provides a hierarchical file and directory structure, as
illustrated in Figure 4-1. That is, files reside in directories, and directories
reside in other directories. In Windows parlance, directories are also
sometimes referred to as folders.

Figure 4-1 Hierarchical Relationship of Files and Directories

DirectoryDirectoryDirectoryDirectory

DirectoryDirectory

Files

Files are stored
in directories

Directories are
stored in directories

Directories are
stored on disk

Wabi 2: OpeningWindows84

From a practical standpoint, there are several important differences
between the DOS and UNIX file systems:

• In DOS, file names are limited to eight alphanumeric
characters, plus a three character extension. For example,
FILENAME.DOC. UNIX file names can be up to 255 characters.

• DOS file names are not case-sensitive—that is, forget about the
SHIFT key. UNIX file names are case-sensitive; you can mix
uppercase and lowercase characters.

• There are several characters you can’t use in DOS file names,
but which you can use in UNIX. (See Table 3-8 on page 76).

• Directory names in DOS are separated by backslashes (\); in
UNIX, they are separated by forward slashes (/). For example,
you could have a DOS directory named \STUFF\LETTERS . The
same directory relationship in UNIX would be represented as
/STUFF/LETTERS .

• The concepts of file security attributes, as provided in UNIX, are
mostly not present in DOS.

These differences are explained in (excruciating) detail in Chapter 3, in
the section “What’s in a Name?” on page 73.

Wabi goes a long way towards smoothing out the differences between the
two file systems, so you don’t have to worry about them. For the most
part, when running Windows applications under Wabi, you name and
work with files and directories just as you would under DOS. There are
two exceptions to this:

• When you are installing Wabi – Wabi installation requires at
least some knowledge of how to get around in the UNIX file
system. This requirement is minimal, however, and the
installation instructions provided with Wabi software pretty
much hold your hand through the process.

• When you want to mount (connect to) a UNIX directory – In
Wabi, you mount—that is, connect to—UNIX directories so that
they appear as disk drives to Windows applications. To do this,
you need to understand how UNIX directories are named.
Mounting directories is explained later in this chapter, and also
in Chapter 5, “Using Wabi Software,” and in Chapter 6,
“Managing Drives.”

Chapter 4 � UNIX For MicrosoftWindowsUsers 85

The NFS File System

The Solaris operating environment is based on the NFS® distributed file
system. In most cases, when using Wabi, you will be working with NFS-
based files and directories. You may also, on occasion, find yourself
connecting to other file systems, but NFS will probably be the most
common system you will use with Wabi.

NFS is a UNIX-based distributed file system, developed by Sun
Microsystems, that enables computers on a network to cooperatively
access each other’s files in a transparent, seamless manner. That is, from
the user’s standpoint, remote file systems (those that are on machines
other than the user’s) are indistinguishable from local file systems (those
that are actually on the user’s machine).

For example, instead of duplicating a set of directories on all machines on
a given network, the NFS file system lets you have one common set of
directories on a machine that is shared by all other systems. Each user
sees that set of shared directories as local to his or her own workstation.

The file name and attribute mapping scheme used by Wabi (see “What’s
in a Name?” on page 73) is based on the NFS file system.

NFS Mount Points andWabi Drives

A mount point is a location in an NFS directory structure at which you
want to make a network connection from within Wabi. Such connections
appear to Windows applications running in the Wabi environment as
virtual disk drives—otherwise known, in Wabi parlance, as Wabi drives.

To Windows applications running under Wabi, Wabi drives appear to be
regular PC disks—like a drive E: or F: You can treat Wabi drives pretty
much the same way as regular PC disks; you can save, copy, move,
rename, and delete files, and install and run applications.

For example, you could define an NFS directory named /home/yourstuff
as a mount point, and then assign drive letter P: as the Wabi drive to
represent that directory in Windows applications running in the Wabi
environment. From Windows File Manager in Wabi, you could then click
on the drive icon for P: to display the files in /home/yourstuff .

Wabi 2: OpeningWindows86

In the above example, /home/yourstuff is considered to be the root
directory on the P: drive. Therefore, any subdirectories off that root are
also accessible to you, provided that you have sufficient network
privileges. For example:

This privileges thing is very important in the UNIX world—you may not
(and probably don’t) have access to all files and directories on your
network. Access privileges are associated with your UNIX user account,
which is described on the next page, in “Who Are You?”

Going Home

For general users, the most important, and most frequently accessed
directory is your home directory. This is the directory in which you store
your day-to-day data files, your email files, and many of your custom
system configuration files, among other items. For example, your home
directory may be named /home/president .

When viewing directory names, particularly in documentation or
configuration files, you may occasionally encounter a tilde (~), and
wonder what the heck it means. In UNIX, the tilde in directory paths
represents your home directory. For example:

/home/president/letters

is the same as:

~/letters

Table 4-1 Sample Wabi Drive Assignments

NFS Directory Name Wabi Drive Name

/home/yourstuff P:\

/home/yourstuff/mail P:\mail

/home/yourstuff/work P:\work

/home/yourstuff/work/daysoff P:\work\daysoff

Chapter 4 � UNIX For MicrosoftWindowsUsers 87

WhoAre You?

To support the practical implications of multiple users, UNIX provides the
concept of user names. A user name is a unique name used to identify a
user to the operating system. Every user on a UNIX system must have a
user account, the two primary identification components of which are a
user name and a unique password associated with that name.

After identifying yourself to the system, UNIX is then able to
automatically determine or configure various operating system
components for you; for example, your home directory, your PATH
environment variable, default configuration files, and so forth. Your user
account also has associated with it a set of privileges (or permissions),
which are the degrees to which you are allowed access to files,
directories, and devices on your network or your machine. UNIX
privileges are explained in more detail in the next section, “May I?”

UNIX users are also usually grouped into sets of users, collectively called
user groups. Any single user can belong to one or more user groups, the
specific list of which is part of user’s account information. Like individual
users, each user group has associated with it a set of privileges. This
makes it possible to provide and manage collective access to, say, a set of
document directories.

May I?

All access to files, directories, and devices (like printers) in UNIX is
closely controlled by various permissions. Of particular interest to Wabi
users are file and directory permissions, which you can control and
sometimes need to modify. By contrast, device permissions are usually
managed by your system administrator.

You enter your user name and password in response to login prompts
when you first try to access a system. This login process is explained
in more detail later in this chapter, in “Logging In” on page 96.

Wabi 2: OpeningWindows88

File and directory permissions are based on user and group accounts,
and can therefore be divided into the following three user categories:

• User – You

• Group – Anyone in any of the user groups to which you belong

• Other (or World) – Everyone else

You can assign the following permissions to files and directories:

• Read (r) – The file can be viewed.

• Write (w) – The file can be modified.

• Execute (x) – The file can be run (only for programs or scripts).
In the case of directories, the directory can be switched to; in
UNIX you can only change to directories for which you have
execute permission.

You can change the permissions on your own files and directories by
using the UNIX chmod command. Alternatively, from within Wabi, you can
use the Microsoft Windows File Manager to change some (but not all)
permissions. The mapping of permissions between UNIX and Windows is
described in detail in Table 3-9 on page 77.

Briefly, to use the chmod command, enter chmod, followed by a 3-digit
value (4-digit values are another story) representing user , group , and
world permissions respectively, followed by a file name. Figure 4-2
illustrates how to set chmod values.

Figure 4-2 Setting chmod Values

The first digit represents permissions for
owner; the second, for group; the third, for
world (or other). For example:

c h m o d 7 2 0 m y f i l e

sets permissions for m y f i l e to 720,
which means rwx for owner, w only for group,
and no privileges for world.

Chapter 4 � UNIX For MicrosoftWindowsUsers 89

Table 4-2 lists some common chmod values.

umask and You Shall Receive

Your user account has associated with it default file and directory
permissions. That is, every file or directory you create is assigned a
default set of permissions. This default set of permissions is assigned
(and can be changed) with the UNIX umask command.

The umask command is similar in many ways to chmod. The differences
between the two, however, can be subtle and confusing:

• Global versus local – chmod is used to change permissions on
an as needed basis; that is, you change permissions for specific
files and directories. By contrast, umask is used to set global
permissions—your umask setting is applied everywhere, to all
files and directories you subsequently create. You use chmod to
specifically override the umask setting on a file-by-file basis.

• Positive versus negative – chmod lets you specify what people
can do to files; umask is the obverse of that concept—it specifies
what you can’t do to files. Think of umask as a filter (or a mask);
the holes in the mask (values not set) are the permissions that
are allowed to pass through.

Table 4-2 Common chmod Values

Value Meaning

755 Owner: rwx ; Group: r-x ; World: r-x

700 Owner: rwx ; Group, World: no access

777 Unrestricted access to all

666 rw- access to all

Remember, in UNIX, directories are just another kind of file. You use
chmod to change directory permissions the same way you change file
permissions. Moreover, you cannot switch to a directory unless it has
execute permissions!

Wabi 2: OpeningWindows90

Figure 4-3 illustrates how to set umask values. Compare these values to
those shown for chmod in Figure 4-2 on page 88.

Figure 4-3 Setting umask Values

Table 4-2 lists some common umask values.

Some CommonDOS and UNIXCommands

Now that you’ve been sufficiently terrified by the concepts of chmod and
umask, it is time to assuage your dismay by explaining some common
DOS commands—with which you should already be comfortable—and
their UNIX counterparts.

If you should ever find yourself stranded at a UNIX command prompt
outside of Wabi, refer to Table 4-4, which lists DOS commands and their
UNIX equivalents. Note that this is not an exhaustive list; just some of
the basic commands are listed here.

Table 4-3 Common umask Values

Value Meaning

022 Anyone can read and execute a file; only the owner
can write; for a directory, anyone can list the contents.

077 No access for anyone other than the owner.

000 Unrestricted access all.

The first digit represents permissions for
owner; the second, for group; the third, for
world (or other). For example:

u m a s k 0 2 7

sets default permissions to 027, which means
rwx for owner, rx for group, and no privileges
for world.

Chapter 4 � UNIX For MicrosoftWindowsUsers 91

Table 4-4 Common DOS and UNIX Commands Compared

DOS Command UNIX Command Comments

attrib chmod
or

umask

Change the attributes of files or directories;
note that many DOS attributes have no
UNIX equivalents, and vice versa. Refer to
Table 3-9 on page 77 for more information.

cd cd or chdir Change directories.

chkdsk df -k
fsck

Display disk statistics; fsck , for disk
repair, is run automatically at bootup.

cls clear Clear the screen.

copy cp Copy files and directories.

del rm Delete files; also directories in UNIX.

dir ls Display the contents of a directory.

edit/edlin textedit or vi Edit text files; texedit is Solaris only.

find grep UNIX find finds files; grep finds strings.

format format Format diskettes and hard drives.

help man Get help on a specific command.

mkdir (md) mkdir Create new directories.

path env or setenv Display or set PATH environment variable.

print lpr or lp Print files.

rename (ren) mv Rename files; mv lets you rename
directories or move to another directory.

rmdir (rd) rmdir or rm -r Remove directories.

type more or cat Display the contents of a file; more displays
one screen at a time; cat displays
continuously.

ver uname -sr Display operating system version number.

Wabi 2: OpeningWindows92

Getting Help

As described briefly in Table 4-4, you can display help text for most UNIX
commands by using the man command. To use man, enter the man
command followed by the command for which you want help. For
example:

man grep

displays help text for the grep command.

You can also use man -k , followed by a keyword, to display all commands
associated with that keyword. For example:

man -k copy

displays a list of all help topics that have anything to do with copying.

Climbing Into Your Shell

As mentioned at the beginning of this chapter, the second primary
component of the UNIX operating system of interest to Wabi users, after
the file system, is the user shell. The user shell is the face that UNIX puts
on when people are around. In its raw, even naked state, UNIX is not all
that good-looking. Similar to DOS, you get a bare, character-mode
command line that doesn’t say much—but will quickly do what you tell it
to if you are specific, literal, and don’t screw up.

When UNIX gets its clothes on, however, it can be a sartorial wonder,
interface-wise. The range of interfaces for UNIX—graphical, textual,
windowing and otherwise—is impressively (some would say confusingly)
large and customizable. These interfaces can generally be divided into two
categories:

• Character-mode command lines

• Graphical, mouse-driven windowing environments

Chapter 4 � UNIX For MicrosoftWindowsUsers 93

In terms of character mode command-line interfaces, the most common
are the C, Korn, and Bourne shells. Again, these are roughly similar in
appearance to the common DOS command line, but are, in fact, far more
powerful. For example, among other things, the C shell provides a
scripting language with a syntax reminiscent of the C programming
language. This lets you create scripts (analogous to DOS batch files) that
can contain logical flow controls, nested functions, variables, and so
forth—much more advanced than their DOS counterparts. Moreover, you
can run one shell from within another shell of a different type; for
example, you could start a Korn shell from within a C shell. When
integrated with a multitasking windowing environment like OPEN LOOK,
you can run different or multiple command shells simultaneously, each
in its own window.

In terms of graphical interfaces, numerous environments are available.
For example, OpenWindows—the graphical environment included in the
Solaris package—is based on the OPEN LOOK windowing system. OPEN
LOOK, in turn, is an implementation of the X Window System, which is a
network-based, low-level windowing system developed at MIT in 1984 (see
page 100). Similarly, Hewlett-Packard provides OpenVue, which is also
derived from the X Window system.

Wabi software is an X Window application, and utilizes the X Toolkit
(similar to the Microsoft Windows API). This makes Wabi software
especially portable between various X-based UNIX environments (see
“Wabi Operating Environments” on page 17). For example, the SunSoft
version of Wabi software is compiled to run in the OpenWindows
environment, using the OPEN LOOK window manager. The X Window
System is explained in more detail later in this chapter, and in Chapter 2,
“How Wabi Works.”

Wabi 2: OpeningWindows94

Basic Networking Concepts

Like DOS, UNIX can run on standalone PCs, without being connected to
any network. Unlike DOS, UNIX was designed for and shines in a
networked environment. Being a multiuser operating system, UNIX
provides many network utilities and resources; DOS, by contrast, is
totally reliant on other programs and add-ons for its network support.

More often than not, when you use UNIX, you will be connected to a
network of some sort. With this in mind, it may be useful here to explain
a few basic networking concepts, as they apply to Wabi users.

What Is a Network?

In computing, a network refers to hardware devices, such as two or more
computers, that are connected by communications hardware and
software so they can share resources.

• Networking software running on each networked device handles
the communications process between hardware devices, and
provides the means through which the user or other application
programs can work with the resources being networked.

• The software rules governing network communications are
referred to as protocols; Solaris software (and hence Wabi
software) is based on the widely available Internet Protocol (IP).
This is often implemented in a protocol stack referred to as
Transfer Control Protocol/Internet Protocol (TCP/IP). Wabi uses
TCP/IP, but also supports the Windows Sockets (Winsock)
networking interface, which allows some applications, such as
Lotus Notes, to communicate through the network directly.

• The hardware connection between networked devices commonly
consists of Ethernet® or TokenRing® cabling and interface
ports, but may also include modems on telephone lines, serial
cables, or wireless devices.

Chapter 4 � UNIX For MicrosoftWindowsUsers 95

• Commonly shared resources on a network include printers,
application programs, data, and data storage devices. For
example, a person may be at a workstation that does not have a
hard disk. That person can use the network facilities to store
data files on a remote machine on the network.

Local Versus Remote

The term local refers to the computer at which you are physically
located—that is, your computer—or any peripheral device, such as a
printer, that is directly attached to your computer. Devices on the
network, other than your local computer and directly attached
peripherals, are said to be remote or network devices. Thus, a printer
attached to a remote computer on the network is referred to as a remote
printer or network printer; a printer attached directly to your computer is
a local printer. A remote computer that provides data file storage and
retrieval services for your local machine is called a remote file server or a
network file server. Figure 4-4 illustrates the relationships between some
basic network components.

Figure 4-4 Basic Network Components

Authentication

File & Print

Remote Printer

PC or Workstation

Local Printer

PCs or Workstations

Network

Server

Server

Wabi 2: OpeningWindows96

Servers and Clients

In networking, a server (also called a host) is any computer that performs
services for other computers on the network. Computers that use any of
these services are called clients. For example, a computer that provides
data file storage and retrieval services is called a file server; a computer
that accesses those files is a client.

Theoretically, any computer on a network can act as a server for other
computers. Conversely, some computers may provide more than one kind
of service. The specific design of any given network depends on the
available hardware and software resources. For example, even though
there may be a network-accessible printer directly attached to your
computer, you may not want to have a lot of network traffic directed
through your computer to access that printer.

Logging In

Logging in (also logon or login) refers to the process by which you identify
yourself to a given computer or network system, usually by specifying
your user name and password in response to a login prompt when you
attempt to connect to a server. Whether your UNIX system is connected to
a network or is a standalone machine, you must log in before doing
anything else on the system.

For example, the first prompt you see after booting a Solaris-based
workstation is:

login:

After entering your user name, you are next prompted to enter the
password associated with your user name. In UNIX, you must have a
specific user name—you can’t just enter any name—and a unique
password, usually assigned by a system administrator, before being
allowed access to the system.

Chapter 4 � UNIX For MicrosoftWindowsUsers 97

When you log in, the system usually runs a login script of some sort,
which sets up your default environment, loads programs, sets
configuration parameters, and so forth—similar in many ways to the
AUTOEXEC.BAT and CONFIG.SYS files under DOS.

Authentication Servers

On most (but not all) NFS-based networks, the machine handling the
login process is referred to as an authentication (or login) server.
Authentication servers contain password databases and other user
information files that describe the devices and files to which you are
allowed access.

For example, an authentication server may contain a list of other servers
to which you are allowed to connect. After you log in through an
authentication server, the network becomes “aware” of your user name
and the privileges associated with your user account; you can then
connect to other authorized servers and devices, if any.

User names, passwords, and privileges are usually assigned by a system
administrator, who is responsible for maintaining the operability and
security of one or more machines on the network.

The root User

The root user is the user name of the big cheese on a UNIX-based
computer—he or she has complete access to the machine, for better or
worse, and can perform system-level maintenance or destruction. The
root user is a machine-level, rather than network-level, concept; that is,
every machine has one root user. More to the point, the root user on
one computer is not the same root user on another computer or on the
network as a whole.

When you log in as root on a given machine, and then enter the
appropriate root user password, you gain access to every file on that
machine. This is useful for system maintenance and configuration
chores, but is not used for everyday work on your system. For example,
installing or removing Wabi software requires that you log in as root .
When you actually use Wabi software, however, you should log in using
your regular user name (that is, not root).

Wabi 2: OpeningWindows98

nobody Is Somebody

In the world of computers, where counting starts with the number 0,
rather than 1, it should not be surprising that in UNIX, nobody is
somebody. That is, you can use the name nobody to log in to a network
and, in most cases, be allowed a limited level of network access.

The user name nobody is the name to use when you do not or cannot log
in to a network through an authentication server. Usually, however, you
cannot get much work done when you are logged in as nobody —for
example, you might not be able to view or edit your own files.

The specific privileges granted to nobody are assigned by your system
administrator, and can vary widely from system to system.

Naming Network Drives

Each hardware device on a network must somehow identify itself to the
network software before any type of network communications—such as
logins, printing, or file transfers—can take place. Hardware devices are
identified at the software level by at least two different kinds of labels:

• Server (or host) name – A unique alphanumeric name assigned
to a network device, such as a workstation or file server.
Analogous to user names, server names provide a convenient
way to refer to hardware devices.

• Internet address – Commonly referred to as an IP address; a
unique 32-bit, dot-separated, numeric address assigned to each
hardware device on the Internet. An internet is a collection of
networks connected in such a way that they can act as a single,
virtual network; the Internet (with a capital “I”) is the largest
internet in the world.

For example, a file server on a network could be named bigfilemachine ,
and be assigned an IP address of 129.148.20.125 . Server names and IP
addresses are assigned by your network administrator.

Chapter 4 � UNIX For MicrosoftWindowsUsers 99

Domain Name System

Internet addresses are cryptic and unwieldy, and not at all convenient to
remember. As an alternative, the Internet provides a hierarchical naming
system called the Domain Name System (DNS), which is not only easier to
use than 12-digit numbers, but offers a number of system management
features that are of interest to system administrators.

From the standpoint of the user, DNS provides a mechanism for resolving
—or associating—mnemonic machine names (that is, names with letters
in them) with their corresponding numeric Internet addresses.

DNS is based on the concept of Internet domains, which for our purposes
here can be loosely defined as a naming scheme for subgroupings (or
subnetworks) within a network. For example, a university might include
the following domain-name definitions in the network environment:

profs.history.princeton.edu
grad.history.princeton.edu
admin.bursar.princeton.edu
housing.bursar.princeton.edu

In this example, princeton is a subnetwork (or subnet) in the edu
domain; history and bursar are subnets in the princeton domain,
profs and grad are subnets in the history domain, and admin and
housing are subnets in the bursar domain. A file server named
bigfilemachine in the grad domain would have the following fully
qualified DNS name:

bigfilemachine.grad.history.princeton.edu

Device Names andWabi

When mounting network drives through the Wabi Configuration Manager
(see Chapter 6, “Managing Drives”), you may sometimes need to specify
network mount points (directories) that are not local to your machine, or
not even local to your network. In such cases, you would use DNS names
for specifying the server to which you want to connect. For example, to
connect to a directory named /public/library on the server
bigfiles.grad.history.princeton.edu , you would use the name:

bigfilemachine.grad.history.princeton.edu:/public/library

Wabi 2: OpeningWindows100

About X Window

As mentioned earlier, Wabi is based on the X Window System. This makes
it possible to compile Wabi to run on a wide variety of platforms, under a
variety of X-compliant windowing systems.

The X Window System is a network-based graphical windowing system
initially developed in 1984 at the Massachusetts Institute of Technology.
It has been adopted as the low-level windowing standard by a consortium
(the X Consortium) of industry leaders like Sun, IBM, Hewlett-Packard,
DEC, and AT&T. X11R5 (X Version 11, Revision 5), the version on which
most popular windowing systems (like OPEN LOOK) for UNIX are based,
was released in 1991. The most recent version, Version 11, Revision 6
(X11R6) was released in May of 1994.

X Window (X for short) is based on a client-server model, in which
application programs (clients) communicate with a display device
indirectly via a display program (the server). Client programs do not need
to run on the same machine as the server program, which makes the X
Window system particularly suited for distributed computing
environments.

X Window is a low-level windowing standard in that it is a set of
specifications defining rudimentary mechanics for window controls and
behavior. Most X-derived window managers add higher-level, platform-
specific features—that is, the particular “look and feel” of dialog boxes,
mouse actions, and menu behavior. For example, the Solaris OPEN LOOK
window manager and HP’s OpenVue are both based on the X Window
standard, but each has its own unique feature and design elements, and
the two environments look fairly different from each other.

Chapter 4 � UNIX For MicrosoftWindowsUsers 101

XWindowTerminology

From the standpoint of the Wabi user, what you see from within Wabi is
Microsoft Windows—not UNIX, and not X Window. Because Wabi utilizes
X Window resources, however, you should be aware of some potentially
confusing terminology and interface quirks you may encounter.

Clients and Servers

Perhaps the most confusing terminology twist in the X Window system is
the use of the term client and server. In X, the concepts are basically flip-
flopped from what you might expect in a networking context, as described
on page 96. Specifically, in X:

• An X server is a process that provides windowing services to an
application, or client process. For example, the OPEN LOOK
window manager running on your local computer is an X
display server. In this model, the client and the server can run
on the same machine or on separate machines.

X servers handle user input from the keyboard and mouse, and
send it to a client application, which is usually running
remotely on a host on the network. The client, in turn, sends
the server the contents of the application window and other
program responses for display on the server screen.

• An X client application is a program that receives its input
and/or displays its output on a local X terminal or workstation
(the display server in this scenario). On “dumb” X terminals,
most X client applications run on a remote client host—that is,
the bulk of the processing performed by the program occurs
remotely—with only input/output occurring locally on the
display server. On more robust workstations, many client
applications run locally on the display server. In the case of
Wabi, it is usually run locally on your machine.

Wabi 2: OpeningWindows102

Confused yet? Not to worry—from your standpoint, Wabi runs locally on
your machine, displays locally on your machine, and accepts mouse and
keyboard input locally on your machine—the concept of Wabi X clients
and servers is moot. If, however, you want to get tricky, and try out some
of the X remote display capabilities with Wabi, refer to the instructions in
Chapter 14, “Tips and Tricks,” starting on page 288.

Resources

X Window and the applications running under X Window get their
configuration information about each other—details about the window
manager being used, colormaps, fonts, and many other items—from X
resource files. These resource files are similar to the .INI files used by
Microsoft Windows and Windows applications.

For example, applications tell X Window how their dialog boxes should
look and behave—such as what’s in them, when they should be displayed
or closed, their relationships to other dialog boxes—via a series of hints
registered in one or more application resource files. Similarly, the
.Xdefaults file sets workspace color, mouse input characteristics, and
defines window borders and styles, among other things, which are used
by the application.

Colormaps

In the X Window System, colormaps are tables of information that are
loaded into memory, and which describe all the colors that a given
display can handle. X-based applications can also provide their own
colormaps, which can override the default colormap used by a given
hardware device. Multiple colormaps can be loaded into memory, but only
one colormap can be actively displayed at a time.

For a nice description of the hows and whys of the X Window system,
written for general users, read the X Window System User’s Guide
(Valerie Quercia and Tim O’Reilly; O’Reilly & Associates, Inc., 1990.).

Chapter 4 � UNIX For MicrosoftWindowsUsers 103

Similarly, Microsoft Window provides a color mapping scheme that is
hardware dependent—you tell Windows what kind of display you are
running, and it in turn gives to Windows applications only those colors it
thinks the display hardware can handle.

Wabi must translate the Windows color mapping schemes to X
colormaps. Where possible, Wabi uses the default X colormap; when
necessary, it will swap in a custom virtual colormap as needed. This can
sometimes cause excessive color flashing when switching between
Windows applications running under Wabi and other non-Windows
applications running on your Solaris desktop. You can mitigate this
problem, however, by changing various settings in your WIN.INI file.

Information about these WIN.INI settings, as well as a more detailed
explanation of colormaps and how Wabi uses them, are provided in
Chapter 11, “Managing Colors,” starting on page 264.

Font Servers

In the X Window System, a font server is a machine on the network
containing font files used by local display servers. Display servers on the
network download fonts as needed from the font host. Font files can be
quite large; therefore, some networks may have a machine that is
dedicated to the task of font serving.

In X Window, a font server is also a software process that manages the
distribution and display of X fonts according to the X font service protocol.
Wabi software includes its own font server, wabifs , which interacts with
an X server via the font service protocol.

One of the most important new features of Microsoft Windows 3.1 was
the addition of TrueType font technology. TrueType is a scalable outline
font display and print technology, bundled with Microsoft Windows,
which provides a WYSIPMWYG (What-You-See-Is-Pretty-Much-What-You-
Get) way to view fonts on screen and print on your printer.

Wabi 2.0 used X font files, and shipped with several bitmapped and
TrueType fonts. Wabi 2.1, however, bypasses the X font file resources and
uses TrueType and Windows system fonts exclusively.

Refer to Chapter 12, “Fonts and Wabi,” for more information about
wabifs how Wabi works with fonts.

Wabi 2: OpeningWindows104

Don�t Worry, Be Wabi

For people who are coming from the worrisome world of DOS, with its
memory limitations, real mode and protected mode switching, IRQ
conflicts, DMA channel selection, and so forth, there are many things
about which you no longer need to concern yourself when using Wabi.

True, UNIX can be complicated in its own ways—enough to engender a
classic nerd culture—but also true is that most people have a system
administrator or three to take care of all that stuff(!)…. This section
describes those DOS sorts of things about which you no longer need
worry when running your Windows applications under Wabi software.

AUTOEXEC.BATandCONFIG.SYS
Wabi uses AUTOEXEC.BAT and CONFIG.SYS files primarily to fool Windows
applications that modify these files during installation into thinking that
they have done their deed and they can end the installation successfully.

The only things Wabi looks at in AUTOEXEC.BAT are the PATH statement
and any other environment variables (like SET VAR=value) put there by an
application—Wabi software simply ignores everything in CONFIG.SYS.

Extended and ExpandedMemory

Windows under DOS goes a long way toward circumventing the problems
associated with DOS extended, expanded, and conventional memory
constrictions (as explained on page 70). The problem is getting out of
DOS and into Windows in the first place.

Well, forget about it. In UNIX, there are no such things as extended,
expanded, and conventional memory.

Chapter 4 � UNIX For MicrosoftWindowsUsers 105

Memory Managers

Because extended, expanded, and conventional memory are moot points
under Wabi, you don’t need to even think about memory management
programs like MEMMAKER, QEMM, EMM386.EXE, and the like.

SMARTDRV and Other Disk Caching Programs

Microsoft Windows relies on DOS for its input/output (I/O) services, such
as access to disk read/write functions. Similarly, Windows under Wabi
gets its I/O services from UNIX. Consequently, disk caching programs
like SMARTDRV.EXE are unnecessary. Even better, Wabi does everything in
true 32-bit mode.

Device Drivers

DOS device drivers, which are usually loaded under DOS via a
CONFIG.SYS file, are not used under Wabi. As mentioned earlier in this
section, all statements in CONFIG.SYS are ignored by Wabi. On the
negative side, if your application requires such a driver, like a scanner
driver, chances are it will not work under Wabi.

386 EnhancedMode

Wabi software runs in Windows 386 Enhanced Mode. That’s it. Forget
about Standard Mode. Moreover, Solaris, which provides a true 32-bit
processor environment (even on Intel platforms), does a lot of things
better than Windows in 386 Enhanced Mode under DOS; for example,
more robust multitasking and more DOS sessions (with an appropriate
DOS emulator, like SunPC or Merge).

Wabi does not work at all with virtual device drivers. Programs that
use virtual device drivers are not compatible with Wabi. See
“Supported Applications” on page 6 for more information.

Wabi 2: OpeningWindows106

Wabi also has no use for the settings managed with the Windows 386
Enhanced Mode Control Panel tool—this set of Control Panel functions is
not installed when you install Windows under Wabi with the Wabi
Windows Install program.

What, you may ask, happens to all those nifty things like swap files and
32-bit disk access? The fate of these functions is described below.

Virtual Memory

The virtual memory setting in the 386 Enhanced Mode Control Panel tool
lets you specify the type and size of a disk-based swap file. Such swap
files are used by Windows to simulate physical RAM memory when none
is really available.

UNIX provides similar swap file services for Wabi, but does it better than
Windows under DOS. UNIX swap space is more flexible and performs
better than Windows swap files.

32-Bit Disk Access

32-bit Disk Access is also a setting in the 386 Enhanced Mode Control
Panel tool that is irrelevant under Wabi.

Solaris, on both Intel (x86) and RISC (SPARC) platforms provides true 32-
bit disk access. Under DOS, Windows uses 32-bit disk access to avoid a
couple of processor mode switches between real mode and protected
mode when performing disk reads or writes. Under UNIX, such mode
switching is unnecessary, because disk I/O functions are miles away
from the world of DOS. Windows 32-bit disk access also does not work
with all disk controllers—specifically any controller that works with disk
sectors of 1024 bytes. UNIX controllers have no such problems.

Chapter 4 � UNIX For MicrosoftWindowsUsers 107

Device Contention

Windows under DOS is not very clever when it comes to managing
contention between serial ports. For example, if two applications are
competing for the same port, Windows can sometimes freeze to the point
of requiring a hard system reset—it all depends on how well behaved the
Windows applications are.

Wabi, because it runs through UNIX, handles such contention more
gracefully, and simply tells the offending applications to please stop
talking so loudly and wait their turn. When the port becomes available,
the UNIX operating system releases it to Wabi.

PIF Files

PIF files exist in the DOS/Windows environment so Windows can figure
out how to futz with conventional memory and OEM-hardware-mapped,
character mode displays in DOS applications. Because Wabi does not
actually run DOS applications itself, but rather spawns a separate DOS
emulation program like SunPC or Merge, Wabi does not have to do any
such futzing, and PIF files are unnecessary. DOS applications run better
under such emulation because they are running in DOS, rather than in
DOS-in-Windows.

	UNIX For Microsoft Windows Users
	Introduction
	In This Chapter
	About UNIX
	Basic UNIX Concepts
	The UNIX File System
	The NFS File System
	NFS Mount Points and Wabi Drives
	Going Home
	Who Are You?
	May I?
	umask and You Shall Receive

	Some Common DOS and UNIX Commands
	Getting Help

	Climbing Into Your Shell

	Basic Networking Concepts
	What Is a Network?
	Local Versus Remote
	Servers and Clients
	Logging In
	Authentication Servers
	The root User
	nobody Is Somebody

	Naming Network Drives
	Domain Name System
	Device Names and Wabi

	About X Window
	X Window Terminology
	Clients and Servers
	Resources
	Colormaps
	Font Servers

	Don’t Worry, Be Wabi
	AUTOEXEC.BAT and CONFIG.SYS
	Extended and Expanded Memory
	Memory Managers
	SMARTDRV and Other Disk Caching Programs
	Device Drivers

	386 Enhanced Mode
	Virtual Memory
	32-Bit Disk Access
	Device Contention

	PIF Files

