
O R C H E S T R A T E

V I S U A L O R C H E S T R A T E
U S E R ’S G U I D E
FOR ORCHESTRATE VERSION 4.5

TO R RE N T SY S T E M S, I N C .

O R C H E S T R AT E

V I S U A L O R C H E S T R A T E

U S E R ’S G U I D E

FOR ORCHESTRATE VERSION 4.5

This document, and the software described or referenced in it, are confidential and proprietary to
Torrent Systems, Inc. They are provided under, and are subject to, the terms and conditions of a
written license agreement between Torrent Systems and the licensee, and may not be transferred,
disclosed, or otherwise provided to third parties, unless otherwise permitted by that agreement.

No portion of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of Torrent Systems, Inc.

The specifications and other information contained in this document for some purposes may not be
complete, current, or correct, and are subject to change without notice. The reader should consult
Torrent Systems for more detailed and current information.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOC-
UMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY,
PERFORMANCE, OR SUITABILITY FOR USE OF PRODUCTS OR SOFTWARE
DESCRIBED HEREIN, SHALL BE DEEMED TO BE A WARRANTY BY TORRENT SYS-
TEMS FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF TORRENT SYSTEMS
WHATSOEVER. TORRENT SYSTEMS MAKES NO WARRANTY OF ANY KIND OR WITH
REGARD TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF
TORRENT SYSTEMS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Torrent is a registered trademark of Torrent Systems, Inc. Orchestrate and Orchestrate Hybrid Neu-
ral Network are trademarks of Torrent Systems, Inc.

AIX, DB2, SP2, Scalable POWERparallel Systems, and IBM are trademarks of IBM Corporation.
BYNET is a registered trademark of Teradata Corporation.
INFORMIX is a trademark of Informix Software, Inc.
Linux is a registered trademark of Linus Torvalds.
Oracle is a registered trademark of Oracle Corporation.
Sun and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc.
Teradata is a registered trademark of Teradata Corporation.
UNIX is a registered trademark of the Open Group.
Windows and Windows NT are U.S. registered trademarks of Microsoft Corporation.
The "X" device is a trademark of X/Open Company Ltd. in the UK and other countries.

All other product and brand names are trademarks or registered trademarks of their respective com-
panies or organizations.

Copyright  2000 Torrent Systems, Inc. All rights reserved. All patents pending.

Torrent Systems, Inc.
Five Cambridge Center
Cambridge, MA 02142
617 354-8484
617 354-6767 FAX

For technical support, send e-mail to: tech-support@torrent.com. visorchug.4.5 11.00

 i
Visual Orchestrate User’s Guide
Table of Contents

1. Introduction to Orchestrate

Parallelism and Orchestrate Applications . 1-1

Introduction to Parallelism . 1-1

Pipeline Parallelism . 1-2

Partition Parallelism . 1-2

Parallel-Processing Environments: SMP and Cluster/MPP 1-3

The Orchestrate Configuration File . 1-3

Orchestrate Application Components . 1-4

Data-Flow Modeling . 1-5

Orchestrate Data Sets . 1-5

The Orchestrate Schema . 1-6

Virtual and Persistent Data Sets . 1-7

Partitioning Data Sets . 1-9

Orchestrate Operators. 1-9

Operator Execution . 1-10

Prebuilt and Custom Operators . 1-10

Orchestrate Steps . 1-11

The Orchestrate Performance Monitor . 1-13

Creating Orchestrate Applications. 1-14

Orchestrate Installation and Administration . 1-14

2. Creating Applications with Visual Orchestrate

The Orchestrate Development Environment . 2-1

Creating an Orchestrate Application. 2-3

Deploying the Application on Your UNIX System . 2-6

Deploying Your Application with job-manager . 2-7

Summary of Deployment Commands . 2-8

Setting User Preferences. 2-9

Visual Orchestrate User’s Guide
 ii

Table of Contents
Setting Program Directory Paths . 2-13

Visual Orchestrate Utilities. 2-14

Checking an Orchestrate Configuration . 2-14

Using the Orchestrate Shell . 2-15

Generating an osh Script to Configure and Run a Program 2-15

Using the Lock Manager . 2-15

3. Orchestrate Data Types

Introduction to Orchestrate Data Types. 3-1

Vectors . 3-2

Support for Nullable Fields . 3-2

Orchestrate Data Types in Detail . 3-2

Date . 3-2

Decimal . 3-4

Floating-Point . 3-5

Integers . 3-6

Raw . 3-6

String . 3-6

Subrecord . 3-6

Tagged . 3-6

Time . 3-6

Timestamp . 3-7

Performing Data Type Conversions. 3-8

Rules for Orchestrate Data Type Conversions . 3-8

Summary of Orchestrate Data Type Conversions . 3-9

Example of Default Type Conversion . 3-10

Example of Type Conversion with modify . 3-10

Data Type Conversion Errors . 3-11

4. Orchestrate Data Sets

Orchestrate Data Sets . 4-1

Data Set Structure . 4-1

Record Schemas . 4-2

Using Data Sets with Operators . 4-3

Table of Contents
 iii

Visual Orchestrate User’s Guide
Using Virtual Data Sets . 4-4

Using Persistent Data Sets . 4-6

Importing Data into a Data Set . 4-7

Partitioning a Data Set . 4-7

Copying and Deleting Persistent Data Sets . 4-7

Using Visual Orchestrate with Data Sets . 4-7

Working with Persistent Data Sets . 4-8

Working with Virtual Data Sets . 4-12

Using the Data Set Viewer . 4-14

Obtaining the Record Count from a Persistent Data Set 4-16

Defining a Record Schema . 4-16

Schema Definition Files . 4-17

Field Accessors . 4-17

How a Data Set Acquires Its Record Schema . 4-17

Using Complete or Partial Schema Definitions . 4-18

Naming Record Fields . 4-19

Defining Field Nullability . 4-19

Using Value Data Types in Schema Definitions . 4-20

Vectors and Aggregates in Schema Definitions . 4-24

Default Values for Fields in Output Data Sets . 4-27

Using the Visual Orchestrate Schema Editor . 4-27

Representation of Disk Data Sets . 4-32

Setting the Data Set Version Format . 4-33

Data Set Files . 4-34

5. Orchestrate Operators

Operator Overview . 5-1

Operator Execution Modes . 5-2

Persistent Data Sets and Steps . 5-2

Using Visual Orchestrate with Operators. 5-3

Operator Interface Schemas . 5-6

Example of Input and Output Interface Schema . 5-6

Input Data Sets and Operators . 5-7

Output Data Sets and Operators . 5-8

Visual Orchestrate User’s Guide
 iv

Table of Contents
Operator Interface Schema Summary . 5-10

Record Transfers and Schema Variables . 5-11

Flexibly Defined Interface Fields . 5-15

Using Operators with Data Sets That Have Partial Schemas 5-15

Data Set and Operator Data Type Compatibility . 5-17

Data Type Conversion Errors and Warnings . 5-17

String and Numeric Data Type Compatibility . 5-18

Decimal Compatibility . 5-19

Date, Time, and Timestamp Compatibility . 5-20

Vector Data Type Compatibility . 5-21

Aggregate Field Compatibility . 5-21

Null Compatibility . 5-21

6. Orchestrate Steps

Using Steps in Your Application . 6-1

The Flow of Data in a Step . 6-2

Designing a Single-Step Application . 6-3

Designing a Multiple-Step Application . 6-4

Working with Steps in Visual Orchestrate . 6-4

Creating Steps . 6-5

Executing a Step . 6-7

Setting Server Properties for a Step . 6-8

Setting Environment Variables . 6-10

Setting Step Execution Modes . 6-10

Using Pre and Post Scripts . 6-12

7. The Performance Monitor

The Performance Monitor Window . 7-1

How the Performance Monitor Represents Your Program Steps 7-3

Configuring the Performance Monitor . 7-4

Controlling the Performance Monitor Display . 7-5

General Display Control . 7-5

Operator Display Control . 7-6

Data Set Display Control . 7-7

Table of Contents
 v

Visual Orchestrate User’s Guide
Generating a Results Spreadsheet . 7-8

Creating Movie Files . 7-10

8. Partitioning in Orchestrate

Partitioning Data Sets . 8-1

Partitioning and a Single-Input Operator . 8-2

Partitioning and a Multiple-Input Operator . 8-2

Partitioning Methods. 8-3

The Benefit of Similar-Size Partitions . 8-3

Partitioning Method Overview . 8-4

Partitioning Method Examples . 8-5

Using the Partitioning Operators . 8-7

Choosing a Partitioning Operator . 8-8

The Preserve-Partitioning Flag . 8-11

Example of the Preserve-Partitioning Flag’s Effect . 8-11

Preserve-Partitioning Flag with Sequential Operators . 8-13

Manipulating the Preserve-Partitioning Flag . 8-13

Example: Using the Preserve-Partitioning Flag . 8-14

9. Collectors in Orchestrate

Sequential Operators and Collectors . 9-1

Sequential Operators and the Preserve-Partitioning Flag 9-2

Collection Methods . 9-3

Choosing a Collection Method . 9-3

Setting a Collection Method . 9-4

Collection Operator and Sequential Operator with Any Method 9-5

Collection Operator before Write to Persistent Data Set 9-5

10. Constraints

Using Constraints . 10-1

Controlling Where Your Code Executes on a Parallel System 10-2

Controlling Where Your Data Is Stored . 10-4

Using Constraints with Operators and Steps . 10-5

Configuring Orchestrate Logical Nodes . 10-5

Using Node Pool Constraints . 10-6

Visual Orchestrate User’s Guide
 vi

Table of Contents
Using Resource Constraints . 10-7

Combining Node and Resource Constraints . 10-8

Using Node Maps . 10-8

Data Set Constraints. 10-9

11. Run-Time Error and Warning Messages

How Orchestrate Detects and Reports Errors . 11-1

Error and Warning Message Format . 11-2

Messages from Subprocesses . 11-3

Controlling the Format of Message Display . 11-4

12. Creating Custom Operators

Custom Orchestrate Operators . 12-1

Kinds of Operators You Can Create . 12-2

How a Generated Operator Processes Data . 12-3

Configuring Orchestrate For Creating Operators . 12-4

Using Visual Orchestrate to Create an Operator . 12-5

How Your Code Is Executed . 12-8

Specifying Operator Input and Output Interfaces. 12-8

Adding and Editing Definitions of Input and Output Ports 12-8

Reordering the Input Ports or Output Ports . 12-10

Deleting an Input or Output Port . 12-10

Specifying the Interface Schema . 12-10

Defining Transfers . 12-13

Referencing Operator Interface Fields in Operator Code 12-13

Examples of Custom Operators. 12-14

Convention for Property Settings in Examples . 12-14

Example: Sum Operator . 12-15

Example: Sum Operator Using a Transfer . 12-16

Example: Operator That Recodes a Field . 12-17

Example: Adding a User-Settable Option to the Recoding Operator 12-17

Using Orchestrate Data Types in Your Operator . 12-20

Using Numeric Fields . 12-21

Using Date, Time, and Timestamp Fields . 12-21

Table of Contents
 vii

Visual Orchestrate User’s Guide
Using Decimal Fields . 12-23

Using String Fields . 12-24

Using Raw Fields . 12-25

Using Nullable Fields . 12-25

Using Vector Fields . 12-26

Using the Custom Operator Macros. 12-27

Informational Macros . 12-27

Flow-Control Macros . 12-27

Input and Output Macros . 12-28

Transfer Macros . 12-29

How Visual Orchestrate Executes Generated Code. 12-31

Designing Operators with Multiple Inputs . 12-31

Requirements for Coding for Multiple Inputs . 12-32

Strategies for Using Multiple Inputs and Outputs . 12-32

13. Creating UNIX Operators

Introduction to UNIX Command Operators. 13-1

Characteristics of a UNIX Command Operator . 13-2

UNIX Shell Commands . 13-3

Execution of a UNIX Command Operator . 13-5

Handling Operator Inputs and Outputs . 13-7

Using Data Sets for Inputs and Outputs . 13-8

Example: Operator Using Standard Input and Output . 13-9

Example: Operator Using Files for Input and Output . 13-13

Example: Specifying Input and Output Record Schemas 13-19

Passing Arguments to and Configuring UNIX Commands 13-22

Using a Shell Script to Call the UNIX Command . 13-22

Handling Message and Information Output Files . 13-24

Handling Configuration and Parameter Input Files . 13-25

Using Environment Variables to Configure UNIX Commands 13-26

Example: Passing File Names Using Environment Variables 13-26

Example: Defining an Environment Variable for a UNIX Command 13-27

Example: Defining User-Settable Options for a UNIX Command 13-28

Handling Command Exit Codes. 13-35

Visual Orchestrate User’s Guide
 viii

Table of Contents
How Orchestrate Optimizes Command Operators . 13-36

Cascading UNIX Command Operators . 13-37

Using Files as Inputs to UNIX Command Operators . 13-38

Using FileSets as Command Operator Inputs and Outputs 13-39

Using Partial Record Schemas . 13-39

Index

1 – 1Visual Orchestrate User’s Guide

l
-

1: Introduction to Orchestrate

With the Orchestrate Development Environment, you create parallel applications without
becoming bogged down in the low-level issues usually associated with parallel programming.
Orchestrate allows you to develop parallel applications using standard sequential program-
ming models, while Orchestrate handles the underlying parallelism.

Orchestrate is designed to handle record-based data, much like the data stored in an RDBMS
such as DB2, INFORMIX, Teradata, or Oracle. In fact, Orchestrate can read data directly
from an RDBMS for parallel processing and then store its results in the RDBMS for further
analysis.

Orchestrate provides a graphical user interface, Visual Orchestrate, to enable you to create a
complete parallel application in a Microsoft Windows development environment.

This chapter introduces the fundamental capabilities of Orchestrate, in the following sec-
tions:

• “Parallelism and Orchestrate Applications” on page 1-1

• “Orchestrate Application Components” on page 1-4

• “Orchestrate Data Sets” on page 1-5

• “Orchestrate Operators” on page 1-9

• “Orchestrate Steps” on page 1-11

• “Creating Orchestrate Applications” on page 1-14

The next chapter describes in more depth how to use Visual Orchestrate to create paralle
applications. The rest of this book explains in detail how to use the three Orchestrate applica
tion components: data sets, operators, and steps.

Parallelism and Orchestrate Applications

This section first describes the two basic kinds of parallelism that can be used in Orchestrate
applications. This section then describes the main categories of parallel-processing environments in
which Orchestrate applications can be run. The section concludes with a description of the
Orchestrate configuration file.

Introduction to Parallelism

There are two basic kinds of parallelism, both of which you can use in your Orchestrate applica-
tions:

Visual Orchestrate User’s Guide1 – 2 Parallelism and Orchestrate Applications

d all
, and at
e. The
ion on

rating-
uns when

tions
ion to

work

.
h node
m can

n four

llelism,
• Pipeline parellelism

• Partition parellelism

Pipeline Parallelism

In pipeline parallelism, each operation runs when it has input data available to process, an
processes are running simultaneously, except at the beginning of the job as the pipeline fills
the end as it empties. In a sequential application, operations execute strictly in sequenc
following figure depicts a sample application that imports data, then performs a clean operat
the data (perhaps removing duplicate records), and then performs some kind of analysis:

Use of Orchestrate lets an application concurrently run each operation in a separate ope
system process, using shared memory to pass data among the processes. Each operation r
it has input data available to process.

The theoretical limit to the efficiency gain of the pipeline is a factor of the number of opera
that your application uses. This gain in efficiency is achievable independently of and in addit
partition parallelism, described below.

Partition Parallelism

The more powerful kind of parallelism relies on data partitions. Partition parallelism distributes an
operation over multiple processing nodes in the system, allowing multiple CPUs to
simultaneously on one operation.

Partitioning divides a data set into multiple partitions on the processing nodes of your system
Partitioning implements the “divide and conquer” aspect of parallel processing. Because eac
in the parallel system processes a partition of a data set rather than all of it, your syste
produce much higher throughput than with a single-processor system.

The following figure is a data-flow diagram for the same application, as executed in parallel o
processing nodes.

With enough processors, the model shown above can use both pipeline and partition para
further improving performance.

import clean analyze

import clean analyze

Introduction to Orchestrate 1 – 3Visual Orchestrate User’s Guide

archi-
e of the

among

ation
CPU-,
 I/O
PU-
s and

ber of
ng the

ry and
ts own
arallel-
ed,

 as the
ns, and
direct

 access

 your
ration

odes,
u need
Parallel-Processing Environments: SMP and Cluster/MPP

The environment in which you run your Orchestrate applications is defined by your system’s
tecture and hardware resources. All parallel-processing environments are categorized as on
following:

• SMP (symmetric multiprocessing), in which some hardware resources may be shared
processors

• Cluster or MPP (massively parallel processing), also known as shared-nothing, in which each
processor has exclusive access to hardware resources

SMP systems allow you to scale up the number of CPUs, which may improve applic
performance. The performance improvement depends on whether your application is
memory-, or I/O-limited. In CPU-limited applications, the memory, memory bus, and disk
spend a disproportionate amount of time waiting for the CPU to finish its work. Running a C
limited application on more processing units can shorten the waiting time of other resource
thereby speed up overall performance.

Some SMP systems allow scalability of disk I/O, so that throughput improves as the num
processors increases. A number of factors contribute to the I/O scalability of an SMP, includi
number of disk spindles, the presence or absence of RAID, and the number of I/O controllers

In a cluster or MPP environment, you can use the multiple CPUs and their associated memo
disk resources in concert to tackle a single application. In this environment, each CPU has i
dedicated memory, memory bus, disk, and disk access. In a shared-nothing environment, p
ization of your application is likely to improve the performance of CPU-limited, memory-limit
or disk I/O-limited applications.

The Orchestrate Configuration File

Every MPP or SMP environment has characteristics that define the system overall as well
individual processing nodes. These characteristics include node names, disk storage locatio
other distinguishing attributes. For example, certain processing nodes might have a
connection to a mainframe for performing high-speed data transfers, while other nodes have
to a tape drive, and still others are dedicated to running an RDBMS application.

To optimize Orchestrate for your system, you edit and modify the Orchestrate configuration file.
The configuration file describes every processing node that Orchestrate will use to run
application. When you invoke an Orchestrate application, Orchestrate first reads the configu
file to determine the available system resources.

When you modify your system by adding or removing processing nodes or by reconfiguring n
you do not need to recode or even to recompile your Orchestrate application. Instead, yo
only edit the configuration file.

Visual Orchestrate User’s Guide1 – 4 Orchestrate Application Components

n. For
isual

tion,
Another benefit of the configuration file is the control it gives you over parallelization of your
application during the development cycle. For example, by editing the configuration file, you can
first execute your application on a single processing node, then on two nodes, then four, then eight,
and so forth. The configuration file lets you measure system performance and scalability without
modifying your application code.

For complete information on configuration files, see the Orchestrate Installation and
Administration Manual.

Orchestrate Application Components

You create Orchestrate applications with three basic components:

• Data sets: Sets of data processed by the Orchestrate application

• Operators: Basic functional units of an Orchestrate application

• Steps: Groups of Orchestrate operators that process the application’s data

The Visual Orchestrate graphical user interface lets you easily create and run an applicatio
instructions on using Visual Orchestrate, see the chapter “Creating Applications with V
Orchestrate”.

The following figure shows a Visual Orchestrate Program window with a sample applica
demonstrating all three Orchestrate components—data sets, operators, and steps:

Introduction to Orchestrate 1 – 5Visual Orchestrate User’s Guide

rds,
e an
The

RMIX
This sample application consists of one step. The step first uses the Orchestrate import operator to
create an input data set from external data in file inFile.data. It then pipes the imported data to
the tsort operator, which performs a sort. The application then compresses the data using the
pcompress operator. Note that the sort and compress operations are performed in parallel. After
data has been sorted and compressed, the application stores it to disk as an output data set named
out.ds. (Note that output data can also be exported to flat files.)

Data-Flow Modeling

A data-flow model can help you plan and analyze your Orchestrate application. The data-flow
model lets you conveniently represent I/O behavior and the operations performed on the data. The
following data-flow diagram models this sample application:

The following sections describe data sets, operators, and steps in more detail.

Orchestrate Data Sets

Orchestrate applications process three basic kinds of data, all of which have a structured format:

• Data stored in flat files: A file can contain data stored as newline-delimited reco
fixed-length or variable-length records, binary streams, or a custom format. You us
Orchestrate schema to describe the layout of imported data (described in the section “
Orchestrate Schema” on page 1-6).

• RDBMS tables: Orchestrate supports direct access of Oracle, DB2, Teradata, and INFO
tables for both reading and writing.

• Orchestrate data sets

Data set

Data set

tsort operator

pcompress operator

Input file

import operator

Output data set

Step

Visual Orchestrate User’s Guide1 – 6 Orchestrate Data Sets

ssing
racle,

e further

ecords.
at the

lso of
 field

ample,
ta type,
(File
chema

ithout
 lan-
 record
A data set is the body of data that is input to or output from an Orchestrate application. Orchestrate
processes record-based data in parallel, so the data set that is input to an Orchestrate application
always has a record format. Orchestrate’s record-based processing is similar to the proce
performed by an RDBMS (relational database management system), such as DB2, O
Teradata, or INFORMIX.

Record-based data is structured as rows, each of which represents a record. Records ar
divided into fields, where a field is defined by a field identifier, or name, and a field data type.

As an example, the following figure shows a record-based data set:

In the figure above, a data set is represented by a table with multiple rows, representing r
Each record has five data fields, represented by columns. All fields are of fixed length, so th
records are all the same length.

A record format can also include one or more variable-length fields, so that the record is a
variable length. A variable-length field indicates its length either by marking the end of the
with a delimiter character or by including information indicating the length.

The Orchestrate Schema

In Orchestrate, the record structure of a data set is defined by an Orchestrate record schema, which
is a form of metadata. Many data processing applications include metadata support. For ex
an RDBMS uses metadata to define the layout of a database table, including the name, da
and other attributes of every record field. Also, COBOL programs can contain an FD
Description) section to describe the layout of a COBOL data file. For details on Orchestrate s
capabilities and usage, see the section “Defining a Record Schema” on page 4-16.

An Orchestrate record schema allows you to reference an individual field by its name, w
knowing the field’s exact location within the record. You use the Orchestrate data definition
guage to define a schema for a data set only once. The following is a sample Orchestrate
schema:

.

.

.

Columns represent fields

Rows represent records

Table of fixed-length records

A record

int32int32 int16 sfloat string[10]

Introduction to Orchestrate 1 – 7Visual Orchestrate User’s Guide

iable-
ample

 can use
 UNIX
to an

ust be
 by the

e in the
record (
a:int32;
b:int32;
c:int16;
d:sfloat;
e:string[10])

An Orchestrate record definition consists of the keyword record, followed by a parenthesized list
of semicolon-separated field definitions. You can optionally include a terminating semicolon after
the last field definition.

Each field definition consists of the field’s name, a colon, and the field’s data type. For a var
length data type, such as a string, you can include an optional length specifier; in the ex
above, string e is specified to have the length 10.

A central feature of the Orchestrate record schema facility is flexibility. With schemas, you can
create a range of record layouts as well as support existing database table standards. You
schemas to represent existing data formats for RDBMS data tables, COBOL data files, and
data files. Schema flexibility is also very advantageous when you read external data in
Orchestrate application (import), or write Orchestrate data to an external format (export).

Virtual and Persistent Data Sets

As a data is passed from one operator to another in a step, Orchestrate handles it as a virtual data
set, which exists only during the step’s processing. A data set input to or output from a step m
persistent, or saved to disk. In data-flow diagrams, Orchestrate data sets are represented
following symbols.

The virtual data set and data set output symbols are shown in the data-flow diagram exampl
preceding section.

A virtual data set as a flow arc (or link) in a data-flow diagram

A persistent Orchestrate data set input to a step

A persistent Orchestrate data set output from a step

Visual Orchestrate User’s Guide1 – 8 Orchestrate Data Sets

 to
must be

 file),

ort

MIX.
l:

t. When
t of the
Data set icons can also show the physical storage of the data set, in files on multiple disks in your
system. In the following figure, to the right of the arrow an Orchestrate data set is shown as files
stored on four separate disks:

Required Naming Convention for Data Sets
For Orchestrate to correctly process persistent data sets, their file names must have the extension
.ds. For example, inData.ds is a valid name for a persistent data set.

In some steps, such as those with branches (see the chapter “Orchestrate Steps”), it is necessary
name virtual data sets. For Orchestrate to correctly process named virtual data sets, they
named with the extension .v. For example, tempData.v is a valid name for a virtual data set.

Data in Flat Files
Orchestrate can read and write data from a flat file (sometimes referred to as a UNIX
represented by the following symbol:

In reading from and writing to flat files, Orchestrate performs implicit import and exp
operations.

Data in RDBMS Tables
Orchestrate can also read and write an RDBMS table from DB2, Oracle, Teradata, or INFOR
In an Orchestrate data-flow diagram, an RDBMS table is represented by the following symbo

When it reads an RDBMS table, Orchestrate translates the table into an Orchestrate data se
it writes a data set to an RDBMS, Orchestrate translates the data set to the table forma
destination RDBMS. See the Orchestrate User’s Guide: Operators for information on reading and
writing tables.

Managing a data set distributed over an MPP that may contain hundreds of individual processing
nodes, disk drives, and data files is a complex task. However, Orchestrate handles all the
underlying communications necessary to route each record of a data set to the appropriate node for
processing, even if the data set represents an RDBMS table. When you design and create an
Orchestrate application, you do not need to be concerned with the location of individual data set
records or the means by which records will be transmitted to processing nodes.

A flat file

An RDBMS table

Introduction to Orchestrate 1 – 9Visual Orchestrate User’s Guide

m” on
u may
 other

f your

 of an
ut, and
nts an

next, in
mport
sequent
section
h an

arallel
 your
a single
ts you
For more information about data sets, see the chapter “Orchestrate Data Sets”.

Partitioning Data Sets

The benefits of partitioning your data sets were introduced in the section “Partition Parallelis
page 1-2. Orchestrate allows you to control how your data is partitioned. For example, yo
want to partition your data in a particular way to perform an operation such as a sort. On the
hand, you may have an application that partitions data solely to optimize the speed o
application. See the chapter “Partitioning in Orchestrate” for more information.

Orchestrate Operators

Orchestrate operators, which process or analyze data, are the basic functional units
Orchestrate application. An operator can take data sets, RDBMS tables, or data files as inp
can produce data sets, RDBMS tables, or data files as output. The following figure represe
Orchestrate operator in a data-flow diagram:

The operators in your Orchestrate application pass data records from one operator to the
pipeline fashion. For example, the operators in an application step might start with an i
operator, which reads data from a file and converts it to an Orchestrate data set. Sub
operators in the sequence could perform various processing and analysis tasks. In the
“Data-Flow Modeling” on page 1-5, you saw a more detailed data-flow diagram of suc
Orchestrate application.

The processing power of Orchestrate derives largely from its ability to execute operators in p
on multiple processing nodes. You will likely use parallel operators for most processing in
Orchestra applications. Orchestrate also supports sequential operators, which execute on
processing node. Orchestrate provide libraries of general-purpose operators, and it also le
create custom operators (see the section “Prebuilt and Custom Operators” on page 1-10).

. . .

. . .

Input data sets

Output data sets

Operator

Visual Orchestrate User’s Guide1 – 10 Orchestrate Operators

ate will
n.

ide of
xecutes
ates the
g nodes

ur
ailable to
s with

luding
Operator Execution

By default, Orchestrate operators execute on all processing nodes in your system. Orchestrate
dynamically scales your application up or down in response to system configuration changes,
without requiring you to modify your application. This capability means that if you develop parallel
applications for a small system and later increase your system’s processing power, Orchestr
automatically scale up those applications to take advantage of your new system configuratio

The following figure shows two Orchestrate operators connected by a single data set:

The left side of this figure shows the operators in an Orchestrate data-flow model. The right s
the figure shows the operators as executed by Orchestrate. Records from any node that e
Operator 1 may be processed by any node that executes Operator 2. Orchestrate coordin
multiple nodes that execute one operator, and Orchestrate also manages the data flow amon
executing different operators.

Orchestrate allows you to limit, or constrain, execution of an operator to particular nodes on yo
system. For example, an operator may use system resources, such as a tape drive, not av
all nodes. Another case is a memory-intensive operation, which you want to run only on node
ample memory.

Prebuilt and Custom Operators

Orchestrate supplies libraries of operators that perform general-purpose tasks in parallel, inc
the following:

• Import and export data

• Copy, merge, sort, and split data sets

• Summarize, encode, and calculate statistics on a data set

• Perform data mining operations using the Orchestrate analytic tools

See the Orchestrate User’s Guide: Operators for information on these prebuilt operators.

...

...

Operator 1

Data set

Operator 2

Data-Flow Model

Record data flow

Processing nodes

Orchestrate Execution

Introduction to Orchestrate 1 – 11Visual Orchestrate User’s Guide

rator

ative)
your

c-

arallel

BMS
ent data
tep exe-
 cannot

 to other
nt data
In addition to the Orchestrate operators, your application may require other operators for specific
data-processing tasks. Orchestrate allows you to develop custom operators and execute them in
parallel or sequentially, as you execute the prebuilt operators. For example, the step shown below
first processes the data with two Orchestrate operators, import and sample. Then, it passes the data
to a custom operator that you have created:

You can create custom operators in the following three ways:

• Create an operator from UNIX commands or utilities, such as grep or awk. Visual Orchestrate
lets you conveniently create UNIX operators with the UNIX command Custom Ope
(UNIX Command) feature; see the chapter “Creating UNIX Operators” for details.

• Create an operator from a few lines of your C or C++ code with the Custom Operator (N
feature. For details on using this feature to conveniently implement logic specific to
application, see the chapter “Creating Custom Operators”.

You can also use the cbuildop command utility to create operators from your own C fun
tions; see the chapter “Building Operators in C” in the Orchestrate Shell User’s Guide.

• Derive an operator from the Orchestrate C++ class library. The operator can execute in p
or sequentially. See the Orchestrate/APT Developer’s Guide for more information.

Orchestrate Steps

An Orchestrate application consists of at least one step, in which one or more Orchestrate operators
process the application’s data. A step is a data flow, with its input consisting of data files, RD
data, or persistent data sets. As output, a step produces data files, RDBMS data, or persist
sets. Steps act as structural units for Orchestrate application development, because each s
cutes as a discrete unit. Often, the operators in a step execute simultaneously, but a step
begin execution until the preceding step is complete.

Within a step, data is passed from one operator to next in virtual data sets. Steps pass data
steps via Orchestrate persistent data sets, RDBMS tables, or disk files. Virtual and persiste
sets are described in the section “Virtual and Persistent Data Sets” on page 1-7.

import operator

sample operator

Your custom operator

Visual Orchestrate User’s Guide1 – 12 Orchestrate Steps
In the figure below, the final operator in Step 1 writes its resulting data to two persistent data sets.
Operators in Step 2 read these data sets as input.

A step is also the unit of error handling in an Orchestrate application. All operators within a step
succeed or fail as a unit, allowing you to conditionalize application execution based on the results
of a step. In the event of a failure during step execution, the Orchestrate framework performs all
necessary clean up of your system. This includes deleting any files used for temporary storage and
the freeing of any system resources used by the step.

For more information about steps, see the chapter “Orchestrate Steps”.

Step 1

Step 2

Operator

Operator

Operator

 Operator

Virtual
data set

Introduction to Orchestrate 1 – 13Visual Orchestrate User’s Guide

trate’s
nitor
agram

lication
on step
n of
The Orchestrate Performance Monitor

You can direct information about an executing step to the Performance Monitor, Orches
dynamic performance visualization tool. The figure below shows the Performance Mo
window, in which a rectangular grid corresponds to an Orchestrate operator in a data-flow di
and lines connecting the grids correspond to records flowing between operators.

The Performance Monitor produces a graphical, 3-D representation of an Orchestrate app
step as it executes. The Performance Monitor allows you to track the progress of an applicati
and to display and save statistical information about it, both during and after completio
execution.

See the chapter “The Performance Monitor” for more information.

Visual Orchestrate User’s Guide1 – 14 Creating Orchestrate Applications

uced in
 chap-

tions

, to sim-
et of

iles,
n file
ine all
odes by
ura-

es your
e the

art by
 pro-
 con-
stom
 the
-10.

nables
 then

file.
Creating Orchestrate Applications

The following is a general procedure for developing an Orchestrate application:

1. Create a data-flow model of your application. Data-flow models are introduced in the section
“Data-Flow Modeling” on page 1-5.

2. Create any custom operators required by your application. Custom operators are introd
the section “Prebuilt and Custom Operators” on page 1-10 and described in detail in the
ter “Orchestrate Operators”.

3. Develop your application using Visual Orchestrate (see the chapter “Creating Applica
with Visual Orchestrate”).

4. Create a test data set. As many Orchestrate applications process huge amounts of data
plify and speed debugging you will probably want to test your application first on a subs
your data.

5. Create or edit your configuration file(s). You might want to create different configuration f
for use at different stages of application development. For example, one configuratio
could define a single node, a second could define a few nodes, and a third could def
nodes in your system. Then, as testing progressed, you could increase the number of n
changing the environment variable APT_CONFIG_FILE to point to the appropriate config
tion file. The Orchestrate Installation and Administration Manual describes configuration files
and environment variables in detail.

6. Run and debug your application in sequential execution mode. Sequential mode execut
application on a single processing node; the configuration file is used only to determin
number of partitions into which data sets are divided for parallel operators. You can st
using only a single partition, while you concentrate on testing and debugging your main
gram and operators. Later, you can use a different configuration file (or edit your original
figuration file) to increase the number of partitions and, if applicable, to test your cu
partitioning. Partitioning is described in the chapter “Partitioning in Orchestrate”, and
debugging process is described in the section “Setting Step Execution Modes” on page 6

7. Run and debug your application in parallel execution mode. Parallel execution mode e
the full functionality of Orchestrate. You can start by running in parallel on a single node,
on a few nodes, and complete testing by running on the full parallel system.

Orchestrate Installation and Administration

The Orchestrate Installation and Administration Manual thoroughly describes installation and
administration tasks, such as setting environment variables and maintaining a configuration

2 – 1Visual Orchestrate User’s Guide

ug the
2: Creating Applications with Visual
Orchestrate

The Orchestrate graphical user interface, Visual Orchestrate, lets you create Orchestrate
applications from data-flow components (operators, data sets, and steps) in a Microsoft Win-
dows development environment. After you have created the data-flow diagram, you can
deploy the application on your UNIX system.

This chapter describes how to use Visual Orchestrate to create and deploy an Orchestrate
application, in the following sections:

• “The Orchestrate Development Environment” on page 2-1

• “Creating an Orchestrate Application” on page 2-3

• “Deploying the Application on Your UNIX System” on page 2-6

• “Setting User Preferences” on page 2-9

• “Setting Program Directory Paths” on page 2-13

• “Visual Orchestrate Utilities” on page 2-14

The Orchestrate Development Environment

At the most general level, developing an application for Orchestrate has two phases:

1. Developing and testing the application on PC running Microsoft Windows.

2. Deploying the application on a target UNIX machine.

Orchestrate uses a client-server development environment, in which you develop applications on a
PC running Microsoft Windows (95, 98, or NT). The PC is then connected over a network to the
target UNIX machine. This development environment allows you to use Visual Orchestrate,
Orchestrate’s graphical user interface, to develop your application, and then run and deb
application on the target machine.

Visual Orchestrate User’s Guide2 – 2 The Orchestrate Development Environment
The following figure shows the Orchestrate development environment:

The Orchestrate server performs three basic tasks:

1. Stores your application.

2. Stores configuration information about the UNIX target system.

3. Controls and coordinates the execution of Orchestrate applications.

For Orchestration application development to take place, the Orchestrate server must be running on
the target machine. You must designate an Orchestrate server administrator. The Orchestrate
server administrator could be your system administrator or another person responsible for
managing your target UNIX system. The Orchestrate server administrator is responsible for
configuring and managing the Orchestrate server. For detailed information on Orchestrate server
administration, see the Orchestrate Installation and Administration Manual.

The Orchestrate client, Visual Orchestrate, is a graphical development tool that you use on a PC to
create Orchestrate applications. Shown below is the main window of Visual Orchestrate:

Orchestrate client

 Network

 Orchestrate server
(UNIX)

(Microsoft Windows)

 . . .

Orchestrate client
(Microsoft Windows)

Creating Applications with Visual Orchestrate 2 – 3Visual Orchestrate User’s Guide
You develop your Orchestrate application by creating and configuring Orchestrate data sets,
operators, and steps. Using Visual Orchestrate, you can also execute and debug your application on
the target UNIX system.

When your application is complete and ready for deployment, you run the deployed application
through either Visual Orchestrate or the Orchestrate UNIX-based deployment tools. These tools
allow you to incorporate your Orchestrate application into a larger application that may run as part
of an overnight batch job or run under a UNIX job control application.

Creating an Orchestrate Application

This section describes the basic procedure that you follow to create an Orchestrate application
using Visual Orchestrate.

1. Start Visual Orchestrate by clicking on the Windows Start button, then choosing Programs ->
Visual Orchestrate -> Visual Orchestrate.

2. Connect to an Orchestrate server, either by clicking on the Torrent logo button on the toolbar or
by using the Visual Orchestrate menu command File -> Connect. Either action opens the fol-
lowing dialog box:

3. Choose the Server Name from the drop-down list in the dialog box. You may have a choice of
Orchestrate servers if your UNIX system has multiple Orchestrate installations or your net-
work has multiple UNIX target systems.

Note: The Orchestrate server administrator must define and configure the server on each Orches-
trate client PC. In addition, the Orchestrate server administrator must start your Orchestrate server
before you can connect to it. These tasks are described in the chapter on client-server environment
installation in the Orchestrate Installation and Administration Manual.

4. Enter your UNIX Username on the UNIX machine hosting the Orchestrate server. The UNIX
account for Username must have the correct configuration settings to run Orchestrate, as
described in the Orchestrate Installation and Administration Manual.

5. Enter the Password for Username.

By default, Visual Orchestrate does not save the Password. Check Save Password in Win-
dows Registry if you want Visual Orchestrate to save the Password.

Visual Orchestrate User’s Guide2 – 4 Creating an Orchestrate Application
6. If you are creating a new program, choose File -> New from the Visual Orchestrate menu. This
opens an empty Program Editor window. You develop a complete application (containing
data sets, operators, and steps) in a single Program Editor window.

If you are editing an existing program, choose File -> Open and select the program from the
list of stored programs.

7. Use the Program Properties dialog box to configure your program.

The Program -> Properties menu entry opens the Program Properties dialog box:

Specify the Program Name. This is the name you use to invoke the application when deploy-
ing it on your UNIX target machine.

Specify the Library. This defines the library name of the program under the Programs entry
in the display area of Visual Orchestrate.

Specify the Owner of the program. By default, the program owner is the same as the user
name of the person logged in to Visual Orchestrate.

Specify the Access Type of the program. Options are:

Public Write (default): Anyone can read, write, or execute the program.

Public Read: Anyone can read and execute the program; only the program owner can
modify it.

Private: Only the program owner can read, write, or execute the program.

8. Choose the configuration information for your application. This information usually includes
the processing nodes on the target machine that you want to use and, if applicable, the RDBMS
that you want to access.

You can specify the configuration information for the entire program, or you can separately
configure each step in the program. Use the Visual Orchestrate Program -> Properties menu
entry to set the global properties for the application. Later, you can configure each step, as nec-
essary.

Creating Applications with Visual Orchestrate 2 – 5Visual Orchestrate User’s Guide

abase
tabase

t least a
onfig-

e and

ps” for

 on
r
e
ies
In the Program Properties dialog box, choose the Server tab to open the following form:

Configuration: Select the Orchestrate configuration used to execute the application. The configu-
ration defines the processing nodes and disk drives available for use by your program. Often, the
server configuration is the only program property that you need to set.

The Orchestrate server administrator is required to set up at least a default configuration
before you can create an Orchestrate program. If no configuration is available, see the
Orchestrate server administrator.

You may have several different configurations available. For example, one configuration
may be for testing and another for production.

You can validate a configuration using the Tools->Check Config menu entry. See the sec-
tion “Checking an Orchestrate Configuration” on page 2-14 for more information.

Database: (Optional) Specify the database configuration used by the application. The dat
configuration defines the database type (DB2, Informix, or Oracle), as well as the specific da
configuration to use.

If you are accessing a database, the Orchestrate server administrator must set up a
default database configuration before you can create an Orchestrate program. If no c
uration is available, see the Orchestrate server administrator.

You may have several different configurations available, depending on the databas
database data that you want to access.

Execution Options: Select Check Only to validate the step but not to run it, and Execute to exe-
cute the step.

Leave the remaining settings in their default state. See the chapter “Orchestrate Ste
more information.

Note: For information on the Paths settings, see the section “Setting Program Directory Paths”
page 2-13. For information on the Environment and Execution Mode tabs, see the chapte
“Orchestrate Steps”. For information on the Orchview tab, See the chapter “The Performanc
Monitor”. For information on the Parameters tab, see the section “Using the Program Propert
Dialog Box to Set Program Parameters” on page 2-15.

Visual Orchestrate User’s Guide2 – 6 Deploying the Application on Your UNIX System

that

 data
ge.

il you

strate

-

ribes

 can
utes

. The
r the

develop
to use
9. Develop your application by creating a data-flow diagram containing data sets, operators, and
steps, as described in the chapter “Orchestrate Steps”.

10. Optionally, check for programming errors in your application without running it. (Note
Orchestrate automatically checks your application for errors when you select Run, as
described in the next step.) To check your application, click the Validate button on the Visual
Orchestrate tool bar:

Orchestrate checks your application for programming errors, such as invalid links in
flows. Orchestrate displays invalid data-flow elements in red, with an explanatory messa

After fixing any reported errors, you can run validate again and continue the process unt
have corrected all errors that Orchestrate detects.

11. Run your application, by clicking the Run button on the tool bar:

If you have not already validated your application and corrected all reported errors, Orche
now checks it. After successful validation, Visual Orchestrate runs your application.

During execution, an Execution Window shows the output of your application. If any run
time errors occur, Visual Orchestrate reports them in the Execution Window. You can use this
information to correct the error in your application.

12. Optionally, deploy your application on the target UNIX system. The next section desc
how to deploy your application, using the Orchestrate deployment tools.

Deploying the Application on Your UNIX System

Once your application executes correctly under the control of Visual Orchestrate, you
optionally deploy the application on your UNIX target system. A deployed application exec
under the control of Orchestrate’s UNIX deployment tools, not under Visual Orchestrate
Orchestrate deployment tools are UNIX commands that you use to invoke and monito
execution of your application.

You do not have to deploy your application on the same Orchestrate server that you used to
it. In fact, it is common to have two or more Orchestrate servers installed. This allows you
one server for application development and testing and another for application deployment.

Validate button

Run button

Creating Applications with Visual Orchestrate 2 – 7Visual Orchestrate User’s Guide

g

oke.

essary,
Before deploying your application, you can use the File menu command (File -> Copy To) to copy
a program, Orchestrate configuration, custom operator, or schema from the server to which you are
currently connected, to another server.

Deploying Your Application with job-manager

To deploy and manage your application on your target UNIX system, you use the Orchestrate util-
ity job-manager. The job-manager utility is located in install_dir/apt/bin, where
install_dir is the path to the Orchestrate installation. You must either include this directory in
your UNIX PATH or provide the complete path name to the utility.

You run job-manager with the following command:

$ job-manager command

where command is the command option to job-manager. The command options are:

• run jobname

• abandon jobinstance

• restart jobinstance

• kill jobinstance

• errors jobinstance

Note: Before you run your application with job-manager, you must execute it at least once usin
Visual Orchestrate.

Running your Application
To invoke an Orchestrate application developed using Visual Orchestrate, you use the run com-
mand with job-manager. This command takes the name of the Orchestrate application to inv
An Orchestrate application name has the form:

libname:progname

To find the libname and progname, see the Program Properties dialog box, General tab, fields
Library and Program Name.

The application executes using the current server configuration. You can examine and, if nec
modify this server configuration using the set-server-parameters command. See the
Orchestrate Installation and Administration Manual for information on using this command.

The following is an example of the run command:

$ job-manager run User:myApp > jobInstance.txt

Visual Orchestrate User’s Guide2 – 8 Deploying the Application on Your UNIX System
Checking the Job Instance Number and Exit Status
In the example above, job-manager executes the application named User:myApp. If the
application completes successfully, job-manager writes the job instance number to the file
jobinstance.txt. The Orchestrate server assigns an instance number to each run of your
application. Therefore, if you invoke multiple instances of User:myApp, you can identify each
instance by its job instance number. All job-manager commands (other than run), take as an
argument a job instance number.

As your application executes, the Orchestrate server also writes error messages to jobin-
stance.txt. It is recommended that immediately after your application run completes, you do the
following:

1. Check the exit status of the job-manager command that you used to run the application, as you
check the exit status of any other UNIX shell command.

2. Execute the following command to display any run-time error messages:

$ job-manager errors ’cat jobInstance.txt’

Terminating an Application Run
To terminate an Orchestrate application, you must first terminate the job-manager command. If
you used the keyboard to invoke the job-manager command, terminate it by pressing <Ctrl-C>.

If the job-manager command was invoked from a script, you must first halt the script. Then, termi-
nate the Orchestrate application by using the following command:

$ job-manager kill ’cat jobInstance.txt’

Summary of Deployment Commands

The following table lists the commands, and command options, to job-manager:

Command Use

run run jobname

Executes the application identified by jobname, which has the form:

libname:progname

The Library and Program Name entries in the General tab are of the Pro-
gram Properties dialog box define this information.

abandon abandon jobinstance

If your application terminates during a restartable step, this command deletes all
data added to any output persistent data sets by all iterations of the abandoned
step. Specifying this option means you cannot resume the application.

jobinstance specifies the Orchestrate job number as returned by the run
command.

Creating Applications with Visual Orchestrate 2 – 9Visual Orchestrate User’s Guide

ra-
is box
Refer to the Orchestrate Installation and Administration Manual for a further discussion of
deployment.

Setting User Preferences

You set preferences for Visual Orchestrate through the Tools menu. Select Tools->Options to open
the following dialog box:

From the General tab:

• Click Show Link Numbers to configure Visual Orchestrate to show the number of the ope
tor output and operator input for each end of a link between two operators. By default, th

kill kill jobinstance

Terminates an executing application.

jobinstance specifies the Orchestrate job number as returned by the run
command.

errors errors jobinstance

Displays on the screen any error messages generated by an application.

jobinstance specifies the Orchestrate job number as returned by the run
command.

Command Use

Visual Orchestrate User’s Guide2 – 10 Setting User Preferences

tep

he

. By
ext time

-

is unchecked. Checking it enables link numbers, as shown below:

• Click Show Vendor Icons to cause the vendor name to appear in the operator icon in the Pro-
gram Editor window. By default, this option is unchecked.

• Click Create initial step for new program to cause Visual Orchestrate to create an empty s
when you create a new program. This is the default action of Visual Orchestrate.

• Click Wrap Long Output Lines to configure Visual Orchestrate to wrap long text lines in t
Execution Window. Otherwise, you must scroll the window to view the entire line.

• Click Show Message Headers to enable the message headers in the Execution Window
default, message headers are suppressed. Your setting of this option takes effect the n
you run your application.

Shown below is an example Execution Window display from an application run, with mes
sage headers disabled:

Link numbers

Creating Applications with Visual Orchestrate 2 – 11Visual Orchestrate User’s Guide
Shown below is the output from a run of the same application, after you have enabled display
of messages headers:

From the Server tab, you set the server characteristics:

• Set the Default Server used by Visual Orchestrate.

Visual Orchestrate User’s Guide2 – 12 Setting User Preferences

he

set-
ll” on

mas

 using

n

oning

for-
Set Connect Timeout to number of seconds that Visual Orchestrate will wait before sig-
nalling a server-not-present error.

• Click Connect Automatically at Startup to cause Visual Orchestrate to connect to t
Default Server whenever you start Visual Orchestrate.

• Use Default Directory to set the server working directory for your applications, as well as
ting the default path for the file browser and shell tool (see “Using the Orchestrate She
page 2-15).

• Use Default Library to set the default library name for all programs, operators, and sche
that you create.

• Set the default Orchestrate configuration for all programs created in Visual Orchestrate
the Default Configuration pull-down list.

You can override the default configuration for a program (using the Program -> Properties
menu command) or for a step (by double clicking on the step to open the Step Properties dia-
log box).

From the Data Sets tab, choose the data set overwrite characteristics:

• In the panel If data set already exists, select the action that your application will take if a
overwrite is attempted:

• Signal an error to cause the step to fail with a message.

• Overwrite it to allow the overwrite to occur.

• Append to it to append the data while keeping the current data, schema, and partiti
information.

• If in the first panel you selected Overwrite it, select the extent of the overwrite:

• Everything to overwrite the records, schema, and partitioning information.

• Records only to overwrite only the records.

• Records and schema to overwrite the records and schema, but not the partitioning in
mation.

Creating Applications with Visual Orchestrate 2 – 13Visual Orchestrate User’s Guide

ts”. For

the

t

ync-

native
r more

trate

For information on data sets and record schemas, see the chapter “Orchestrate Data Se
information on partitioning, see the chapter “Partitioning in Orchestrate”.

Setting Program Directory Paths

To optionally change the directory paths used by your program, you use the Paths tab in the
Program Properties dialog box, shown below:

The Paths tab lets you set any of the following properties:

Use Working Directory to set the working directory for the step. This setting overrides
Default Directory setting in the Tools -> Options dialog box.

TempDir: By default, Orchestrate uses the directory /tmp for some temporary file storage. If you
do not want to use this directory, you can set the parameter TempDir to a path name to a differen
directory.

SortDirectory: Optionally sets the location of SyncSort on your processing nodes. Usually, S
Sort will be installed in the same location on every node. The Orchestrate psort operator can use
SyncSort to sort a data set. If both SortDirectory and the Orchestrate server parameter SYNC-
SORTDIR are undefined, the psort operator uses UNIX sort.

SortDirectory overrides the Orchestrate server parameter SYNCSORTDIR.

Compiler Path: Sets the path to the C++ compiler used by Orchestrate when you create
operators. See the section “Configuring Orchestrate For Creating Operators” on page 12-4 fo
information.

Conductor Host: The network name of the processing node from which you invoke an Orches
application should be included in the configuration file using either node or fastname. If the net-
work name of the node is not included in the configuration file, Orchestrate users must set byCon-
ductor Host to the fastname of the node invoking the Orchestrate application.

Visual Orchestrate User’s Guide2 – 14 Visual Orchestrate Utilities

r your
te

o check
Note: The maximum length of any path name that you enter in Visual Orchestrate is 254 charac-
ters.

Visual Orchestrate Utilities

This section describes Visual Orchestrate built-in utilities, for performing the following tasks:

• “Checking an Orchestrate Configuration” on page 2-14

• “Using the Orchestrate Shell” on page 2-15

• “Generating an osh Script to Configure and Run a Program” on page 2-15

• “Using the Lock Manager” on page 2-15

Checking an Orchestrate Configuration

An Orchestrate configuration describes the processing nodes on the target machine fo
application. The Tools -> Check Config feature lets you to test the validity of an Orchestra
configuration that the Orchestrate server administrator has made available on your server. T
a configuration:

1. Select Tools -> Check Config to open the Check Config dialog box, which displays a list of
all available Orchestrate configurations. The following sample Check Config dialog box
shows two available configurations:

2. Select a configuration name from the dialog box, and then click OK.

An execution window opens containing the results of the test.

Refer to the Orchestrate Installation and Administration Manual for a detailed discussion of
configuring your Orchestrate system.

Creating Applications with Visual Orchestrate 2 – 15Visual Orchestrate User’s Guide

tor, the
ing
Using the Orchestrate Shell

You can issue commands from the Orchestrate shell (osh) by means of the Orchestrate shell tool.
To access the shell tool, on the tool bar click the shell icon:

The following dialog box is displayed:

You can now issue osh commands from the default directory that is defined in Tools —> Options
... —> Server —> Default Directory.

Generating an osh Script to Configure and Run a Program

In addition to Visual Orchestrate, Orchestrate has a command interface, called the Orchestrate shell
or osh. When using osh, you build your Orchestrate application from UNIX command lines. You
can invoke simple Orchestrate applications using a single osh command line, and you can create
shell scripts containing multiple osh commands.

The Tools menu (Tools -> Generate Script) and the Program menu (Program -> Generate
Script) let you generate a file containing an osh script from a Visual Orchestrate program. You can
then run the generated script (which you may need to edit) from the UNIX command line. The
script will create the necessary configuration file, set environment parameters necessary to run the
application, and run the application. For information on creating osh commands and scripts, see
the chapter on creating applications in the Orchestrate Shell User’s Guide.

Using the Program Properties Dialog Box to Set Program Parameters
You also have the option of setting initial (or default) values for parameters used by your
application, by using the Parameters tab of the Program Properties dialog box. This tab lists the
names of all variables used in your program. You can also set values of parameters in pre and post
scripts, as described in the section “Using Pre and Post Scripts” on page 6-12.

Using the Lock Manager

When a Visual Orchestrate user opens a program, schema definition, or custom opera
Orchestrate server places a lock on the object. This lock prevents a user from opening and writ
to an object after another user has already opened the object.

Visual Orchestrate User’s Guide2 – 16 Visual Orchestrate Utilities
A user can open a locked object for reading only. If the user wants to modify the locked object, the
user must first save the object with a different name.

You may occasionally need to explicitly clear a lock. For example, an object may remain locked as
a result of a system problem, such as a crash of the PC running Visual Orchestrate. To explicitly
clear a lock, use the Lock Manager menu command, Tools -> Lock Manager. This menu
command opens the following dialog box:

1. Choose the object type whose lock you want to clear: Program, Schema, or Custom Opera-
tor.

2. Use Select Name to choose the name of the object.

Warning: Do not use the Lock Manager to reset a lock in order to gain write access to a locked
object. Doing so would give write access both to you and to the user who originally opened the
object, and you would overwrite each other’s work.

3 – 1Visual Orchestrate User’s Guide
3: Orchestrate Data Types

This chapter covers fundamental information about the Orchestrate data types, through the
following topics:

• “Introduction to Orchestrate Data Types” on page 3-1

• “Orchestrate Data Types in Detail” on page 3-2

• “Performing Data Type Conversions” on page 3-8

Introduction to Orchestrate Data Types

Orchestrate supports all value (scalar) data types and two aggregate data types. Orchestrate data
types are listed in the table below.

Orchestrate
Data Type Size Description

date 4 bytes Date, with month, day, and year.

decimal (Roundup(p)+1)/2 Packed decimal, compatible with IBM packed decimal format.

sfloat 4 bytes IEEE single-precision (32-bit) floating-point value.

dfloat 8 bytes IEEE double-precision (64 bits) floating-point value.

int8
uint8

1 byte Signed or unsigned integer of 8 bits.

int16

uint16

2 bytes Signed or unsigned integer of 16 bits.

int32
uint32

4 bytes Signed or unsigned integer of 32 bits.

int64
uint64

8 bytes Signed or unsigned integer of 64 bits.

raw 1 byte per character Untyped collection, consisting of a fixed or variable number of
contiguous bytes and an optional alignment value.

string 1 byte per character ASCII character string of fixed or variable length.

Visual Orchestrate User’s Guide3 – 2 Orchestrate Data Types in Detail

 null
on or
 any
r each
ield

section
iptions
ssed to
ee

rted
Vectors

Orchestrate supports vectors, which are one-dimensional arrays of any type except tagged. For
details on vectors, see the section “Vector Fields” on page 4-24.

Support for Nullable Fields

If a field is nullable, it can contain a valid representation of null. When an application detects a
value in a nullable field, it can take an action such as omitting the null field from a calculati
signaling an error condition. You can specify nullability for an Orchestrate record field of
Orchestrate value data type. For fields of aggregate data types, you can specify nullability fo
element in the aggregate. For details on field nullability, see the section “Defining F
Nullability” on page 4-19.

Orchestrate Data Types in Detail

This section describes the characteristics of each Orchestrate data type listed in the
“Introduction to Orchestrate Data Types” on page 3-1. For applicable data types, the descr
include data conversion details, such as the data conversion format string for values pa
certain operators, such as import and export. For information on conversion between types, s
the section “Performing Data Type Conversions” on page 3-8.

Date

The Orchestrate date data type is compatible with the RDBMS representations of date suppo
by DB2, INFORMIX, Oracle, and Teradata.

An Orchestrate date contains the following information:

• year: between 1 and 9999, inclusive

• month: between 1 and 12, inclusive

subrec Sum of lengths of
aggregate fields

Aggregate consisting of nested fields.

tagged Sum of lengths of
aggregate fields

Aggregate consisting of tagged fields, of which one can be ref-
erenced per record.

time 5 bytes Time of day, with resolution in seconds or microseconds.

timestamp 9 bytes Single field containing both a date and a time value.

Orchestrate
Data Type Size Description

Orchestrate Data Types 3 – 3Visual Orchestrate User’s Guide

ange 1

 4713
 count

tination
 that if

d to a
gth you
nents to

 to the
eric

r
o indi-

r
ext

ompo-
• day of month: between 1 and 31, inclusive

You can also specify a date using two forms of the Julian representation:

• Julian date uses two components to define a date: a year and the day of the year in the r
to 366, inclusive.

• Julian day contains a single component specifying the date as the number of days from
BCE January 1, 12:00 hours (noon) GMT. For example, January 1, 1998 is Julian day
2,450,815.

Data Conversion Format for a Date
By default, an Orchestrate operator interprets a string containing a date value yyyy-mm-dd. If the
date argument does not include a day, the operator sets it to the first of the month in the des
field. If the date does not include either the month or the day, they default to January 1. Note
the date includes a day of the month, it must also include a month.

If you wish to specify a non-default format, you can pass the operator an optional format string
describing the format of the date argument. In a format string for a source string converte
date, you must zero-pad the date components (date, month, and year) to the component len
specify. For a destination string that receives a date, Orchestrate zero-pads the date compo
the specified length.

The following list describes the components that you can use in the format string. In addition
required portions of the date components described below, you can also include non-num
characters is as separators or delimiters.

• %dd: A two-digit day of the month (range of 1 - 31).

• %ddd: Day of year in three-digit form (range of 1 - 366).

• %mm: A two-digit month (range of 1 - 12).

• %<year_cutoff>yy: A two-digit year derived from yy and a four-digit year cutoff.

<year_cutoff> specifies the starting year of the century in which the specified yy falls. You
can specify any four-digit year as <year_cutoff>. Then, yy is interpreted as the low-orde
two digits of the year that is the same as or greater than the year cutoff. For example, t
cate that the year passed as 31 represents 1931, you could specify the <year_cutoff> of
1930. If you pass a format string with a <year_cutoff> of 1930 and the corresponding yea
in the date string argument is 29, Orchestrate interprets that year as 2029, which is the n
year ending in 29 that is after the <year_cutoff>.

• %yy: A two-digit year derived from a default year cutoff of 1900. For example, using theyy

format for a year of 42 results in its interpretation as 1942.

• %yyyy: A four-digit year.

Note: Each component of the date format string must start with the percent symbol (%).

Following are examples of complete date format strings using one or more of the possible c
nents:

Visual Orchestrate User’s Guide3 – 4 Orchestrate Data Types in Detail

ted

eted

rate
B2,

 (S).
ximum
rising
 the

ix

ion
at is,

he total

 a
• %mm/%dd/%yyyy for dates in the form 03/24/1995 (interpreted as March 24, 1995)

• %mm-%dd-%1800yy for dates in the form 03-24-95 where 1800 is the year cutoff (interpre
as March 24, 1895)

• %ddd-%yy for dates in the form 056-1998 (interpreted as February 25, 1998)

• %dd/%mm/%yy for dates in the form 25/12/96 where 1900 is the default year cutoff (interpr
as December 25, 1996).

Decimal

Orchestrate provides the decimal data type for representing decimal data. The Orchest
decimal format is compatible with the IBM packed decimal data format and with the D
Informix, Oracle, and Teradata DECIMAL data types.

The Orchestrate decimal format is characterized by two components: precision (P) and scale
Precision is the total number of digits in the decimal. Precision must be at least 1, and the ma
precision possible is 255. Scale is the number of digits to the right of the decimal point, comp
the fractional part of the decimal. The ranges of permissible values for precision and scale are
following:

1 <= P <= 255, 0 <= S <= P

A decimal with a scale of 0 represents integer values (no fractional part).

Decimal values are always signed. The decimal’s sign nibble represents the sign by one of s
numeric values, shown below:

The number of bytes occupied by a decimal value is (P/2)+1. This packed decimal representat
uses one nibble for each decimal digit, plus a sign nibble. If the number of decimal digits (th
the precision) is even, Orchestrate prepends a zero-valued leading nibble in order to make t
number of nibbles even.

By default, a decimal with zero in all its nibbles is invalid. Many operations performed on
decimal detect this condition and either fail or return a flag signifying an invalid decimal value.
You can, however, specify that an operation treat a decimal containing all zeros as a valid

Sign Nibble Value Sign Notes

0xA +

0xB -

0xC + (Preferred) Always generated when Orchestrate writes to a decimal
with a positive value.

0xD - (Preferred) Always generated when Orchestrate writes to a decimal
with a negative value.

0xE +

0xF +

Orchestrate Data Types 3 – 5Visual Orchestrate User’s Guide

:

d

t as an

ing
ing is
s not fit

the

oint.
 to the
r the
ngth

metic
representation of the value 0. In that case, Orchestrate treats the decimal as valid and performs the
operation.

A decimal’s available range, or its maximum and minimum possible values, is based on its preci-
sion and scale. The equation for determining a decimal’s upper and lower bounds is the following

Note that this is an exclusive range, so that the decimal will always be less than the maximum an
greater than the minimum. Thus, if P = 4 and S = 2, the range is - 99.99 <= decimal <= 99.99 (it is
not -100.00 <= decimal <= 100.00).

String Assignment and Conversion for Decimals
Orchestrate lets you assign a string to a decimal and a decimal to a string. The two most
likely situations for such assignments are performing an import or export and using a data se
input to an operator.

When a string is assigned to a decimal, the string is interpreted as a decimal value. Strings
assigned to decimals must be in the form:

[+/-]ddd[.ddd]

where items in brackets are optional.

By default, Orchestrate treats the string as null-terminated However, you can also specify a str
length. Orchestrate ignores leading or trailing white space in the string. Range check
performed during the assignment, and a requirement failure occurs if the assigned value doe
within the decimal's available range.

You can also assign a decimal to a string. The destination string represents the decimal in
following format:

[+/-]ddd.[ddd]

A leading space or minus sign is written, followed by the decimal digits and a decimal p
Leading and trailing zeros are not suppressed. A fixed-length string is padded with spaces
full length of the string. A fixed-length string must be precision + 2 bytes long (one byte fo
leading sign indicator and one byte for the decimal point). A range failure occurs if a fixed-le
string field is not large enough to hold the decimal.

Floating-Point

Orchestrate defines single- and double-precision floating-point data types. All standard arith
and conditional operations are supported for these floating-point data types.

range 10± P S–()=

Visual Orchestrate User’s Guide3 – 6 Orchestrate Data Types in Detail
Integers

Orchestrate defines signed and unsigned, 8-, 16-, 32-, and 64-bit integer data types. All standard
arithmetic and conditional operations are supported by these data types.

Raw

The Orchestrate raw data type is a collection of untyped bytes, similar to the void data type in the
C programming language. A raw in Orchestrate always contains a length, rather than a null
terminator.

String

An Orchestrate string field always specifies a length and does not include a null terminator.

Subrecord

You define nested field definitions, or subrecords, with the aggregate data type subrec. A
subrecord itself does not define any storage; instead, the fields of the subrecord define storage. The
fields in a subrecord can be of any data type, including tagged.

Tagged

You define tagged aggregate fields (similar to C unions) with the aggregate data type tagged.
Defining a record with a tagged aggregate allows each record of a data set to have a different data
type for the tagged field. When your application writes to a field in a tagged aggregate field,
Orchestrate updates the tag, which identifies it as having type of the field that is referenced.

The data type of a tagged aggregate subfields can be of any Orchestrate data type except tagged or
subrec.

Time

The time data type uses a 24-hour representation, with either a one-second resolution or a
microsecond resolution. The Orchestrate time data type is compatible with most RDBMS
representations of time.

Valid times are in the range 00:00:00.000000 to 23:59:59.999999. Incrementing a time value of
23:59:59.999999 wraps the time around to 00:00:00.000000.

Orchestrate Data Types 3 – 7Visual Orchestrate User’s Guide

ent.

y

t

The time data type contains no information regarding time zone. In Orchestrate operations, all
time values are treated as if they are in the same time zone.

Data Conversion Format for a Time Value
By default, an Orchestrate operator interprets a string containing a time value as hh:nn:ss, where
hh is the hour, nn is the minute (so indicated to avoid confusion with the month value in the date
format), and ss is the second.

If you wish to specify a non-default format, you can pass the operator an optional format string
describing the format of the time argument. In a format string for a source string converted to a
time, the time components (hour, minutes, and seconds) must be zero-padded to the character
length specified by the format string. For a destination string that receives a time, Orchestrate
zero-pads the time components to the specified length.

The possible components of the format string are:

• %hh: A two-digit hours component.

• %nn: A two-digit minute component (nn represents minutes because mm is used for the month
of date).

• %ss: A two-digit seconds component.

• %ss.N: A two-digit seconds plus fractional part where N is the number of fractional digits with
a maximum value of 6. If N is 0, no decimal point is printed as part of the seconds compon
Trailing zeros are not suppressed.

Note: Each component of the time format string must start with the percent symbol (%).

For example, you could specify a format string of %hh:%nn to specify that the string contains onl
an hour and minutes component. You could also specify the format as %hh:nn:ss.4 to specify
that the string also contains the seconds to four decimal places.

Timestamp

A timestamp includes both a date, as defined by the Orchestrate date data type, and a time, as
defined by the time data type. The Orchestrate timestamp data type is compatible with mos
RDBMS representations of a timestamp.

Data Conversion Format for a Timestamp Value
By default, an Orchestrate operator interprets a string containing a timestamp value as the follow-
ing:

yyyy-mm-dd hh:nn:ss

Note that the month is represented by mm, while minutes are represented by nn. Also note the
required space between the date and time parts of the timestamp.

Visual Orchestrate User’s Guide3 – 8 Performing Data Type Conversions

on
 The
scribed

ma must

ields in

nding
efault

n field.

ust use

ysi-
tails on
To specify a non-default conversion format for a timestamp, you use a format string that
combines the format strings for date (see the section “Data Conversion Format for a Date”
page 3-3) and time (see the section “Data Conversion Format for a Time Value” on page 3-7).
conversion format you specify must be valid for both the date and the time segments, as de
in the applicable sections.

Performing Data Type Conversions

This section describes the following topics:

• “Rules for Orchestrate Data Type Conversions” on page 3-8

• “Summary of Orchestrate Data Type Conversions” on page 3-9

• “Example of Default Type Conversion” on page 3-10

• “Example of Type Conversion with modify” on page 3-10

• “Data Type Conversion Errors” on page 3-11

Rules for Orchestrate Data Type Conversions

For a data set to be used as input to or output from an Orchestrate operator, its record sche
be compatible with the interface for that operator, as follows:

• The names of the data set’s fields must be identical to the names of the corresponding f
the operator interface.

• The data type of each field in the data set must be compatible with that of the correspo
field in the operator interface. Data types are compatible if Orchestrate can perform a d
data type conversion, translating a value in a source field to the data type of a destinatio

If there are any discrepancies in field names, you must use the modify operator to change the field
names for your data set. If your data set has any fields with incompatible data types, you m
the modify operator to convert those types so they are compatible.

Note: For all built-in Orchestrate operators (except import/export of flat files), the internal, ph
cal representation of Orchestrate data types is handled transparently by Orchestrate. For de
using the import and export operators, see the Orchestrate User’s Guide: Operators.

Orchestrate Data Types 3 – 9Visual Orchestrate User’s Guide

ty” on

conver-

 desti-
Summary of Orchestrate Data Type Conversions

Orchestrate performs default type conversions on Orchestrate built-in numeric types (integer and
floating point), as defined in the book C: A Reference Manual (Third Edition), by Harbison and
Steele. Orchestrate also performs default data conversions involving decimal, date, time, and
timestamp fields. In addition, you can perform a number of data type conversions with the
modify operator, as described in the Orchestrate User’s Guide: Operators. Data type conversions
are described in more detail in the section “Data Set and Operator Data Type Compatibili
page 5-17.

The table below shows the default data type conversions performed by Orchestrate and the
sions that you can perform with the modify operator, as follows:

• d indicates that Orchestrate performs a default type conversion from source field type to
nation field type.

• m indicates that you can use a conversion specification with modify to convert from source
field to destination field.

• A blank cell indicates that Orchestrate does not provide any conversion.

Destination Field

Source
Field

in
t8

ui
nt

8

in
t1

6

ui
nt

16

in
t3

2

ui
nt

32

in
t6

4

ui
nt

64

sf
lo

at

df
lo

at

de
ci

m
al

st
rin

g

ra
w

da
te

tim
e

tim
es

ta
m

p

int8 d,m d d d d d d d d d,m d d,m m m m

uint8 d d d d d d d d d d d

int16 d,m d d d d d d d d d d,m

uint16 d d d d d d d d d d d

int32 d,m d d d d d d d d d d,m m m

uint32 d d d d d d d d d d m m

int64 d,m d d d d d d d d d d

uint64 d d d d d d d d d d d

sfloat d,m d d d d d d d d d d

dfloat d,m d d d d d d d d d,m d,m d,m m m

decimal d,m d d d d,m d d,m d,m d d,m d,m d,m

string d,m d d,m d d d,m d d d d,m d,m d,m m m m

raw m m d

date m m m m m m m

time m m m m d d,m

timestamp m m m m m m d

Visual Orchestrate User’s Guide3 – 10 Performing Data Type Conversions

ws that
Example of Default Type Conversion

The following figure shows an input data set schema in which the data types of fields field1 and
field3 do not match, but as shown in the conversion table above, they are compatible with the
types of the operator’s corresponding fields:

As shown, Orchestra performs the following two default conversions:

• The data type of field1 is converted from int8 to int32.

• The data type of field3 is converted from int16 to sfloat.

Example of Type Conversion with modify

The table in the section “Summary of Orchestrate Data Type Conversions” on page 3-9 sho
you can use modify to convert a field of type time to type int32. For example, to convert field t

from type time to type int32, perform the following steps:

1. Right-click the modify operator to open its Operator Properties dialog box. Press Add, to
open the Option Editor dialog box.

2. In the Option Editor dialog box, press Edit to open the Modify Adapter Editor dialog box.

3. In the Rename/Convert area of the Modify Adapter Editor dialog box, press Add to open
the Rename/Conversion dialog box.

4. In the Rename/Conversion dialog box, do the following:

• Enter the Source Field Name, t.

• Enter the Dest(ination) Field Name, t (or another name of your choice).

• Check Set Dest Type To, and select the data type of the destination field, int32.

• Check Convert Source Type. Select the Source Type, time. Select the Conversion to
perform, int32_from_date. Click OK to perform the conversion.

field1:int8;
field2:int16;
field3:int16;

Input data set schema

Default conversion

Output data set

.

.

.

field1:int32; field2:int16; field3:sfloat;

field1:int32; field2:int16; field3:sfloat;

Orchestrate Data Types 3 – 11Visual Orchestrate User’s Guide

ersion
As shown in the conversion table above, there is no default conversion from time to uint64. How-
ever, there is a default conversion from int32 to uint64, and there is an explicit (with modify)
conversion from int32 to uint64. Therefore, you can effect a default conversion to convert field
t from type time to type uint64. To do so, use the Rename/Conversion dialog box, described in
Step 4. above. Enter the Source Field Name, t. Enter the Dest Field Name of your choice. In the
Set Dest Type To field, enter uint64. Do not check Convert Source Type. Press OK. Orchestrate
converts the type from time to int32, and then from int32 to uint64.

Data Type Conversion Errors

A error results when any Orchestrate operator is unable to perform a default data type conversion.
See “Data Type Conversion Errors and Warnings” on page 5-17 for details on data type conv
errors and warnings and on how to prevent them.

Visual Orchestrate User’s Guide3 – 12 Performing Data Type Conversions

4 – 1Visual Orchestrate User’s Guide

d in that
as
 is a
4: Orchestrate Data Sets

Orchestrate data sets contain the data processed by an Orchestrate application. Orchestrate
operators take data sets as input, process all records of the input data set(s), and write their
results to output data sets.

This chapter introduces data sets by defining their structure and the two types of data sets
used by Orchestrate. It also explains how to use data sets with operators.

This chapter contains the following sections:

• “Orchestrate Data Sets” on page 4-1

• “Using Visual Orchestrate with Data Sets” on page 4-7

• “Defining a Record Schema” on page 4-16

• “Representation of Disk Data Sets” on page 4-32

Note: To manage Orchestrate persistent data sets, use the Orchestrate administration utility
orchadmin, which is described in the Orchestrate Installation and Administration Manual.

Orchestrate Data Sets

This section covers data set structure, record schemas, field data types, use of data sets with
operators, and the different types of data sets.

Data Set Structure

A data set consists of a one-dimensional array (vector) of records. The fundamentals of record-
based data are described in the section “Orchestrate Data Sets” on page 1-5. As describe
chapter, fields of some types, such as int8, are of fixed length. Fields of other types, such
string, can be of variable length. A record that defines one or more variable-length fields
variable-length record.

Visual Orchestrate User’s Guide4 – 2 Orchestrate Data Sets

 could

 in a
w and
d each

ema” on
estrate

sists or
prop-
The following figure shows a sample data set and the format of its variable-length record definition,
which contains two variable-length fields of type string:

An example of an appropriate use of this variable-length record format is a mailing list. In that case,
each record in the data set would hold the data for one person. One variable-length string field
could contain the person’s name, and the second field the address. A 32-bit integer field
contain a key for sorting the records.

Another kind of data set has a fixed-length record layout, similar to a normalized table
Relational Database Management System (RDBMS). Normalized tables have a regular ro
column layout. In the figure below, each row of the table corresponds to a single record, an
column corresponds to the same fixed-length field in every record:

Record Schemas

This section describes the data set schema, introduced in the section “The Orchestrate Sch
page 1-6. See the chapter “Orchestrate Data Types” for fundamental information on Orch
data types.

A schema describes the prototypical record in a data set or operator interface. A schema con
a record-level property list and a description of each field in the record. Specific record-level
erties are described in the chapter on import/export properties in the OrchestrateUser’s Guide:
Operators.

 Record Record Record Record

Variable-length record

string string int32

. . .

Data set

.

.

.

Columns represent fields

Data set of fixed-length records

Rows represent records

Orchestrate Data Sets 4 – 3Visual Orchestrate User’s Guide

ield

ata set.
rts most
export

ram:

fining

ke data
 can also
rators,
The schema describes each field with the following information:

• An identifier (field name)

• A data type (for some types, parameterized)

• For string and raw fields, an optional length specification

• For a vector field, an optional length

• Field-level properties, such as the nullability specification (see the section “Defining F
Nullability” on page 4-19)

A fundamental use of a record schema is to describe the data for import into an Orchestrate d
Orchestrate’s record schema can describe the data layout of any RDBMS table, and it suppo
COBOL records formats, including repeating substructures. See the chapter on the import/
utility in the Orchestrate User’s Guide: Operators for more information on import and export.

In the following figure, a data set’s record schema is shown in a fragment of a data-flow diag

In this figure, the record schema for the input data set consists of five fields:

• a: A 32-bit integer

• b: A 10-element vector of 32-bit integers

• c: A nullable 16-bit integer

• d: A single-precision floating point value

• e: A variable-length string

See the section “Defining a Record Schema” on page 4-16 for more information on de
schemas.

Using Data Sets with Operators

Orchestrate operators, introduced in the section “Orchestrate Operators” on page 1-9, can ta
sets or data files as input, and can produce data sets or data files as output. Some operators
use RDBMS tables as input or output. For extensive information on using Orchestrate ope
see the chapter “Orchestrate Operators”.

a:int32;
b[10]:int32;
c:nullable int16;
d:sfloat;
e:string

Operator 1

Input data set schema

Operator 2

Visual Orchestrate User’s Guide4 – 4 Orchestrate Data Sets
Some operators can take multiple input and output data sets (n-input, m-output operators), as shown
in the left-hand data-flow diagram below. Other operators are limited in the number of input and/or
output data sets they handle; the right-hand diagram below shows a one-input, one-output operator:

Note: Within a single step, you cannot use a single data set (either virtual or persistent) as both
input and output for the same operator.

For the number of input and output data sets allowed for each Orchestrate operator, see the
appropriate chapter in the Orchestrate User’s Guide: Operators.

Using Virtual Data Sets

Orchestrate uses virtual data sets to temporarily store data that is output by an operator and input by
another operator. Virtual data sets exist only within a step, to connect the output of one operator to
the input of another operator in the step. You cannot use virtual data sets to connect operators in
different steps. A virtual data set does not permanently buffer or store to the data to disk. Virtual
data sets are created and processed by one step and then destroyed when that step terminates.

. . .

. . .

Input data sets Input data set

Output data sets Output data set

n-input, m-output
operator

one-input, one-output
operator

Orchestrate Data Sets 4 – 5Visual Orchestrate User’s Guide
The following data-flow model shows a step that uses two virtual data sets to connect three
operators:

Step 1

Operator 1

Operator 2

Operator 3

Virtual
data set 1

Virtual
data set 2

inFile.data

outFile.data

Visual Orchestrate User’s Guide4 – 6 Orchestrate Data Sets
Using Persistent Data Sets

Persistent data sets are stored to a disk file, so that the data processed by a step is preserved after the
step terminates. You can use persistent data sets to share data between two or more steps, as shown
below:

Step 1 saves the data set output from Operator 2 and uses it as the input to Step 2. These two steps
could be part of a single executable file, or each could be part of a separate executable file.

The example above uses the Orchestrate copy operator to create two copies of the data set output
of Operator 2: a virtual data set passed to Operator 3 and a persistent data set used as input to
Operator 4. The copy operator takes a single data set as input and produces any number of copies
of the input data set as output.

Note: A persistent data set cannot serve as both an input and an output in a single step. The reason
for this restriction is that a file cannot be open simultaneously for reading and for writing.

copy operator

Operator 1

Operator 2

Step 1

Operator 3

Step 2

Operator 4

Operator 5

Operator 6

Virtual
data set 4

Virtual
data set 5

Virtual data
set 1

Persistent data set 1

Persistent data set 2

Persistent data set 3

Virtual data
set 2

Virtual data
set 3

inFile.data

copyDS.ds

out3DS.ds
out6DS.ds

Orchestrate Data Sets 4 – 7Visual Orchestrate User’s Guide

tioning

erefore,
e
te set

he
 set. See

al data
Importing Data into a Data Set

In many Orchestrate applications, the first operation is to read data from a disk file and to convert
the data to an Orchestrate data set. Then, Orchestrate can begin processing the data in parallel,
including partitioning the data set. When processing is complete, your application can export the
data set to a disk file in the same format as the input file for the application.

The Orchestrate import/export utility lets you import a data file into Orchestrate as a data set and
export a data set to a file. See the chapters on the import and export operators in the Orchestrate
User’s Guide: Operators for more information.

Partitioning a Data Set

Partitioning divides a data set into multiple pieces, or partitions. Each processing node in your
system then performs an operation in parallel on an individual partition of the data set rather than
on the entire data set, resulting in much higher throughput than a using a single-processor system.

To implement partitioning, Orchestrate divides a data set by records. See the chapter “Parti
in Orchestrate” for more information on how Orchestrate partitions data sets.

Copying and Deleting Persistent Data Sets

Orchestrate represents a single data set as multiple files on multiple processing nodes. Th
you cannot use the standard UNIX commands rm to delete or cp to copy a persistent data set. Se
the section “Representation of Disk Data Sets” on page 4-32 for more information on da
representation.

Orchestrate provides the orchadmin utility to manipulate data sets. This utility recognizes t
layout of a persistent data set and accesses all data files to copy or delete the persistent data
the Orchestrate Installation and Administration Manual for a detailed discussion of orchadmin.

Using Visual Orchestrate with Data Sets

This section describes how to use Visual Orchestrate to manipulate both persistent and virtu
sets. Included below are the following sections:

• “Working with Persistent Data Sets” on page 4-8

• “Working with Virtual Data Sets” on page 4-12

Visual Orchestrate User’s Guide4 – 8 Using Visual Orchestrate with Data Sets
Working with Persistent Data Sets

To create a persistent data set in the Program Editor, you can either:

• Choose Program -> Add Data Set from the menu.

• Click the data set icon in the tool bar.

• With the cursor in a Program Editor window, click the right mouse button and select Add
Data Set from the popup menu.

The data set icon appears in the Program Editor window, as shown below:

Double click the data set icon to open the Data Set Properties dialog box, as shown below:

Use this dialog box to specify the following:

Orchestrate Data Sets 4 – 9Visual Orchestrate User’s Guide

ndi-

on on

 on

d of the
ou can
The Label of the data set in the Program Editor window.

The Pathname of the data set’s descriptor file. The descriptor file contains a list of all the i
vidual data files, stored across your parallel machine, that contain the data set records.

See the section “Representation of Disk Data Sets” on page 4-32 for more informati
data set layout.

The Library name for the data set. The library corresponds to the entry in the View Window,
under Data Set, containing the data set name.

Stored As. Choose the representation of the data set as either an Orchestrate Data Set
(default), a File Set, a Flat File, or either of the two SAS representations. See the section
the import and export operators in the Orchestrate User’s Guide: Operators for more infor-
mation on representations of data sets.

After you create the data set, you create a link to connect the data set to an operator as either an
input or output data set. This procedure is described in the following two sections:

• “Connecting a Persistent Data Set as Input” on page 4-9

• “Connecting a Persistent Data Set as Output” on page 4-11

Connecting a Persistent Data Set as Input
To connect a persistent data set as an input to an operator, create a link and attach one en
link to the data set and the other end of the link to the input of an operator. To create a link, y
do any one of the following:

• Choose Program -> AddLink from the menu.

• Click the link icon in the tool bar.

• With the cursor in a Program Editor window, click the right mouse button and select Add
Link from the popup menu.

The following figure shows a data set connected to an operator by a link:

Visual Orchestrate User’s Guide4 – 10 Using Visual Orchestrate with Data Sets
Double click on the link to perform any optional configuration for the link. The Link Properties
dialog box for an input data set is shown below:

Use this dialog box to specify the following:

Adapters allows you to specify a view adapter or transfer adapter on the data set. See the
chapter on the modify operator in the Orchestrate User’s Guide: Operators for more informa-
tion.

Schema allows you to define the record schema when the input data set represents a Flat File.
See the chapter on the import/export utility in the Orchestrate User’s Guide: Operators for
more information on data representation.

Advanced allows you to enter options for buffering. See the Orchestrate Installation and
Administration Manual for more information on these options.

Notes allows you to enter optional text that describes the link. The text is saved with the link.
This tab provides standard text editing functions, such as selection, cutting, and pasting; right-
click to display a context menu of these functions.

Orchestrate Data Sets 4 – 11Visual Orchestrate User’s Guide

s. By
isting

“Con-
Connecting a Persistent Data Set as Output
To connect the data set as an output, create a link and attach one end of the link to the data set and
the other end of the link to the output from an operator.

Double click on the link to perform any optional configuration for the link. The Link Properties
dialog box for an output data set is shown below:

This dialog box contains the following tabs:

Overwrite tab to control Orchestrate’s action when the output data set already exist
default, Orchestrate signals an error and aborts your application when writing to an ex
data set. This prevents you from accidentally overwriting data.

You can accept the default of Signal an error, choose to Overwrite it, or choose to Append
data to it. See the next section for more information on append.

Schema tab to explicitly define the record schema for the output data set.

Constraints tab to control where the data set is written on your system. See the chapter
straints” for more information.

Visual Orchestrate User’s Guide4 – 12 Using Visual Orchestrate with Data Sets

“The
ning

 This
t-click

 execute
ddition,
ting data

tains is
a to the
may be
g the

 by an
 store it

 set. To

pending

Visual
Advanced tab for setting preserve-partitioning flag and buffering options. See the section
Preserve-Partitioning Flag” on page 8-11 for more information on the preserve-partitio
flag.

Notes tab for entering optional text that describes the link. The text is saved with the link.
tab provides standard text editing functions, such as selection, cutting, and pasting; righ
to display a context menu of these functions.

Appending Data to an Existing Data Set
Orchestrate allows you to append data to an existing data set. The appending operator must
in a separate step from the operator performing the write that first created the data set. In a
records appended to an existing data set must have an identical record schemas as the exis
set.

When a persistent data set is created and first written to disk, the number of partitions it con
equal to the number of instances of the operator that creates it. When you later append dat
data set, the number of processing nodes on which the appending operator executes
different from the number of partitions in the existing data set. Also, the data files containin
appended records can reside on disk drives other than those holding the original data.

For example, if a data set was originally created with eight partitions, and is appended to
operator executing on four processing nodes, Orchestrate repartitions the appending data to
as eight partitions.

The state of a data set’s repartitioning flag is saved to disk along with the records of the data
prevent Orchestrate from repartitioning the data set, you can set the repartitioning flag to preserve
Then, when you append data to that data set, Orchestrate creates one instance of the ap
operator for each partition of the data set.

Working with Virtual Data Sets

Virtual data sets connect the output of one operator to the input of another operator. In
Orchestrate, you use a link to implement a virtual data set.

To create a link, you can either:

• Choose Program -> Add Link from the menu.

• Click the link icon in the tool bar.

• With the cursor in a Program Editor window, click the right mouse button and select Add
Link from the popup menu.

Orchestrate Data Sets 4 – 13Visual Orchestrate User’s Guide

“The
ning

 This
t-click
The link icon for the virtual data set appears in the Program Editor window, as shown below:

Before you configure the link, connect it to the output of one operator and to the input of another
operator. You can then perform optional configuration on the link.

Double click on the link icon to open the Link Properties dialog box. This dialog box is shown
below:

This dialog box contains the following tabs:

Adapters tab for specifying a view adapter or transfer adapter on the data set. See the chapter
on the modify operator in the Orchestrate User’s Guide: Operators for more information.

Advanced tab for setting preserve-partitioning flag and buffering options. See the section
Preserve-Partitioning Flag” on page 8-11 for more information on the preserve-partitio
flag.

Notes tab for entering optional text that describes the link. The text is saved with the link.
tab provides standard text editing functions, such as selection, cutting, and pasting; righ
to display a context menu of these functions.

Visual Orchestrate User’s Guide4 – 14 Using Visual Orchestrate with Data Sets
Using the Data Set Viewer

The Visual Orchestrate Data Set Viewer lets you display information about an Orchestrate
persistent data set. You access the utility by choosing the menu command Tools -> Data Set
Viewer.

1. Choose Tools -> Data Set Viewer from the Visual Orchestrate menu. This opens the following
dialog box that you use to select a persistent data set you want information on:

2. Choose the data set and click OK to open the following dialog box displaying information
about the data set:

View data

Orchestrate Data Sets 4 – 15Visual Orchestrate User’s Guide
3. You can dump data set records by clicking on the View Data button. This opens the following
dialog box:

Specify the records you want to display, and then click the View button.

Visual Orchestrate User’s Guide4 – 16 Defining a Record Schema
Obtaining the Record Count from a Persistent Data Set

You may on occasion need to determine the count of the number of records in a persistent data set.
Orchestrate provides the UNIX command-line utility dsrecords that returns this count.

You execute dsrecords from the UNIX command line using the Visual Orchestrate Shell Com-
mand. Shown below is the syntax for dsrecords:

dsrecords ds_name

where ds_name specifies the pathname of a persistent data set.

This output of dsrecords appears in the Execution Window is shown below:

Job started.
4/9/98 6:14:36 PM 0 TUSV 001013 Inform : 24 records

Job finished, status = OK.

Defining a Record Schema

An Orchestrate record schema definition is an ASCII string beginning with the key word record
and consisting of a sequence of field definition statements enclosed in parentheses and separated by
semicolons. For example:

record (aField:int32; bField:sfloat; cField:string[];)

This record schema defines three-record fields:

• afield: A 32-bit integer field

Step

op2

op1

op3

Virtual data set 1Virtual data set 0

inDS.ds

out3DS.dsout2DS.ds

tempDS.vds

Orchestrate Data Sets 4 – 17Visual Orchestrate User’s Guide

g your

 5-8 for

e con-
t of the
 on the

a of a
• bField: A single-precision (32-bit) floating-point field

• cField: A variable-length character string

Schema Definition Files

For use with the import, export, and generator operators, you can create a file containin
schema definition. See the chapters for those operators in the Orchestrate User’s Guide: Operators.

You can include comments in schema definition files. The starting delimiter for a comment is a
double slash //, and the ending delimiter is a new-line. Note, however, that you cannot use
comments in schema definitions that you specify on the command line.

Field Accessors

You can retrieve information about a field, such as whether it is nullable, by calling functions on its
field accessor. For information on declaring and using field accessors, see the Orchestrate/APT
Developer’s Guide for information.

How a Data Set Acquires Its Record Schema

A data set acquires its record schema in one of the following three ways:

1. Import of the data set from an external representation. Often, the first action of an Orchestrate
application is to import data and convert it to a data set. You define the record schema of the
resultant data set at the time of the import. See the chapter on import in the Orchestrate
User’s Guide: Operators for more information.

2. A write to the data set by an Orchestrate operator. A data set with no schema inherits the output
interface schema of the operator that writes to it. This is the most common way for an output
data set to obtain a schema. See the section “Output Data Sets and Operators” on page
more information.

3. A read from an RDBMS table by an RDBMS operator. On a read operation, Orchestrat
verts the table into an Orchestrate data set by reading both the data and the record layou
table. Orchestrate automatically creates a record schema for the new data set, based
information from the RDBMS table.

Note that on a write operation to an RDBMS table, Orchestrate converts the record schem
data set to the table layout of an RDBMS data set. See the Orchestrate User’s Guide: Opera-
tors for specific information on how your RDBMS works with Orchestrate.

The following sections describe how to create record schemas, name record fields, specify
nullability, and set record schema properties for each Orchestrate data type.

Visual Orchestrate User’s Guide4 – 18 Defining a Record Schema

ield’s

ded for

ame,
access

rd. For
t and
efined

es

 during
r data,
Using Complete or Partial Schema Definitions

When you define the record schema of a data set, you do either of the following:

• Define complete record schemas: You describe every field in the record, including the f
name and data type.

• Partial record schemas: You describe only the components of the record schema nee
processing.

The following figure shows both options:

For a complete schema definition, you define all fields in the record, including the field’s n
data type, and nullability. You must define the complete schema if your application needs to
all the fields in the record, where access includes the following:

• Reading a field value

• Writing a field value

• Dropping a field and its associated data storage from the record

• Modifying a field’s name, data type, or other characteristics

You can use partial schemas if your application will access only some of the data in a reco
example, the partial schema definition in the figure above defines only two fields (the firs
third) of a five-field record. An Orchestrate application would be able to access only those d
fields, where access includes the following:

• Reading a field value

• Dropping a field definition (but not its associated data storage) from the record

• Modifying the field’s name, data type, or other characteristics

Note that a partial schema definition allows you to drop access to a defined field, but donot
remove its data storage.

The main advantage of a complete record schema is the flexibility to manipulate the records
processing. However, to define a complete schema you must define all record fields in you
regardless of whether you application will reference all the fields.

 . . . Record Record Record Record Record Record

Record

Record

Complete schema definition

Partial schema definition

int32

int32 dfloat

dfloatint16 int32string

Orchestrate Data Sets 4 – 19Visual Orchestrate User’s Guide

g a
 the null

bility

 uses a
d data

tage of
wever,
s of the
Partial schemas allow you to define only the fields that you are interested in processing and to
ignore all other data in the records. However, Orchestrate cannot perform some types of
manipulations on partial schema definitions, such as dropping unused fields from the record.

See the chapter on the import/export utility in the Orchestrate User’s Guide: Operators for more
information.

Naming Record Fields

In your Orchestrate record schema definition, all field names must conform to the following con-
ventions:

• The name must start with a letter or underscore (_) character.

• The name can contain only alphanumeric and underscore characters.

• The name is case insensitive.

Field names can be any length.

Defining Field Nullability

If a field is nullable, it can hold null, which indicates that the field contains no data. In processin
record, an operator can detect a null value and take the appropriate action, such as omitting
field from a calculation or signalling an error condition.

This section describes two different methods for representing nulls, and how to specify nulla
in an Orchestrate record schema.

Orchestrate Null Representation
Orchestrate uses a single-bit flag to mark a field as null. If the field is a vector, Orchestrate
single bit for each element of the vector, so that a nullable vector can contain both vali
elements and null elements. This type of null support is called an indicated null representation.

Some other software packages implement null support with an in-band representation, which
designates as null a specific value, such a numeric field’s most negative value. The disadvan
in-band null representation is that requires the user to treat an in-range value as a null. Ho
Orchestrate does allow you to process data that uses in-band null representation, by mean
modify operator (see the Orchestrate User’s Guide: Operators).

Defining Nullability in a Record Schema
In creating a record schema, you mark a field as nullable by inserting the keyword nullable
immediately before the field’s data type. Any field defined without the nullable keyword is by
default not nullable. The following sample record schema defines a nullable int32 and a nullable
dfloat vector:

Visual Orchestrate User’s Guide4 – 20 Defining a Record Schema

ether
e an
record (n:nullable int32; s[10]:nullable dfloat;)

Even though a field is by default non-nullable, you can use the not_nullable keyword to be
explicit, as shown below:

record (n:not_nullable int32;)

To make every field in a record schema nullable, you can specify nullable at the record level,
with the following syntax:

record nullable (n:int32; m:int16; f:dfloat;)

Specifying nullability at the record level affects top-level fields only and does not affect nested
fields.

Nullability can be overridden for any field in the record by explicit use of not_nullable, as
shown below:

record nullable (n:int32; m:not_nullable int16; f:dfloat;)

Nullability of Vectors and Aggregates
Vectors are nullable, and you can check for a null in each element of a nullable vector.

An aggregate (tagged or subrecord) is not itself nullable. However, you can specify nullability for
the fields of an aggregate that have types that are nullable. Nullability and aggregate is further
discussed in the section “Vectors and Aggregates in Schema Definitions” on page 4-24.

Checking Null and Nullability
To determine whether a field is nullable, you must check its nullability property. To check wh
a field is nullable, or whether a nullable field currently contains null, you must first declar
accessor for the field; see the Orchestrate/APT Developer’s Guide for information. Field accessors
can also provide other information, such as the length of a variable-length vector.

Using Value Data Types in Schema Definitions

This section describes how to use the Orchestrate value data types in record schema definitions,
with a section for each data type. Each section includes examples of field definitions, and some
sections describe required and optional properties for fields of the data type. Vectors are further
described in the section “Vectors and Aggregates in Schema Definitions” on page 4-24.

Date Fields
You can include date fields, in a record schema, as shown in the following examples:

record (dateField1:date;) // single date
record (dateField2[10]:date;) // 10-element date vector

Orchestrate Data Sets 4 – 21Visual Orchestrate User’s Guide

s:

 use
-

-, 32-,

. You

es:
record (dateField3[]:date;) // variable-length date vector
record (dateField4:nullable date;) // nullable date

Decimal Fields
You can include decimal fields in a record schema. To define a record field with data type deci-
mal, you must specify the field’s precision, and you may optionally specify its scale, as follow

fieldname:decimal[precision, scale];

where:

• 1 <= precision (no maximum)

• 0 <= scale < precision

If the scale is not specified, it defaults to zero, indicating an integer value.

Examples of decimal field definitions:

record (dField1:decimal[12];) // 12-digit integer
record (dField2[10]:decimal[15,3];)// 10-element decimal vector
record (dField3:nullable decimal[15,3];) // nullable decimal

Floating-Point Fields
You can include floating-point fields in a record schema. To define floating-point fields, you
the sfloat (single-precision) or dfloat (double-precision) data type, as in the following exam
ples:

record (aSingle:sfloat; aDouble:dfloat;) // float definitions
record (aSingle: nullable sfloat;) // nullable sfloat
record (doubles[5]:dfloat;) // fixed-length vector of dfloats
record (singles[]:sfloat;) // variable-length vector sfloats

Integer Fields
You can include integer fields in a record schema. To define integer fields, you use an 8-, 16
or 64-bit integer data type (signed or unsigned), as shown in the following examples:

record (n:int32;) // 32-bit signed integer
record (n:nullable int64;) // nullable, 64-bit signed integer
record (n[10]:int16;) // fixed-length vector of 16-bit signed integer
record (n[]:uint8;) // variable-length vector of 8-bit unsigned int

Raw Fields
You can define a record field that is a collection of untyped bytes, of fixed or variable length
give the field data type raw. You can also specify a byte alignment value on a raw field, to satisfy
requirements of your system architecture or to optimize the speed of data access.

The definition for a raw field is similar to that of a string field, as shown in the following exampl

Visual Orchestrate User’s Guide4 – 22 Defining a Record Schema

perty

e

ngth
h is not

ifferent
th and
 field,
record (var1:raw[];) // variable-length raw field
record (var2:raw;) // variable-length raw field; same as raw[]
record (var3:raw[40];) // fixed-length raw field
record (var4[5]:raw[40];)// fixed-length vector of raw fields
// variable-length raw aligned on 8-byte boundary:
record (var5:raw[align = 8];)
// vector of fixed-length raw fields aligned on 4-byte boundary:
record (var6[5]:raw[align = 4, length = 20];)

Variable-Length Raw Fields
When an Orchestrate operator writes to a variable-length raw field, it determines the field length
and updates the field’s length prefix. When an operator reads from a variable-length raw field, it
first reads the length prefix to determine the field’s length.

You can specify the maximum number of bytes allowed in the raw field with the optional pro
max, as shown in the example below:

record (var7:raw[max=80];)

If an application attempts to write more than max bytes to a raw field, Orchestrate writes only th
first max bytes.

Fixed-Length Raw Fields
The length of a fixed-length raw field must be at least 1.

String Fields
You can define string fields of fixed or variable length. For variable-length strings, the string le
is stored as part of the string as a hidden integer. The storage used to hold the string lengt
included in the length of the string.

In a data set with a variable-length string field, each record of the data set can contain a d
length string. When an operator writes to the field, Orchestrate determines the string leng
updates the field’s hidden length integer. When an operator reads from a variable-length
Orchestrate first reads the length integer to determine the field’s length.

The following examples show string field definitions:

record (var1:string[];) // variable-length string
record (var2:string;) // variable-length string; same as string[]
record (var3:string[80];) // fixed-length string of 80 bytes
record (var4:nullable string[80];) // nullable string
record (var5[10]:string;) // fixed-length vector of strings
record (var6[]:string[80];) // variable-length vector of strings

Variable-Length String Fields
For variable-length string fields, you can include the parameter max to specify the maximum length
of the field in bytes. Shown below is an example using this parameter:

record (var7:string[max=80];)

Orchestrate Data Sets 4 – 23Visual Orchestrate User’s Guide
When a record containing a string field with a specified maximum length is created, the length of
the string is zero, as it is for normal variable-length strings. Writing data to the string field with
fewer bytes than the maximum sets the length of the string to the number of bytes written. Writing
a string longer than the maximum length truncates the string to the maximum length.

Fixed-Length String Fields
The length of a fixed-length string field must be at least 1.

You can use the optional property padchar to specify the character for unassigned elements in
fixed-length string fields. The padchar property has the following syntax:

padchar = int_val | ASCII_char | null

where:

• int_val is an integer in the range 0 - 255, that is the ASCII value of the pad character.

• ASCII_char is the pad character as a single ASCII character.

• null (default) specifies a value of 0 as the pad character (same as specifying padchar = 0).

The following example shows use of padchar in a field definition:

record (var8:string[80, padchar = ’ ’];) // ASCII space padchar (0x20)

If an application wrote fewer than 80 characters to the var8 field defined in this example, var8
will be padded with the space character to the full length of the string.

Note that the Orchestrate export operator uses the specified padchar to pad a fixed-length string
that is exported. See the section on the import/export utility in the Orchestrate User’s Guide: Oper-
ators for more information.

Time Fields
You can include time fields in a record schema. By default, the smallest unit of measure for a time
value is seconds, but you can instead use microseconds with the [microseconds] option. The fol-
lowing are examples of time field definitions:

record (tField1:time;) // single time field in seconds
record (tField2:time[microseconds];)// time field in microseconds
record (tField3[]:time;) // variable-length time vector
record (tField4:nullable time;) // nullable time

Timestamp Fields
Timestamp fields contain both time and date information. In the time portion, you can use seconds
(the default) or microseconds for the smallest unit of measure. For example:

record (tsField1:timestamp;)// single timestamp field in seconds
record (tsField2:timestamp[microseconds];)// timestamp in microseconds
record (tsField3[15]:timestamp;)// fixed-length timestamp vector
record (tsField4:nullable timestamp;)// nullable timestamp

Visual Orchestrate User’s Guide4 – 24 Defining a Record Schema

has the

sing of
sup-

ent for
Vectors and Aggregates in Schema Definitions

This section describes how to use the Orchestrate vectors and the two aggregate data types,
subrecords and tagged aggregates, in record schema definitions. It also describes how to reference
vector elements and fields in aggregates.

Vector Fields
Orchestrate records can contain one-dimensional arrays, or vectors, of fixed or variable length. You
define a vector field by following the field name with brackets []. For a variable-length vector, you
leave the brackets empty, and for a fixed-length vector you put the number of vector elements in the
brackets. For example, to define a variable-length vector of int32, you would use a field definition
such as the following:

intVec[]:int32;

To define a fixed-length vector of 10 elements of type sfloat, you would use a definition such as:

sfloatVec[]:sfloat;

Data Types for Vectors
You can define a vector of any Orchestrate value data type, including string and raw. You cannot
define a vector of a vector or tagged aggregate type. You can, however, define a vector of type
subrecord, and you can define that subrecord to include a tagged aggregate field or a vector. For
more information on defining subrecords, see the section “Subrecord Fields” on page 4-25.

Numbering of Elements
Orchestrate numbers vector elements from 0. For example, the third element of a vector
index number 2. This numbering scheme applies to variable-length and fixed-length vectors.

Referencing Vector Elements
To reference an element of a vector field of fixed or variable length, you use indexed addres
the form vField[eleNum]. Remember that element numbering starts with 0. For example,
pose that you have defined the following a vector field:

vInt[10]:int32;

To reference the third element of that field, you use vInt[2].

Nullability of Vectors
You can make vector elements nullable, as shown in the following record definition:

record (vInt[]:nullable int32;
vDate[6]:nullable date;)

In the example above, every element of the variable-length vector vInt will be nullable, as will
every element of fixed-length vector vDate.

To test whether a vector of nullable elements contains no data, you must check each elem
null.

Orchestrate Data Sets 4 – 25Visual Orchestrate User’s Guide
Subrecord Fields
Record schemas let you define nested field definitions, or subrecords, by specifying the type
subrec. A subrecord itself does not define any storage; instead, the fields of the subrecord define
storage. The fields in a subrecord can be of any data type, including tagged.

The following example defines a record that contains a subrecord:

record (intField:int16;
aSubrec:subrec (
aField:int16;
bField:sfloat;);

)

In this example, the record contains a 16-bit integer field, intField, and a subrecord field,
aSubrec. The subrecord includes two fields: a 16-bit integer and a single-precision float.

Referencing Subrecord Fields
To reference fields of a subrecord, you use dot addressing, following the subrecord name with a
period (.) and the subrecord field name. For example to refer to the first field of the aSubrec
example shown above, you use aSubrec.aField.

Nullability of Subrecords
Subrecord fields of value data types (including string and raw) can be nullable, and subrecord
fields of aggregate types can have nullable elements or fields. A subrecord itself cannot be nullable.

Vectors of Subrecords
You can define vectors (fixed-length or variable-length) of subrecords. The following example
shows a definition of a fixed-length vector of subrecords:

record (aSubrec[10]:subrec (
aField:int16;
bField:sfloat;);

)

Nested Subrecords
You can also nest subrecords and vectors of subrecords, to any depth of nesting. The following
example defines a fixed-length vector of subrecords, aSubrec, that contains a nested variable-
length vector of subrecords, cSubrec:

record (aSubrec[10]:subrec (
aField:int16;
bField:sfloat;
cSubrec[]:subrec (
cAField:uint8;
cBField:dfloat;);

);
)

To reference a field of a nested subrecord or vector of subrecords, you use the dot-addressing syn-
tax <subrec>.<nSubrec>.<srField>. To reference cAField in the sample subrecord defini-
tion above, you would use aSubrec.cSubrec.cAField.

Visual Orchestrate User’s Guide4 – 26 Defining a Record Schema
Subrecords Containing Tagged Aggregates
Subrecords can include tagged aggregate fields, as shown in the following sample definition:

record (aSubrec:subrec (
aField:string;
bField:int32;
cField:tagged (
dField:int16;
eField:sfloat;

);
);

)

In this example, aSubrec has a string field, an int32 field, and a tagged aggregate field. The
tagged aggregate field cField can have either of two data types, int16 or sfloat.

To reference a field of a tagged aggregate field of a subrecord, you use the dot-addressing syntax
<subrec>.<tagged>.<tfield>. To reference dField in the sample subrecord definition above,
you would use aSubrec.cField.dField.

Tagged Aggregate Fields
You can use schemas to define tagged aggregate fields (similar to C unions), with the data type
tagged. Defining a record with a tagged aggregate allows each record of a data set to have a
different data type for the tagged field. When your application writes to a field in a tagged
aggregate field, Orchestrate updates the tag, which identifies it as having type of the field that is
referenced.

The data type of a tagged aggregate subfields can be of any Orchestrate data type except tagged or
subrec. For example, the following record defines a tagged aggregate field:

record (tagField:tagged (
aField:string;
bField:int32;
cField:sfloat;

);
)

In the example above, the data type of tagField can be one of following: a variable-length
string, an int32, or an sfloat.

Referencing Subfields in Tagged Aggregates
In referring to subfields of a tagged aggregate, you use the dot-addressing syntax,
<tagged>.<tagField>. For example to refer to the first field of the tagField example shown
above, you use tagField.aField.

Internally, Orchestrate assigns integer values to the aggregate fields, starting with 0. In the example
above, the tag value of aField is 0; bField, 1; and cField, 2.

Orchestrate Data Sets 4 – 27Visual Orchestrate User’s Guide

llabil-

gned a

strate
Nullability of Tagged Aggregates
Tagged aggregate fields of value data types (including string and raw) can be nullable, and
subrecord fields of aggregate types can have nullable elements or fields. A tagged aggregate field
itself cannot be nullable.

Default Values for Fields in Output Data Sets

Input data sets are read-only, and Orchestrate treats the record fields of an input data set as if they
contain valid information. Record fields in an output data set have read/write access, and
Orchestrate gives them default values upon creation.

If the field is nullable, Orchestrate sets it to null. Otherwise, Orchestrate assigns a default value
based on the field’s data type, as follows:

• All integers = 0

• dfloat or sfloat = 0

• date = January 1, 0001

• decimal = 0

• time = 00:00:00 (midnight)

• timestamp = 00:00:00 (midnight) on January 1, 0001

• Length of a variable-length string or raw field = 0

• Length of a variable-length vector = 0

• Characters of a fixed-length string = null (0x00), or if specified, the padchar value

• Bytes of a fixed-length raw = 0

• Elements of a fixed length vector are assigned a default value in accordance with their nu
ity and data type.

• Tag on a tagged aggregate = 0, indicating the first field of the aggregate. The field is assi
default value in accordance with its nullability and data type.

Using the Visual Orchestrate Schema Editor

You create record schemas for importing or exporting data and for defining custom Orche
operators. To create record schemas, you use the Orchestrate Schema Editor.

To access the Schema Editor, do any of the following:

• Choose Tools->Schema Editor from the Visual Orchestrate menu.

• Click the Schema Editor icon in the Visual Orchestrate tool bar.

• From the Custom Operator dialog box, do either of the following:

• For a native operator, open the Schema Editor from the Interfaces tab (see the section
“Example: Specifying Input and Output Record Schemas” on page 13-19).

Visual Orchestrate User’s Guide4 – 28 Defining a Record Schema

down

a.
gregate
rs
• For a UNIX command operator, open the Schema Editor from the Input or Output tab
(see the section “Specifying the Interface Schema” on page 12-10).

Shown below is the Schema Editor dialog box as it appears when you open it from the Tools menu
or from the tool bar. If you open it from the Custom Operator dialog box, the Schema Structure
area is instead labeled Interface Structure.

This dialog box contains the following areas:

Name (at top): To view or edit an existing schema, select a schema name from this pull-
list.

Access Control: Specify the schema Owner and the access Type for other users. Options for
Type are the following:

Public Write (default): Anyone can read or write the schema.

Public Read: Anyone can read the schema; only the owner can modify it.

Private: Only the program owner can read or write the schema.

Schema Structure (or Interface Structure): Shows the record level properties of the schem
All aggregate fields (tagged and subrecord) are shown here as well. To access an ag
field, click it in the Schema Structure window. The aggregate’s component fields appea
below in the Field List window.

Orchestrate Data Sets 4 – 29Visual Orchestrate User’s Guide

per-

ters
e 4-16

itled

he

u
n you

d cre-

schema,

pera-
u must

cord
-

r-
Field List: Shows all fields defined for the record or aggregate selected in the Schema
Structure window. The display includes the field’s name, data type, and optional pro
ties.

Name: Specify the name of a field.

Type: Select the field’s data type from the pull-down list.

Type Information: Set the parameters for the field’s type; the applicable parame
appear below the type name. See the section “Defining a Record Schema” on pag
for details on type parameters for schemas.

Properties: Select Import/Export or Generator from the Properties for list, and click
the Properties>> button. This action opens an additional Schema Editor area, ent
either External Data Layout Properties (for import/export) or Generator Operator
Properties. To view or specify properties at the record level, click Record in the Schema
Structure area. To view or specify properties for a individual field, click the field in t
Field List. For more information on import/export and on the generator operator, see
the Orchestrate User’s Guide: Operators.

After opening the Schema Editor, you can create a new record schema or edit an existing one, as
described in the following sections:

• “Creating a New Record Schema” on page 4-29

• “Creating a New Record Schema from an Existing Schema” on page 4-30

• “Editing a Record Schema” on page 4-30

• “Creating an Aggregate Field” on page 4-30

Creating a New Record Schema
To create a new record schema:

1. Open the Schema Editor.

2. Click the New button.

3. Choose Named or Unnamed. Unnamed (labeled local) schemas are available only when yo
use the Schema Editor to configure the interface schema for a custom operator. Whe
invoke the Schema Editor from the Visual Orchestrate menu or toolbar, you can view an
ate only named schemas.

A Named schema is accessible to anyone connected to the server. To access a named
double-click its name in the Server View Area of Visual Orchestrate.

An Unnamed schema is available only to the schema creator, for configuring a custom o
tor. If you want reference the schema by name and make it available to other users, yo
name the schema.

4. (Optional) Specify a Library name used to store the record schema. When you store a re
schema, it will be saved under Schema -> library_name. You can edit the schema by dou
ble-clicking it in the Server View Area of Visual Orchestrate.

5. Select Record in the Schema Structure area of the dialog box, to specify record-level prope
ties for the schema. You view and enter these properties in the External Data Layout Proper-
ties or Generator Operator Properties area.

6. Click in the Field List area to add fields to the schema.

Visual Orchestrate User’s Guide4 – 30 Defining a Record Schema

ema

section
7. Click Add Field to add a new field.

Add Field adds a field before the currently selected record field. If no field is selected, the new
field is added to the end of the schema. By default, the data type of the field is int32.

8. Define the fields of the record schema, including:

• Name (required)

• Vector (by default, vector is variable length) and optional Fixed Length

• Nullability

• Type

• Type Information

• Properties for import or export

9. Continue to add all fields

10. Click Save to save the record schema.

Creating a New Record Schema from an Existing Schema
To create a new schema from an existing one:

1. Open the Schema Editor.

2. Select an existing record schema from the Name drop down list.

3. Press New to create the new schema based on the selected schema from Step 2.

4. Edit the record schema.

5. Click Save to save the record schema.

Editing a Record Schema
To edit an existing record schema:

1. Open the Schema Editor.

2. Select an existing record schema from the Name drop down list.

3. Press Edit to edit the schema or New to create a new schema based on the selected sch
from Step 2.

4. Edit the record schema.

5. Click Save to save the record schema.

Creating an Aggregate Field
An aggregate field, either a subrecord or a tagged, contains nested field definitions. This
describes how to create an aggregate field as part of a record schema.

Use the following procedure to create either a subrecord or tagged field:

1. Start the Schema Editor and define the name of the schema.

2. Click Add Field to add an aggregate field

Orchestrate Data Sets 4 – 31Visual Orchestrate User’s Guide
3. Specify the Name and Type of the aggregate. The type of an aggregate is either Subrecord or
Tagged Subrecord.

Once you have defined the Name and Type, it appears in the Schema Structure window
under the word Record. Shown below is an example of a subrecord named sub0:

4. To add fields to the aggregate, select the aggregate in the Schema Structure window. The
Field List window lists all fields defined within the aggregate. Initially, the Field List window
is blank.

5. Add new fields to the subrecord as described above for adding fields to a record schema.

6. Click Save to save the record schema.

Visual Orchestrate User’s Guide4 – 32 Representation of Disk Data Sets

nt data
sistent
Importing a Record Schema
Visual Orchestrate lets you create a schema by importing the schema definition from a text file or
from a COBOL FD definition. To import a schema definition, perform following steps:

1. In the Schema Editor, click the Import button, or from the Tools menu, select Import
Schema, to open the following dialog box:

2. Specify the Library name (default is User) and schema Name.

3. Select the Source Type, meaning the format of the imported schema.

4. Enter the path of the file containing the imported schema.

For a Schema File, the file may contain only a single schema definition.

For a COBOL FD, the file may contain only a single FD description. This import is equiva-
lent to running the Orchestrate readcobol utility with the -f option (specifying free format
COBOL files). See the chapter on COBOL Schema Conversion in the Orchestrate User’s
Guide: Operators for more information.

Representation of Disk Data Sets

To use Orchestrate well, you need to be familiar with Orchestrate’s representation of persiste
sets in a UNIX file system. Remember that virtual data sets are not stored to disk; only per
data sets are saved.

Orchestrate Data Sets 4 – 33Visual Orchestrate User’s Guide
Persistent data sets are stored in multiple data files on multiple disks in your system. The following
figure shows the equivalent representation of an Orchestrate persistent data set represented as four
partitions:

Each partition of a data set is stored on a single processing node. In this example, the data set has
four partitions stored on four processing nodes.

A data segment contains all the records written to a data set by a single Orchestrate step. For
example, if a step creates a data set and then writes its results to the data set, the data set will
contain a single data segment.

You can select one of several write modes when your step writes its output to a data set. The default
write mode is create, which means that Orchestrate creates the data set if it does not already exist.
After the step writing to the data set completes, the data set will contain a single data segment. This
mode causes an error if the data set already exists, in order to prevent you from accidentally
overwriting your data.

Replace mode allows you to replace the contents of an existing data set. In this case, all data
segments in the data set are deleted, and a single data segment is added to hold the new data
records. In this case, the data set also contains a single segment after the write.

You use append mode to add records to a data set that already contains data. In this case, a new
segment is added to the existing data set, and all records written to the data set are written to the
new segment. Append mode does not modify the records in any other data segment.

Setting the Data Set Version Format

By default, Orchestrate saves data sets in the Orchestrate Version 4.1 format. However, Orchestrate
lets you save data sets in formats compatible with previous versions of Orchestrate. For example, to
save data sets using the Version 3 format, set the APT_WRITE_DS_VERSION environment vari-
able, as shown below:

export APT_WRITE_DS_VERSION=v3_0

One or more
data files

Partition 1 Partition 2 Partition 3 Partition 4

Segment 1

Segment 2

Segment 3

Visual Orchestrate User’s Guide4 – 34 Representation of Disk Data Sets

he data
m your
es the

se

ta files
 section

mber
After this statement takes effect, all data sets written by Orchestrate are saved using the Version 3
format.

The Orchestrate Installation and Administration Manual discusses in detail how to set and use
environment variables.

Data Set Files

A persistent data set is physically represented on disk by:

• A single descriptor file

• One or more data files

The descriptor file contains the record schema of the data set, as well as the location of all t
files. The descriptor file does not contain any data. To access a persistent data set fro
Orchestrate application, you reference the descriptor file path name. Orchestrate us
information in this file to open and access the data set.

For example, the following Data Set Properties dialog box is for an input persistent data set who
descriptor file is named /torrent/apt/infile.data:

The data of a parallel data set is contained in one or more data files. The number of da
depends on the number of segments in the data set and the size of each partition. See the
“File Allocation for Persistent Data Sets” on page 4-35 for information on determining the nu
of data files for a data set.

Descriptor File Contents
The data set descriptor file contains the following information about the data set:

• Data set header information identifying the file as a data set descriptor.

• Creation time and date of the data set.

• Data set record schema.

Orchestrate Data Sets 4 – 35Visual Orchestrate User’s Guide

ng the
even if

s. You

ent.

 When
 invalid.
tes. If
or file,

he last
ment is

ts

section

nts or

ntain a
append
n be read

drives
u can
• A copy of the Orchestrate configuration file at the time the data set was created. By stori
configuration file within the data set, Orchestrate can access all data files of the data set
you change the Orchestrate configuration file.

For each segment, the descriptor file contains:

• The time and date the segment was added to the data set.

• A flag marking the segment as valid or invalid.

• Statistical information such as number of records in the segment and the number of byte
can access this information using orchadmin.

• Path names of all data files, on all processing nodes, containing the records of the segm

As stated above, the descriptor file contains a flag marking each segment as valid or invalid.
a new segment is added to a data set, the corresponding flag initially marks the segment as
The flag is not set to valid until the step writing the data to the segment successfully comple
the steps fails for any reason, all information about the segment is deleted from the descript
and all data in the segment is discarded.

In the case of a severe system failure, the data set may be stored with a flag marking t
segment in the data set as invalid. If you then read the data set as input, the invalid seg
ignored. Writing or appending data to the data set deletes the invalid segment.

You can also use the cleanup command with orchadmin to delete any invalid data segmen
within a data set, as shown below:

 orchadmin cleanup myDataSet.ds

where myDataSet.ds is the name of the data set descriptor file.

See the Orchestrate Installation and Administration Manual for a detailed discussion of
orchadmin.

File Allocation for Persistent Data Sets
Persistent data sets are stored in multiple data files distributed throughout your system. This
describes how Orchestrate determines the location of these data files.

You can create persistent data sets in two ways:

• Use the orchadmin utility to create empty data sets. This data set contains no data segme
data files. See the Orchestrate Installation and Administration Manual for a detailed discus-
sion of orchadmin.

• Use an Orchestrate operator to write to an output persistent data set. This data set will co
single data segment and associated data files when it is first created. Each time you
data to the data set, a new segment is created to hold the new records. This data set ca
as input by another Orchestrate operator.

Orchestrate uses the configuration file to identify the processing nodes, and the disk
connected to those nodes, available for use by Orchestrate applications. Additionally, yo
define groups of nodes, called node pools, and groups of disk drives, called disk pools, to constrain

Visual Orchestrate User’s Guide4 – 36 Representation of Disk Data Sets

ors and

ata set:

lt disk

 set:

default
n of the

e data
ol Con-

 files on
he sec-
con-

 disk

tent data
or this

d to two

 drives
 on all
operations to those elements within the pool. See the section “Using Constraints with Operat
Steps” on page 10-5 for more information.

Several factors influence the number and location of the data files used to hold a persistent d

• The number of processing nodes in the default node pool

• Any node constraints applied to the operator writing to an output data set

• The number of disk drives connected to each processing node included within the defau
pool

• Any disk pool constraints applied to the output data set

Listed below are the rules Orchestrate uses to allocate data files for storing a persistent data

Rule 1. By default, Orchestrate executes an operator on all processing nodes defined in the
node pool. When an operator writes to an output data set, Orchestrate creates one partitio
data set on each processing node executing the operator.

Rule 2. If you impose a node constraint on the operator, Orchestrate creates a partition of th
set only on those processing nodes executing the operator. See the section “Using Node Po
straints” on page 10-6 for information on specifying a node pool constraint.

Rule 3. For each processing node storing a partition of a data set, Orchestrate creates data
all the disk drives included in the default disk pool connected to the processing node. See t
tion “Using Resource Constraints” on page 10-7 for information on specifying a disk pool
straint.

Rule 4. If you impose a disk pool constraint, Orchestrate creates data files on only those
drives in the specified disk pool.

For example, suppose your application uses data set create mode to write 16 GB to a persis
set. Since the data set did not already exist, it will be created with a single data segment. F
example, the data set’s descriptor file is named /home/user1/myDataSet.ds.

This example executes on an eight-node system in which each processing node is connecte
disk drives. The following figure shows the system for this example:

In this example, all processing nodes are contained in the default node pool, and both disk
are contained in the default disk pool. The operator writing to the output data set executes
processing nodes.

High-speed switch

Ethernet

node0_css

node0

node1_css

node1

node2_css

node2

node3_css

node3

node4_css

node4

node5_css

node5

node6_css

node6

node7_css

node7

Orchestrate Data Sets 4 – 37Visual Orchestrate User’s Guide

n of a

ration

et.

 the
Since all eight processing nodes execute the writing operator, Orchestrate creates eight partitions
for the data set, one on each processing node. Orchestrate further divides each partition among the
two disks in the default disk pool connected to each node to create 16 data files. Because each node
receives approximately a 2-GB partition, the total amount of free space in all disks in the default
pool on each processing node must be at least 2 GB.

If the data set held 64 GB, each of the 16 disks in the system would be required to hold 4 GB. Since
many operating systems limit file size to 2 GB, each disk would hold two data files of 2 GB each.

Each data segment uses its own data files for storing the records of the segment. If you append data
to an existing data set, a new segment descriptor is created, and new data files are created to hold
the records in the new data segment.

In some circumstances, you may need your application to execute its operators on one set of
processing nodes and store its data on another. The default operation of Orchestrate is to store a
partition of a data set on each node executing the writing operator. When you want to store the data
somewhere else, you insert a copy operator at the end of your step and use node constraints to
execute the copy operator only on the processing nodes on which you want to store your data set.
See the chapter “Constraints” for more information on node pools.

File Naming for Persistent Data Sets
Orchestrate uses the following naming scheme for the data files that make up each partitio
parallel data set:

disk/descriptor.user.host.ssss.pppp.nnnn.pid.time.index.random

where:

• disk: Path for the disk resource storing the data file as defined in the Orchestrate configu
file.

• descriptor: Name of the data set descriptor file.

• user: Your user name.

• host: Hostname from which you invoked the Orchestrate application creating the data s

• ssss: 4 digit segment identifier (0000-9999)

• pppp: 4 digit partition identifier (0000-9999)

• nnnn: 4 digit file identifier (0000-9999) within the partition

• pid: Process ID of the Orchestrate application on the host from which you invoked
Orchestrate application that creates the data set.

• time: 8-digit hexadecimal time stamp in seconds.

• index: 4-digit number incremented for each file.

• random: 8 hexadecimal digits containing a random number to insure unique file names.

For example, suppose that your configuration file contains the following node definitions:

{
node node0 {

Visual Orchestrate User’s Guide4 – 38 Representation of Disk Data Sets
fastname "node0_css"
pool "" "node0" "node0_css"
resource disk "/orch/s0" {}
resource scratchdisk "/scratch" {}

}
node node1 {

fastname "node1_css"
pool "" "node1" "node1_css"
resource disk "/orch/s0" {}
resource scratchdisk "/scratch" {}

}
}

For this example, your application creates a persistent data set with a descriptor file named /data/
mydata.ds. In this case, Orchestrate creates two partitions for the data set: one on each processing
node defined in the configuration file. Because each processing node contains only a single disk
specification, each partition of mydata.ds would be stored in a single file on each processing
node. The data file for partition 0 on the disk /orch/s0 on node0 is named:

/orch/s0/mydata.ds.user1.host1.0000.0000.0000.1fa98.b61345a4.0000.88dc5aef

and the data file for partition 1 on node1 is named:

/orch/s0/mydata.ds.user1.host1.0000.0001.0000.1fa98.b61345a4.0001.8b3cb144

5 – 1Visual Orchestrate User’s Guide

-

handle

e or

ration
5: Orchestrate Operators

Orchestrate operators are the basic functional units of every Orchestrate application. An
operator takes in data sets, RDBMS tables, or data files, and produces data sets, RDBMS
tables, or data files. An Orchestrate step consists of one or more Orchestrate operators that
process the data, according to the data-flow model for the step.

Orchestrate provides libraries of predefined operators for essential functions, such as import/
export and sorting. For descriptions of operator interfaces and other details about individual
operators in the Orchestrate libraries, see the Orchestrate User’s Guide: Operators.

Orchestrate also lets you create your own operators, with either of the following methods:

• Creating an operator from a UNIX command, script, or program, as described in the
chapter “Creating UNIX Operators”.

• Creating an operator from a few lines of your C or C++ code, as described in the chapter
“Creating Custom Operators”.

In addition, you can use operators that you obtain from third-party developers in your
Orchestrate application.

This chapter describes how to use predefined, user-defined, and third-party-developed opera
tors in Orchestrate applications, through the following sections:

• “Operator Overview” on page 5-1

• “Using Visual Orchestrate with Operators” on page 5-3

• “Operator Interface Schemas” on page 5-6

• “Data Set and Operator Data Type Compatibility” on page 5-17

Operator Overview

In general, an Orchestrate operator takes zero or more data sets as input, performs an operation on
all records of the input data sets, and writes its results to zero or more output data sets. Data sets are
described in detail in the chapter “Orchestrate Data Sets”.

Some operators limit the number of input or output data sets they handle, while others can
any number of data sets (n-input, m-output).

Most Orchestrate steps include one or more of the following kinds of operators:

• A one-output operator is usually the first operator in a step, to import data from a disk fil
RDBMS and convert it into a data set.

• A one-input, one-output operator takes a single input data set, performs a processing ope

Visual Orchestrate User’s Guide5 – 2 Operator Overview

 type

 or in

 Many
default
lly.
e with

 nodes
disk or a
it, or
ee the
n on

roughout
ered in

not be

tep, you
 the
d to
on it, and creates a single output data set.

• A one-input operator is usually used to export a data set to a disk file or an RDBMS. This
of operator is often the final operator in a step.

The following figure shows these three kinds of operators:

Operator Execution Modes

Orchestrate operators execute in either parallel mode, on multiple processing nodes,
sequential mode, on a single processing node.

Every Orchestrate operator has a default execution mode, either parallel or sequential.
Orchestrate operators allow you to override the default execution mode. For example, the
execution mode of the copy operator is parallel, but you can configure it to run sequentia
Setting the operator execution mode is described in the section “Using Visual Orchestrat
Operators” on page 5-3.

In some circumstances, you may want to run an operator in parallel but limit the processing
that it uses. The reason might be that the operator requires system resources, such as a
large amount of memory, that is not available to all nodes. Orchestrate allows you to lim
constrain, an operator to a particular set of nodes to meet your application’s requirements. S
section “Using Constraints with Operators and Steps” on page 10-5 for more informatio
controlling the processing nodes used by an operator.

Persistent Data Sets and Steps

Orchestrate steps consist of one or more operators, connected by data sets, as discussed th
the preceding chapters. Creating and using steps to build Orchestrate applications is cov
detail in the chapter “Orchestrate Steps”.

As mentioned in the section “Using Data Sets with Operators” on page 4-3, a data set file can
both read from and written to in a single step.

If you want to write to a persistent data set and also use the data set as input in the same s
need to use the Orchestrate copy operator to make a copy of the data set. For example,
following data-flow diagram shows the copy operator outputting both a persistent data set save

one-input one-output
operatorone-output operator one-input operator

Orchestrate Operators 5 – 3Visual Orchestrate User’s Guide
disk and a virtual data set that is input to the next operator in the step. See the Orchestrate User’s
Guide: Operators for more information on the copy operator.

Using Visual Orchestrate with Operators

This section describes how to use Visual Orchestrate to configure operators.

1. Open an existing program, or create a new one.

2. To create an operator, do one of the following:

• Select Program -> Add Operator from the menu.

• Click the operator icon in the tool bar.

• With the cursor in a Program Editor window, click the right mouse button and select Add
Operator from the popup menu.

• Click the operator name in the Server View and drag it into the Program Editor.

copy operator

Step 1
Persistent input data set

Persistent output data set

Virtual data set

Operator

Operator

Visual Orchestrate User’s Guide5 – 4 Using Visual Orchestrate with Operators
The operator icon appears in the Program Editor window, as shown below:

3. Double click the operator icon to open the Operator Properties dialog box. This dialog box is
shown below:

Orchestrate Operators 5 – 5Visual Orchestrate User’s Guide

ilt-in
.

lected

ng

t
or the

ator
l or

des
The General tab contains the following:

• Label is the operator label that appears in the Program Editor dialog box. It defaults to the
operator name.

• Operator lets you select another operator. This pull-down list contains all Orchestrate bu
operators and all operators that you have created with the Orchestrate operator builders

• Options lets you set the options that you can use to control and configure the currently se
operator. Use the buttons to work on options, as follows:

Add opens the Option Editor dialog box to set a new option for the operator.

Edit opens the Option Editor dialog box to edit the selected option. Use Up and Down to
select the option to edit.

Delete removes an option from the list.

For example, if you select the tsort operator from the list of available operators, selecti
Add opens the following Option Editor dialog box:

In the Option Editor dialog box, use the Option pull-down list to select the option you wan
to set for the operator. The remaining area of the dialog box list the available values f
selected option.

Each Orchestrate operator has its own options accessible through the Option Editor dialog
box. See the Orchestrate User’s Guide: Operators for information on each operator.

4. Use the Advanced tab of the Operator Properties dialog box, as follows:

• Set Execute operator options. This allows you to specify whether to execute an oper
in parallel or sequentially. All operators have a default execution mode of paralle
sequential if you do not set this option.

• Set Constraints on the operator. Constraints allow you to control the processing no
used to execute the operator. See the chapter “Constraints” for more information.

Visual Orchestrate User’s Guide5 – 6 Operator Interface Schemas

 in an

he input
rough
pstream

sults to

re the
st have

escribe
perator.
Operator Interface Schemas

Orchestrate schemas are described in the section “Record Schemas” on page 4-2. To be used
Orchestrate application, an operator has an interface schema for each of its input and output data
sets. An output interface schema is propagated from an operator to the output data set, to t
interface of the next operator downstream, to that operator’s output interface, and so forth th
the operators in the step. Because an output data set schema would be overridden by the u
operator’s output interface schema, specifying an output data set schema is unnecessary.

The interface schemas of all the Orchestrate built-in operators are described in the Orchestrate
User’s Guide: Operators. Defining an interface schema is part of creating a user-defined operator;
as described in the chapter “Creating Custom Operators”.

Example of Input and Output Interface Schema

The following figure shows an operator that takes a single data set as input and writes its re
a single output data set.

The figure shows the operator’s input and output interface schemas, which in this case a
same. This interface schema specifies that the data set (both the input and the output) mu
two integer fields named field1 and field2 and a floating-point field named field3.

The following sections describe using input and output data sets with operators. They also d
data type conversions between a data set’s record schema and the interface schema of an o

Input data set

Input interface schema

Output interface schema

Output data set

field1:int32; field2:int16; field3:sfloat

field1:int32; field2:int16; field3:sfloat

Operator

Orchestrate Operators 5 – 7Visual Orchestrate User’s Guide

named
et’s
operator.

r fields.
regate

tor with
put
e that
Input Data Sets and Operators

The following figure shows an input data set used with an operator:

The operator’s input interface schema requires the input data set to have three fields
field1, field2, and field3, with compatible data types. In this example, the input data s
record schema exactly matches the input interface schema and is therefore accepted by the

Input data sets can contain aggregate fields (subrecords and tagged fields), as well as vecto
To be compatible, the operator input interface must contain a corresponding vector or agg
field in its input interface schema.

Operators that Ignore Extra Input Fields
Some operators ignore any extra fields in an input data set, so that you can use the opera
any data set that has at least the fields that are compatible with those of the operator’s in
interface schema. The following example shows such an operator, with an input interfac
defines three fields, taking as input a data set that defines five fields:

field1:int32; field2:int16; field3: sfloat

Output data set

Input data set schema
field1:int32;
field2:int16;
field3:sfloat

field1:int32;
field2:int16;
field3:sfloat;
field4:string;
field5:dfloat

field1:int32;
field2:int16;
field3:sfloat

Output data set schema

field1:int32; field2:int16; field3:sfloat

field1:int32; field2:int16; field3:sfloat

Input data set schema

Visual Orchestrate User’s Guide5 – 8 Operator Interface Schemas

tionship
ata set.

e output
 with no

schema,

The first three fields of the data set are compatible with the three fields of the operator input
interface, and the operator accepts the input. The operator ignores the input data set’s field4 and
field5 and does not propagate the extra fields to the output data set.

Output Data Sets and Operators

This section describes how an operator writes to an output data set, as dictated by the rela
between the operator’s output interface schema and, if present, the schema of the output d
The following table gives a summary:

In many cases, an output data set has no record schema. When written to by an operator, th
data set takes the schema of the operator’s output interface. Therefore, an output data set
record schema is compatible with all operators.

The following figure shows an output data set for which a record schema was not defined:

An output data set may optionally have a record schema. If an output data set has a record

Output Data Set Schema In Relation to
Operator Output Interface Schema

Operator Behavior

Output data set has no record schema (the usual
case).

The output data set adopts the schema of the
operator’s output interface.

Output data set schema defines the same number
of fields as the operator output interface.

The operator writes to all fields in the output
data set.

Output data set schema defines more fields than
the operator’s output interface schema.

The operator sets extra fields to default value
(according to nullability and type), and Orches-
trate issues a warning.

Output data set schema defines fewer fields than
the operator’s output interface.

The operator drops the output fields that are not
present in the output data set, and Orchestrate
issues a warning.

None

field1:int32; field2:int16; field3:sfloat

Output data set schema

Input data set schema
field1:int32;
field2:int16;
field3:sfloat

field1:int32; field2:int16; field3:sfloat

field1:int32;
field2:int16;
field3:sfloat

Output data set schema

Before operator executes After operator executes

Orchestrate Operators 5 – 9Visual Orchestrate User’s Guide

e same
s to all

t case,
 In the
it must be compatible with the output interface schema of the operator. As shown in the second fig-
ure in the section “Input Data Sets and Operators” on page 5-7, if the output data set has th
number of fields and they are compatible with the output interface schema, the operator write
the fields.

An output data set can define fewer fields than the operator’s output interface schema. In tha
the operator drops the fields not defined in the output data set, and it issues a warning.
example shown in the figure below, the operator drops field4 and field5 from the output
interface schema:

field1:int32;
field2:int16;
field3:sfloat;
field4:string;
field5:dfloat

field1:int32;
field2:int16;
field3:sfloat

Output data set schema

field1:int32; field2:int16; field3:sfloat

Input data set schema

field1:int32; field2:int16; field3:sfloat

Visual Orchestrate User’s Guide5 – 10 Operator Interface Schemas

e data

ata set
atched

s in the
 issues a
Operator Interface Schema Summary

The following figure and keyed text summarize the relationship between the record schema of a
data set and the interface schema of an operator:

1. Fields of an input data set are matched by name and compatible data type with fields of the
input interface schema of an operator. The input data set must contain at least the number of
fields defined by the input interface schema of the operator.

You can use the modify operator to perform certain changes, such as renaming, to enumerated
fields in the input data set. See the chapter on the modify operator in the Orchestrate User’s
Guide: Operators for more information.

2. The operator ignores extra fields in the input data set.

3. If the output data set has no record schema (as recommended), the data set adopts the record
schema of the operator’s output interface schema, and the operator writes all fields to th
set.

4. If the output data set has a record schema, the operator writes to fields of the output d
that match fields in the operator’s output interface schema. The operator drops any unm
fields from the operator’s output interface schema, and Orchestrate issues a warning.

5. If the output data set has a record schema, the operator sets to default values any field
data set that are not matched in the operator output interface schema, and Orchestrate
warning message.

Ignored: Not propagated to output

2

a b c d e

x y w

5

4

1

3
x

y

z

a

b

c

Dropped

Operator input
interface schema

Operator output
interface schema Record schema of output data set

Record schema of input data set

Orchestrate Operators 5 – 11Visual Orchestrate User’s Guide
Record Transfers and Schema Variables

Some operators take or write an entire record, regardless of its size or the number and types of its
fields. In an operator interface schema, an entire record is represented by a schema variable. A field
that is a schema variable has an asterisk (*) in place of a data type; for example, inrec:*. Schema
variables give flexibility and efficiency to operators that input and/or output data on the record
level without regard to the record schema.

By default, an operator with a schema variable in its interface schema transfers (copies) an entire
record from an input data set to an output data set, regardless of the other elements of the input and
output interface schema. The following figure shows this default behavior for an operator that
includes a schema variable in its input and output interface schema:

Transfers are used by some operators that modify the input data set and by others that do not. For
example, the operator lookup modifies the input data set, and the operator peek performs a
transfer without modifying the input data set.

Suppose that the operator in the figure above calculates the mean and standard deviation of the
three fields identified in the input interface schema, across the entire input data set. In calculating
these statistics, the operator does not have to modify the records of the input data set. This operator
reads the records, makes calculations, and transfers each record to the output data set without
change.

An operator can combine a schema variable in the output interface schema with additional,
enumerated fields, as shown in the following figure:

Output data set

Input data set

field1:int32; field2:int16; field3:sfloat; inRec:*

outRec:*

Entire record transferred from
input data set to output data set

Output data set

Input data set

field1:int32; field2:int16; inRec:*

sum:int32; outRec:*

Visual Orchestrate User’s Guide5 – 12 Operator Interface Schemas
In this example, the operator transfers the entire input record to the output data set and adds an
additional field, which holds the sum of field1 and field2.

Determining the Record Schema of a Schema Variable
A schema variable refers to an entire input or output record, regardless of any other fields in the
interface schema. This section describes how to determine the record schema associated with a
schema variable.

The following figure shows an operator with schema variables in its interface. below the figure are
the record schemas represented by the input and output schema variables:

field1: int32;
field2: int16;
field3: sfloat;
field4: int8

inRec:* ≡ field1:int32; field2:int16; field3:sfloat; field4:int8
outRec:* ≡ field1:int32; field2:int16; field3:sfloat; field4:int8

Input data set schema

Output data set

outRec:*

field1:int32; field2:int16; inRec:*

Orchestrate Operators 5 – 13Visual Orchestrate User’s Guide
Output Interface with Schema Variable and Enumerated Fields
In the following example, the output interface includes two enumerated fields, whose values are
calculated by the operator, plus a schema variable:

The total output interface schema of the operator above comprises the schema variable outRec and
the two new fields:

The order of fields in the interface schema determines the order of fields in the records of the output
data set. In the example, the two new fields were added at the beginning of the record, as listed in
the output interface schema. The two new fields would be added to the end of the record if the
output interface schema listed outRec first, as follows:

Handling Duplicate Field Names in an Output Schema
In an operator output interface, a schema variable can have one or more fields with the same names
as individually listed fields. This situation introduces a potential name conflict. For example,
suppose in the example above, the record in the input data set that corresponds to inRec in the
input interface schema, contained a field named d:

a: int32; b:int16; c:string; d:int16

a:int32;
b:int16;
c:string

Input data set schema inRec:* ≡ a:int32; b:int16; c:string

outRec:* ≡ a:int32; b:int16; c:stringOutput data set schema

a:int32; b:int16; c:string; inRec:*

d:int32; e:int32; outRec*

a:int32;
b:int16;
c:string;
d:int32;
e:int32

d:int32; e:int32; outRec:*

d:int32; e:int32; a:int32; b:int16; c:string

outRec:*; d:int32; e:int32

a:int32; b:int16; c:string; d:int32; e:int32

Visual Orchestrate User’s Guide5 – 14 Operator Interface Schemas

elow,

 output
fers an
If that record were transferred to outRec and both additional fields defined by the output interface
schema, d and e, were added to the output data set schema, there would be a conflict between the d
field in outrec and the extra d field, as shown below:

You can use the modify operator to explicitly drop or rename duplicate fields, as described in the
modify chapter of the Orchestrate User’s Guide: Operators.

How Orchestrate Handles Duplicate Field Names
If you do not use modify to handle duplicate field names, Orchestrate resolves name conflicts by
dropping from the output data set schema any field with the same name as a preceding field (to its
left) in the output interface schema, and Orchestrate also issues a warning message. In the example
above, Orchestrate drops field d of the schema variable and issues a warning message.

Summary of Schema Variable Usage
This section summarize this section’s discussion of schema variables, with the figure b
followed by a description keyed to the circled numbers:

1. The input interface schema can include a schema variable.

2. Operators use schema variables to transfer an entire record of an input data set to the
data set. By default, an operator with a schema variables in its interface schema trans

d:int32; e:int32; outRec:*

d:int32; e:int32; a:int32; b:int16; c:string; d:int16

Name conflict

x y a

1
x

y

a

b

c

Record schema of output data set

Record schema of input data set

b c d e

a b c d e

outRec: *

inRec: *

2

3

Operator input
interface schema

Operator output
interface schema

Orchestrate Operators 5 – 15Visual Orchestrate User’s Guide

he enu-
me as a
left to

ating
 third

or, you

any

perator
entire record from an input data set to an output data set, regardless of the other elements of
input and output interface schemas of the operator.

Operators that do not use schema variables drop unused fields from the records of an input data
set. See the section “Input Data Sets and Operators” on page 5-7 for more information.

3. The output interface schema can include enumerated fields and/or a schema variable. T
merated fields are added to the output data set. If an enumerated field has the same na
field in the record assigned to the output schema variable, the duplicate field (reading
right in the output interface schema) is dropped from the output data set schema.

Flexibly Defined Interface Fields

Many Orchestrate operators (for example, compare) allow flexibility in the fields that they accept.
For example, one operator’s dynamic interface might take any number of double-precision flo
point fields as input. Another’s might accept either a single 8-bit integer or a string as input. A
operator’s dynamic interface could take fields of any data type supported by Orchestrate.

For example, the following figure shows a sample operator, aSort, that has a dynamic interface
schema:

The input interface accepts two fields and a schema variable. When you invoke this operat
pass the names of two fields in the input data set that you want aSort to use as sort keys.

The Orchestrate operator tsort has a more advanced input interface, which lets you specify
number of fields as sort keys. The tsort operator interface provides a -key control that takes one or
more field names. With this interface you can, for example, specify age as the sort key. The aSort

operator determines the data type of age from the input data set.

Using Operators with Data Sets That Have Partial Schemas

When an Orchestrate operator processes a data set with a partial schema (defined with theintact

property), the operator cannot add, remove, or modify the data storage in the record. The o
can, however, add result fields to the beginning or end of the record.

name: string;
address: string;
age: int32

Input data set schema

sortOutDS.ds

outRec:*

_____; _____; inRec:*

aSort

Visual Orchestrate User’s Guide5 – 16 Operator Interface Schemas

a” on
tput
ws an

 the
cord
For example, the following figure shows an operator adding a field to a data set that uses a partial
schema definition:

In this example, the operator adds the extra field, newField, at the beginning of the record. If the
operator output interface listed newField after outRec, the operator would add newField to the
end of the output data set schema.

The name of an added field may be the same as a field name in the partial record schema. As with
potential name conflicts involving complete record schemas, you can use the modify operator to
handle the conflict (see the section “Handling Duplicate Field Names in an Output Schem
page 5-13). If you do not use modify, Orchestrate drops the duplicate name (considering the ou
interface left to right) from the output data set schema. For example, the following figure sho
operator adding a field with the same name, income, as a field in the partial record schema:

In this example, the new income field is added at the beginning of the data set schema, and
income field of the partial record is dropped. Note that dropping a field from a partial re
schema eliminates only the field definition, and the contents of the record are not altered.

record {intact} (
name:string[20] {position=0};
income:int32 {position=44})

Input data set record schema

inRec:*

newField:int32; outRec:*

newField: int32;
record {intact} (

name: string[20] {position=0};
income: int32 {position=44})

Output data set record schema

record {intact} (
name:string[20] {position=0};
income:int32 {position=44})

Input data set record schema

inRec:*

newField:int32; outRec:*

income: int32;
record {intact} (

name: string[20] {position=0})

Output data set record schema

Orchestrate Operators 5 – 17Visual Orchestrate User’s Guide

 from
erted.

te Data

ose of

ws the
ith the

type

ection
Data Set and Operator Data Type Compatibility

For a data set to be used as input to or output from an operator, its record schema must be
compatible with the operator’s interface. For input data set record fields with types that differ
corresponding fields of the operator input interface, the types of those fields must be conv
The basics of Orchestrate data type conversion are introduced in the chapter “Orchestra
Types”.

For example, the figure below shows an input data set with field data types that differ from th
the operator input interface schema:

The table in the section “Summary of Orchestrate Data Type Conversions” on page 3-9 sho
data type conversions that Orchestrate performs by default and those that you can perform w
modify operator.

The following sections contain additional information about default data compatibility and
conversions between source and destination data types:

• “Data Type Conversion Errors and Warnings” on page 5-17

• “String and Numeric Data Type Compatibility” on page 5-18

• “Decimal Compatibility” on page 5-19

• “Date, Time, and Timestamp Compatibility” on page 5-20

• “Vector Data Type Compatibility” on page 5-21

• “Aggregate Field Compatibility” on page 5-21

• “Null Compatibility” on page 5-21

Data Type Conversion Errors and Warnings

During data type conversion, Orchestrate detects warning and error conditions. This s
describes Orchestrate’s actions in warning or error conditions arising from type conversions.

field1:int8;
field2:int16;
field3:int16

Input data set schema

Output data set

field1:int32; field2:int16; field3:sfloat

field1:int32; field2:int16; field3:sfloat

Visual Orchestrate User’s Guide5 – 18 Data Set and Operator Data Type Compatibility

 recurs,
estrate
a step.

n error
to a

tination

ess you
Using modify to Prevent Errors and Warnings
To prevent many of the conditions that lead to warnings and errors caused by type incompatibility,
use the modify operator. For example, you can use modify to configure a field to convert a null to
a non-null value. Using the modify operator is described in the Orchestrate User’s Guide: Opera-
tors.

You can also use modify to suppress warning messages.

Orchestrate Handling of Warnings
A warning condition causes Orchestrate to write a message to the warning log. When a field causes
a warning condition in consecutive records, the message appears for a maximum of five records.
After the fifth warning message, Orchestrate suppresses the message. After a successful data
conversion, Orchestrate’s message counter resets to 0. If the same warning condition then
Orchestrate begins issuing the message again, for up to five more records. However, Orch
will suppress a warning message after it is issued a total of 25 times during the execution of

Conversion Errors and Orchestrate Actions
An error occurs when Orchestrate cannot perform a data type conversion. For example, a
occurs if you attempt to convert a string field holding nonnumeric data, such as “April”,
numeric value.

When a data type conversion error occurs, Orchestrate’s action depends on whether the des
field has been defined as nullable.

Rule 1. If the destination field has been defined as nullable, Orchestrate sets it to null.

Rule 2. If the destination field is not nullable but you have directed modify to convert a null to
a value, Orchestrate sets the destination field to the value.

Rule 3. Otherwise, Orchestrate issues an error message and terminates the application. Unl
have disabled warnings, a warning is issued at step-check time.

String and Numeric Data Type Compatibility

You can use the modify operator to perform conversions between type string and numeric types.
For information, see the modify chapter in the Orchestrate User’s Guide: Operators.

If you do not explicitly perform a conversion, Orchestrate automatically converts the integer or
floating-point value to its string representation. For example, it converts the integer 34 to the
character string "34", and the floating-point 1.23 to "1.23".

For converting string fields to numerics, Orchestrate attempts to interpret the string contents as a
number that matches the data type of the target field. For example, Orchestrate converts the string
"34" to the integer 34, and it converts the string "1.23" to the float 1.23. Orchestrate can convert a
string-represented floating-point that includes an exponent, represented by "e" followed by the
numbers comprising the exponent. For example, Orchestrate converts "1.23e4" to 12300.0.

Orchestrate Operators 5 – 19Visual Orchestrate User’s Guide

 error

 Type

s and

s the
oceeds

ft of
 large

ding, it

with a
 occurs
ounding

e of

oes not
ed for
Before first performing an automatic type conversion between a string and a numeric type, Orches-
trate writes a warning to the error log. Orchestrate also issues a warning for any other type conver-
sion that introduces:

• A possible loss in precision, such as a single-precision float converted to a 32-bit integer

• A possible loss in range, such as a 16-bit integer converted to an 8-bit integer

If the conversion between numeric and string data if not possible, a data type conversion
occurs.

For general information on Orchestrate warning and error handling, see the section “Data
Conversion Errors and Warnings” on page 5-17.

Decimal Compatibility

Orchestrate performs automatic conversions between decimal fields and integer, floating point,
and string fields. As part of the conversion, Orchestrate checks for potential range violation
loss of precision.

Orchestrate checks for potential range violations before it runs the step that include
conversion. If it detects a potential range violation, it issues a warning message and then pr
to run the step. A range violation occurs when the magnitude of a source decimal field exceeds
the capacity of the destination data type. The magnitude of a decimal, or number of digits to the
left of the decimal point, is calculated by subtracting the scale of the decimal from the precision.
For example, if the decimal has a precision of 15 and a scale of 5, there are ten digits to the le
the decimal point. Converting a decimal of this magnitude can result in a number that is too
for an int16 field, for example.

Orchestrate checks for required rounding before it runs a step. If it detects a need for roun
issues a warning message and then proceeds to run the step.

Orchestrate performs the rounding necessary to convert the decimal. A decimal number
scale greater than zero represents a real number with a fractional component. Rounding
when Orchestrate converts a source decimal with a scale greater than zero to an integer. R
also occurs when Orchestrate converts a source decimal to another decimal with a smaller scale.
In both cases, Orchestrate must round the source decimal to fit the destination field.

The default rounding mode used by Orchestrate is called truncate toward zero. In converting a
decimal to an integer field, Orchestrate truncates all fractional digits from the decimal. In
converting a decimal to a decimal, Orchestrate truncates all fractional digits beyond the scal
the destination decimal field. For example, Orchestrate converts the decimal value -63.28 to the
integer value -63.

If the source and destination decimals have the same precision and scale, Orchestrate d
perform a default conversion and thus does not check for a potential range violation or a ne
rounding. You can, however, use the modify operator to perform a decimal_from_decimal

Visual Orchestrate User’s Guide5 – 20 Data Set and Operator Data Type Compatibility
conversion, which may be helpful if the source field allows all zeros and the destination field does
not (see the modify chapter in the Orchestrate User’s Guide: Operators).

String to Decimal Conversion
When converting a string to a decimal, Orchestrate interprets the string as a decimal value. To be
converted to a decimal, the string must be in the form:

[+/-]ddd[.ddd]

Orchestrate ignores leading and trailing white space. Orchestrate performs range checking, and if
the value does not fall into the destination decimal, a requirement failure occurs during setup check.

Decimal to String Conversion
You can also convert a decimal to a string. Orchestrate represents the decimal in the destination
string in the following format:

[+/-]ddd.[ddd]

Orchestrate does not suppress leading and trailing zeros. If the string is of fixed length, Orchestrate
pads with spaces as needed.

A fixed-length string must be at least precision+2 bytes long. If a fixed-length string field is not
large enough to hold the decimal, a range failure occurs.

Date, Time, and Timestamp Compatibility

Orchestrate does not perform any automatic conversions between date, time, or timestamp and
other data types. However, you can use the modify operator to perform conversions between these
three types and most other data types, as described in the modify chapter in the Orchestrate User’s
Guide: Operators.

Orchestrate Operators 5 – 21Visual Orchestrate User’s Guide

ace
n.

d,
rsion is

 in the

g the

ls
Vector Data Type Compatibility

Fixed-length vectors in the input data set must correspond to fixed-length vectors of the same
length in the input interface. Likewise, input data set variable-length vectors must correspond to
variable-length vectors in the input interface. The following figure illustrates these rules:

In this figure, field1 of the input data set is a fixed-length vector of ten 8-bit integers; it is
compatible with field1, a fixed-length vector of 32-bit integers, in the operator’s input interf
schema. Orchestrate automatically promotes the source field to a 32-bit integer representatio

The variable-length source field, field2, is compatible with the variable-length destination fiel
field2, in the operator input interface schema. As the data types are the same, no conve
necessary.

Aggregate Field Compatibility

For compatibility, subrecord fields in the input data set must correspond to subrecord fields
operator input interface schema, and the same rule holds for tagged fields.

You can use the modify operator to match field names or perform data type conversions amon
elements of an aggregate.

Null Compatibility

If a record field’s nullability attribute is set to nullable, the field can hold the null value. If a
field’s nullability attribute is set to not_nullable (default), it cannot hold a null. For more detai
on nullability of fields, see “Defining Field Nullability” on page 4-19.

field1[10]:int8;
field2[]:int16;
field3:int16

Input data set schema

field1[10]:int32; field2[]:int16; field3:sfloat

Output data set

Visual Orchestrate User’s Guide5 – 22 Data Set and Operator Data Type Compatibility
The following table lists the rules followed for the nullability setting when an operator takes an
input data set or writes to an output data set:

An error occurs only if a source field holds a null value and the destination field is defined as
not_nullable. In this case, Orchestrate issues a fatal error and terminates the application. You
can use the modify operator to prevent the fatal error; see the chapter on the modify operator in
Orchestrate User’s Guide: Operators.

Source Field Destination Field Result

not_nullable not_nullable Source value propagates.

not_nullable nullable Source value propagates; destination value is never null.

nullable not_nullable If source value is not null, source value propagates.
If source value is null, a fatal error occurs.

nullable nullable Source value (can be null) propagates.

6 – 1Visual Orchestrate User’s Guide

S
-

p

e
n

ication’s

 more

et and

not run
m oper-
 opera-

ore than

ork-
ormed
6: Orchestrate Steps

An Orchestrate application consists of at least one step, in which one or more Orchestrate
operators process the application’s data. A step is a data flow, with its input consisting of data
files, RDBMS data, or persistent data sets. As output, a step produces data files, RDBM
data, or persistent data sets. Steps act as structural units for Orchestrate application develop
ment, because each step executes as a discrete unit.

As described in the chapter “Creating Applications with Visual Orchestrate”, you use Visual
Orchestrate to create a step. The chapter describes in detail how to implement a multiple-ste
application and also provides information on debugging your application.

Because Orchestrate steps can perform complex processing tasks requiring considerable tim
to complete, you may want to check the step configuration before you run it. The last sectio
of the chapter describes how to check for errors in a step before you run it.

This chapter contains the following sections:

• “Using Steps in Your Application” on page 6-1

• “Working with Steps in Visual Orchestrate” on page 6-4

Using Steps in Your Application

In the data-flow model of your application, a step is bounded by the input and output of persistent
data, which can be flat files or persistent Orchestrate data sets. Because disk I/O consumes
resources and time, it is advantageous to use as few steps as possible to perform your appl
processing.

Many applications, however, have conditions that require you to divide processing into two or
steps. The following two conditions require a multiple-step application design:

• The application’s processing includes one operator that outputs a persistent data s
another operator that inputs that data set.

If two operators need to input from and output to the same persistent data set, they can
in the same step. For example, suppose in your application you need to use the transfor
ator, which always outputs a persistent data set, and then input that data to the statistics
tor. The transform and statistics operators must run in separate steps.

• The application must reiterate an action, so that an operator processes the same data m
once.

Looping (reversing the data flow) is not allowed in a step, as described on the section “W
ing with Steps in Visual Orchestrate” on page 6-4. Therefore, each iteration must be perf
in a separate step.

Visual Orchestrate User’s Guide6 – 2 Using Steps in Your Application
The following section further describes the kinds of data flows that you can use in a step.

The Flow of Data in a Step

To create a step, you connect multiple operators in a data-flow model. The data flow for a step must
be a directed acyclic graph, which allows multiple inputs and outputs but in which data can flow in
only one direction. However, you cannot use a loop (reverse-direction data flow) in a step.

The following example shows the data-flow model of a valid step that includes multiple outputs
(from Operator 1) and multiple inputs (to Operator 4):

The following figure shows a data-flow model of an invalid step, containing a loop:

If you attempt to run a step that includes a loop, Orchestrate terminates execution and issues an
error message. In order to reiterate an operation on a data set, you must create another step.

Step

Operator 1

Operator 2

Operator 3

Operator 4

Operator 1

Operator 2

Step

Loop - not allowed

Orchestrate Steps 6 – 3Visual Orchestrate User’s Guide

or data
ows a
You can use branching operations within a step. The following figure shows an operator that
produces two output data sets, each of which is used by a separate operator:

Designing a Single-Step Application

The following example shows the data-flow model of a single-step application, which sorts data.
The step uses the predefined Orchestrate operators import, tsort, and export:

As described in the chapter “Orchestrate Operators”, a virtual data set is a temporary buffer f
output from one operator and input to another operator in the step. The example figure sh
virtual data set connecting import to tsort, and another one connecting tsort to export.

copy

statistics

groupsort

Step with
branching

Virtual data set

Virtual data set

tsort operator

export operator

Input data set

import operator

Output data set

Step

Visual Orchestrate User’s Guide6 – 4 Working with Steps in Visual Orchestrate

the next
Designing a Multiple-Step Application

In the sample step above, the step takes an input file, performs operations on it, and stores the result
in a file on disk, possibly to be used as input to another step. Storing the output of a step in a
persistent data set allows you to create a data set in one step and process the data set in a second
step. In the following figure, Step 1 performs a preprocessing action, such as sort, on a data set that
Step 2 also requires. By performing the preprocessing in Step 1 and saving the result to a persistent
data set, Step 2 can input the preprocessed data set.

You cannot use a persistent data set both for input and for output within one step. However, as
described in the chapter “Orchestrate Data Sets”, you can use the Orchestrate copy operator to save
a data set to disk and to output the same data as a virtual data set that can be input to
operator in the step.

Working with Steps in Visual Orchestrate

The following sections describe how to use Visual Orchestrate to manipulate steps:

• “Creating Steps” on page 6-5

• “Executing a Step” on page 6-7

• “Setting Server Properties for a Step” on page 6-8

• “Setting Environment Variables” on page 6-10

• “Using Pre and Post Scripts” on page 6-12

copy operator

Operator 2

Step 2

Operator 3

Output data set

Persistent data set

Operator 1

Step 1 Input data set

Input data set

Orchestrate Steps 6 – 5Visual Orchestrate User’s Guide

the
Creating Steps

When you create a new program, Visual Orchestrate automatically creates an initial step for the
program.

To add a step to a program, perform any one of the following actions:

• Select Program -> Add Step from the menu

• Click the step icon in the tool bar

• Right-click in the Program Editor window background area (outside any step). From
popup menu, select Add Step.

The step displays as a box in the Program Editor window, as shown below

Visual Orchestrate User’s Guide6 – 6 Working with Steps in Visual Orchestrate

on” on

t, or

tting

etting
You can add operators, data sets, and data-flow links to the step. For example, the figure below
shows a step that implements the example in the section “Designing a Single-Step Applicati
page 6-3:

To view and modify the properties of a step, use the Step Properties dialog box, shown below. To
open the Step Properties dialog box, double-click in the step box (not on an operator, data se
link).

This dialog box contains the following tabs:

• Use the General tab to set the step Label and Execution Order within your program.

• Use the Server tab to configure the execution environment of the step. See the section “Se
Server Properties for a Step” on page 6-8 for more information

• Use the Env tab to set the environment variables used by the step. See the section “S
Environment Variables” on page 6-10 for more information.

Orchestrate Steps 6 – 7Visual Orchestrate User’s Guide

e the

is tab
lick to

cks

 for
. You

 but-
eck-

ing
• Use the Execution Mode to configure how your step uses processors when it executes. Se
section “Setting Step Execution Modes” on page 6-10 for more information.

• Use the Defaults tab to set buffering parameters and default import schemas.

See the chapter on the import/export utility in the Orchestrate User’s Guide: Operators for
more information on default schemas.

• Use the Constraints tab to set constraints on the step.

See the chapter “Constraints” for more information.

• Use the Pre and Post tabs to add a UNIX shell script that executes before (Pre) or after (Post)
the step. These scripts are executed using the UNIX Bourne shell (/bin/sh). See the section
“Using Pre and Post Scripts” on page 6-12 for more information.

• Use the Notes tab to enter text that describes the step. The text is saved with the step. Th
provides standard text editing functions, such as selection, cutting, and pasting; right-c
display a context menu of these functions.

Executing a Step

To execute a step, press the Run button on the Visual Orchestrate tool bar. Orchestrate first che
the step for errors (such as incorrectly connected links), and then runs the step.

To configure Visual Orchestrate to check a step but not to run it, use the Program menu. This menu
entry has the following options:

• Step Check All: If you select this option, pressing the Run button will check all steps
errors, but will not execute any step. This option sets the check-only flag for all steps
must explicitly clear the check-only flag using Step Check None, or by clicking Enable Step
in the popup menu for the step.

Shown below is a step with the check flag set:

• Step Check Selected: Sets the check flag for the currently selected step. Pressing the Run
ton will check the step for errors, but will not execute it. You must explicitly clear the ch
only flag using Step Check None, or by clicking Enable Step in the popup menu for the step.

• Step Check None: Clears the check-only flag for all steps in an application. After choos

Check flag indicator

Visual Orchestrate User’s Guide6 – 8 Working with Steps in Visual Orchestrate
this menu command, pressing the Run button will both check and execute all steps in the appli-
cation.

Note: Running an application that displays a great deal of text (more than a few thousand lines) in
Visual Orchestrate can negatively affect its performance. When you run a display-intensive appli-
cation in Visual Orchestrate, redirect its output from the screen to a file, which you can examine
outside Orchestrate (in a text editor, for example) after the run.

Setting Server Properties for a Step

An Orchestrate program consists of one or more Orchestrate steps. When you create an Orchestrate
program, you use the Program Properties dialog box to set the global properties on the program.
However, you can override many of these properties on individual steps using the Server tab of the
Step Properties dialog box, shown below:

Note: Any properties left unchanged in the Step Properties dialog box default to the settings in the
Program Properties dialog box.

You can optionally set any one of the following server properties:

Configuration: Select the Orchestrate configuration used to execute the step. The configuration
defines the processing nodes and disk drives available for use by your program.

The Orchestrate server administrator is required to set up at least one default configuration
before you can create an Orchestrate step or program. If no configuration is available, see
the Orchestrate server administrator

You may have several different configurations available. For example, one configuration
may be for testing and another for deployment.

Orchestrate Steps 6 – 9Visual Orchestrate User’s Guide

ual to

ual to

vail-
ble to
m load
users.

plica-

y set
ing

e. For
rocess-
Execution Options: Click Check Only to validate the step but not run it, and Execute to execute
the step. Click Disabled to cause Visual Orchestrate to skip this step (that is, not to execute the step
as part of the application).

If you change execution options with the menu (such as with Program->Step Check All) or with
the step popup menu (such as with Disable Step), the Execution Options setting on the Server
Properties tab will reflect the setting the next time you open the Step Properties dialog box.

Show Scores causes Visual Orchestrate to display extensive diagnostic information about the step
as it executes.

Shows Schemas causes Visual Orchestrate to print the record schema of all data sets and the inter-
face schema of all operators.

Shows Environment causes Visual Orchestrate to display the applicable environment variables
during the program run.

Max Outstanding KB: Sets the amount of memory, in bytes, reserved for Orchestrate on every
node to communicate over the network. The default value is 2 MB (2048 bytes).

Note: If you are working on a stand-alone workstation or stand-alone SMP, leave Max Outstand-
ing KB at its default value.

If your system uses a network to connect multiple processing nodes, such as an IBM switch in an
MPP or an Ethernet connection in a network cluster, set Max Outstanding KB as follows:

• If you are using the IBM HPS switch (also referred to as TB2), set a value less than or eq
(thewall * 1024)/2.

• If you are using the IBM SP switch (also referred to as TB3), set a value less than or eq
MIN(spoolsize, rpoolsize).

• For workstations connected by a network, set a value less than or equal to (thewall * 1024)/2.

Contact your system administrator for the correct setting for Max Outstanding KB. The fol-
lowing are some guidelines for determining the setting for your system.

Setting Max Outstanding KB to its maximum value means that Orchestrate reserves all a
able memory for communicating over the network, and that no other application will be a
communicate. Set this environment variable based on your understanding of the syste
required by Orchestrate and by all other applications running on the system by all other

For example, if you are using DB2 and Orchestrate together, you could set Max Outstanding
KB to reserve 8 MB for Orchestrate. If you are testing Orchestrate by running small ap
tions, you could set Max Outstanding KB to reserve only 4 MB.

If you run multiple Orchestrate applications concurrently, set Max Outstanding KB to a frac-
tion of the value that you would use for a single application. For example, if you normall
Max Outstanding KB to 8 MB for a single Orchestrate application, set it to 4 if you are go
to run two concurrent Orchestrate applications.

If you use SMP nodes in your system, you must set Max Outstanding KB to the value deter-
mined above, divided by the number of Orchestrate nodes defined for the SMP nod
example, if you configure Orchestrate to recognize a single SMP node as two separate p

Visual Orchestrate User’s Guide6 – 10 Working with Steps in Visual Orchestrate
ing nodes, set Max Outstanding KB to its normal value divided by two. If you have multiple
SMP nodes, divide the value of Max Outstanding KB by the largest number of Orchestrate
nodes defined for any single SMP node.

Database: Specifies the database configuration used by the step. The database configuration
defines the database type (DB2, INFORMIX, Oracle) as well as the specific database configuration
to use.

If you are accessing a database, the Orchestrate server administrator must set up at least a
default database configuration before you can create an Orchestrate step or program. If no con-
figuration is available, see the Orchestrate server administrator.

You may have several different configurations available depending on the database and data-
base data that you want to access.

Setting Environment Variables

You can use the Env tab in the Step Properties dialog box to set environment variables required by
the step, or to override global environment variables set in the Program Properties dialog box.
The Env tab is shown below:

Setting Step Execution Modes

Debugging a parallel Orchestrate application can be difficult when the application executes in
multiple UNIX processes on multiple processing nodes. To simplify application development and
debugging, you can execute your Orchestrate application in the sequential execution mode.

In sequential execution mode, a step executes on a single processing node and has access only to
the resources (including disk storage) of that node. To use sequential execution mode, you need to
construct a testing data set as a subset of your complete data set. The testing data set must be small
enough to be handled easily on a single processing node with the available system resources.

Orchestrate Steps 6 – 11Visual Orchestrate User’s Guide
When your application works properly in sequential execution mode, it is time to test the program
in parallel execution mode. In parallel mode, your application executes in multiple UNIX processes
on multiple processing nodes using the full capabilities of the Orchestrate framework.

The Execution Mode tab of the Step Properties dialog box, shown below, lets you override global
execution mode properties set in the Program Properties dialog box.

You can optionally set the following properties:

Normal: Specifies standard execution mode. This means each operator executing on each process-
ing node creates a separate UNIX process. The operators execute in parallel or sequentially based
on how you configured the operator.

One Process: Sets the program to execute sequentially on a single processing mode. In addition,
the application executes in a single UNIX process. You need to run only a single debugger session,
and you can set breakpoints anywhere in your code. In addition, data is partitioned according to the
number of nodes defined in the configuration file.

Orchestrate executes each operator as a subroutine. Each operator is called the number of
times appropriate for the number of partitions on which it must operate.

No Serialize: The Orchestrate persistence mechanism is not used to load and save objects. Turning
off persistence may be useful for tracking errors in derived C++ classes. That is, if turning off seri-
alization in a program that previously crashed results in the program executing correctly, the prob-
lem may be located in your serialization code.

Many Sequential Processes: Sets the program to execute sequentially on a single processing node.
Orchestrate forks a new UNIX process for each instance of each operator and waits for it to com-
plete.

Virtual Dataset Temp Dir: During sequential program execution, virtual data sets are written to
files in the specified directory which defaults to the current working directory. These files are
named using the prefix aptvds. This allows you to examine a virtual data set as part of debugging
your application. Virtual data sets are deleted by the framework after they are used.

Visual Orchestrate User’s Guide6 – 12 Working with Steps in Visual Orchestrate

assing

ither

se any
Korn

ll

estrate
.

tions in
ides a
Using Pre and Post Scripts

This section describes how to create and use pre and post scripts and server variables, to modify the
execution of your steps. This section includes a detailed example, in the section “Example: P
a Value to an Operator from the Pre Shell Script” on page 6-13.

Creating Pre and Post Scripts
Each Orchestrate step allows you to create and associate two scripts with the step: a Pre and a Post
shell script. You can use these scripts to perform such operations as:

• Opening and closing UNIX pipes for use by the import/export operators

• Calculating run-time values passed to Orchestrate operators

• Performing any other pre or post processing actions required by the step

The order of execution of a step and its associated shell scripts:

1. Execute the Pre shell script, if any.

2. Execute the step.

3. Execute the Post shell script, if any.

Note that the Pre and Post shell scripts are independent of each other; that is, you can create e
a Pre or a Post shell script, or both.

By default, Orchestrate uses the Bourne shell to execute the shell script. However, you can u
shell to execute the script. For example, the first line of the following script specifies the
shell:

#!/bin/ksh
script goes here

Each step in an application, as well as each Pre and Post shell script, executes in its own she
environment. Any modifications to the UNIX shell environment made by the Pre shell script are
not passed to the shell environment of the step or to that of the Post shell script. Therefore, you
cannot use UNIX environment variables to pass information. Instead, you can use Orch
server variables, which exist only during execution of the application in which you create them

Using Orchestrate Server Variables
Orchestrate provides a function that you can use to store on the server the result of calcula
your Pre shell script. In your step, operators can reference that value. Orchestrate also prov
function that you can use to access the variable in a Post shell script.

To write a value to the server, use the function:

set_orchserver_variable var_name var_value

Orchestrate Steps 6 – 13Visual Orchestrate User’s Guide

ion of
 the end

tring.

 the
e of
 in the

 by the
ter this
where:

• var_name is a variable name. The server stores the variable and its value for the durat
your Orchestrate program, so that other steps in the program can access the variable. At
of the program run, Orchestrate deletes the variable.

• var_value is the variable’s value and can be an integer (signed or unsigned), float, or s
All values are stored on the server as strings.

To get a value from the server, use the function:

value = get_orchserver_variable var_name

where:

• value is the variable value represented as a string

• var_name is the name of the server variable

get_orchserver_variable returns an exit code of 0 if it succeeds and 1 if it fails. If var_name
is not stored in the server, the call succeeds but returns the empty string.

The following two sections describe examples of using pre scripts and server variables.

Example: Passing a Value to an Operator from the Pre Shell Script
A common use of the Pre shell script is to calculate the value of an argument for an operator in
step. For example, the Orchestrate sample operator takes an argument specifying the percentag
an input data set written to each output data set. The percentage is a floating-point value
range of 0.0, corresponding to 0.0%, to 100.0, corresponding to 100.0%.

Shown below is a shell script that you can use to calculate the percent sample size required
sample operator to copy 1600 records from the input data ‘set to the output data set. You en
script in the Pre tab area of the Step Properties dialog box:

#!/bin/ksh
numSampled=1600 # Line 1
numRecs=‘dsrecords inDS.ds | cut -f1 -d' '‘ # Line 2
percent=‘echo "10 k $numSampled $numRecs / 100 * p q" | dc‘# Line 3
set_orchserver_variable sample_percent ‘echo $percent‘ # Line 4

Line 1. In this example, you want the output data set to contain 1600 records.

Line 2. Use the dsrecords utility to obtain the number of records in the input data set. The return
value of dsrecords has the form # records where # is the number of records. This statement
returns the record count and strips off the word record from the value.

Line 3. Calculate a floating point value for the sample percentage from the 1600 records required
by the sample and the number of records in the data set. This example uses the UNIX dc command
to calculate the percentage. In this command, the term 10 k specifies that the result has 10 digits to
the left of the decimal point. See the man page on dc for more information.

Line 4. Use set_orchserver_variable to write the variable sample_percent to the server.

You can now reference sample_percent in your step, to set the sampling percentage for the
sample operator. To reference the sample_percent , double-click the operator to display its

Visual Orchestrate User’s Guide6 – 14 Working with Steps in Visual Orchestrate
Operator Properties dialog box. On the General tab, select Add to add a option or Edit to edit an
existing one. The Options Editor dialog box for the sample operator appears. Click the Variable
Reference button, marked with a blue V, to select it. In the text field to the left of the Variable
Reference button, type the variable name, as shown in the following figure:

Each time you run the step, the Pre shell script calculates the required percentage to generate 1600
records in the output data set and passes this sampling percentage to the operator.

Variable Reference button

7 – 1Visual Orchestrate User’s Guide

e

7: The Performance Monitor

The Orchestrate performance monitor (also called orchview) produces a graphical, 3-D rep-
resentation of an Orchestrate step as it executes. The monitor allows you to track the execu-
tion of an Orchestrate step and display statistical information about Orchestrate operators
during and after step execution.

This chapter describes the performance monitor, including the monitor’s graphical user
interface. This chapter also describes how to configure your system to use the performanc
monitor and how to run the performance monitor.

This chapter contains the following sections:

• “The Performance Monitor Window” on page 7-1

• “Controlling the Performance Monitor Display” on page 7-5

Note: Your system must have X Windows support in order to run the Orchestrate performance
monitor.

The Performance Monitor Window

The performance monitor shows the execution of a step in a 3-D format that allows you to view the
operators and the data flow among the operators that make up the step. You can use the monitor to
display a step as it executes, or you can record the step and play it back later.

The performance monitor allows you to zoom the display, and rotate the display horizontally and
vertically, to examine individual operators or operator connections. You can set a number of
options that control how the performance monitor displays your program execution. For example,
you can set the frequency at which the entire display is updated. You can also customize the display
style for data flows, and the volume or rate cutoff at which the performance monitor shows a
change in the data flow.

The performance monitor lets you display statistical information about the operators and the data
sets in your program. For example, you can display a snapshot of the current record read and write
rates. The performance monitor also has a feature that lets you create a spreadsheet from your
program statistics.

Visual Orchestrate User’s Guide7 – 2 The Performance Monitor Window
Shown below is the performance monitor window with a run-time display of a sample application:

Message panel

Control panel

The Performance Monitor 7 – 3Visual Orchestrate User’s Guide
How the Performance Monitor Represents Your Program Steps

The symbols the performance monitor uses to represent operators and data sets are similar to those
used in data-flow diagrams, as shown below:

As shown in the figure above, the performance monitor displays operators as square grids. Each
used cell in an operator grid represents an instance of the operator on an Orchestrate processing
node. The performance monitor also displays persistent data sets as square grids. Each used cell in
the grid represents an Orchestrate processing node.

An operator grid may also contain cells that are never used, as explained below.

How the Performance Monitor Determines Grid Dimensions
All operator and persistent data contain a square number of cells (4, 9, 16, 25, and so forth),
arranged as a square. All the operator and persistent data set grids in a step have the same number
of cells: the largest number of Orchestrate processing nodes used by the step, rounded up to the
nearest square number.

For example, if the largest number of processing nodes used by the step is 16, then all operator and
data-set grids have 16 cells (4 rows by 4 columns). In another example, if the largest number of
processing nodes used is 22, the number of cells is rounded up to the nearest square number, 25,
and every grid in the step has 5x5 cells.

Note: Any cells in a grid that do not represent processing nodes, which the performance monitor
has added to make the grid a square, are never used and therefore never show activity. Do not con-
fuse these never-used cells with temporarily inactive cells, which represent Orchestrate nodes but
show no activity in the current display.

The cells in grids for operators and persistent data sets are identified by row-column coordinates,
with each row and column indexed 0 through n-1.

In performance monitor In data-flow diagram

Virtual data set

Persistent data set

OpNameOperator

Data flow

Visual Orchestrate User’s Guide7 – 4 The Performance Monitor Window

ed line.
ssing
tion to a
e the
e this
esents

-
ver is
configu-

work

 from

es for

hold

in
How the Performance Monitor Represents Data Flows
Flows of data (including virtual data sets), among operators and data sets in the step, are
represented by solid or dashed lines (arcs). The performance monitor treats any data connection
with no flow of data within a sampling interval as currently inactive, and by default does not
display it. You set the sampling interval when you configure the performance monitor (see the
section “Configuring the Performance Monitor” on page 7-4).

During the step’s processing, the performance monitor first represents a data flow as a dash
After a minimum number of records (by default, 100,000) have been written to one proce
node in the virtual data set, the performance monitor changes the virtual data set representa
solid line. As explained on the section “Data Set Display Control” on page 7-7, you can us
Options dialog box to enable or suppress the display of inactive data flows. You can also us
dialog box to change the minimum number of records at which the performance monitor repr
the flow with a solid line.

Configuring the Performance Monitor

To configure the performance monitor for an entire application, you use the Program Properties
dialog box, as described below:

1. Choose Program -> Properties to open the Program Properties dialog box.

2. From the Orchview tab, select the Debug Options button. This opens the Step Debug dialog
box.

3. Set the parameters that enable the performance monitor, as follows:

Enable: Click to enable the performance monitor.

Host running Orchview performance monitor: The name of the UNIX processing node run
ning the performance monitor. On MPP systems, this is the node from which the ser
started. On other systems, this is the name of the node as it appears in the Orchestrate
ration file, using the node parameter.

X Windows DISPLAY on which Orchview window appears: The name of the machine on
which the performance monitor output window is displayed. This entry is usually the net
name of your PC.

TCP port by which Orchview receives performance data: The logical port number used to
communicate information from your application to the performance monitor.

The port number must be different from all other performance monitor processes, and
that of other applications that allocate specific port numbers.

Many standard applications port numbers are in the 0-1000 range. Recommended valu
the port number are between 10,000 and 60,000.

Temporary Score File: The name and path of the file used by the performance monitor to
data. The performance monitor creates this file if it does not already exist.

Display update interval (seconds): The sampling interval for the performance monitor
one-second increments.

The Performance Monitor 7 – 5Visual Orchestrate User’s Guide

 the

 perfor-

pera-

mplex
step.
Increasing the number reduces the network bandwidth used by the monitor. Decreasing the
number creates a finer granularity for viewing the step.

Shown below are example settings for these environment variables:

Enable: Checked
Host running Orchview performance monitor: node0
X Windows DISPLAY on which Orchview window appears: myPC:0
TCP port by which Orchview receives performance data: 22222
Temporary Score File: /home/user1/working_dir/myscorefile
Display update interval (seconds): 10

Controlling the Performance Monitor Display

This section describes how you can control the display of the performance monitor. Included in this
section is information on:

• “General Display Control” on page 7-5

• “Operator Display Control” on page 7-6

• “Data Set Display Control” on page 7-7

• “Generating a Results Spreadsheet” on page 7-8

General Display Control

The performance monitor contains the following general controls:

• In the menu bar, the Options selection includes several display options, such as setting
background color of the display window to black or white.

• In the menu bar, the Help selection accesses online help.

• Below the graphical display area, the message panel displays output messages from the
mance monitor.

• The control panel lets you:

• Automatically pan and zoom the display with the Auto View button.

• Zoom in and out on the display.

• Rotate the step both horizontally and vertically, so you can focus in on a particular o
tor or connection.

• Change the width of the operator grids. Reducing the size of the grids can make a co
step easier to view, and it gives you the option of displaying only the data flow of the

Visual Orchestrate User’s Guide7 – 6 Controlling the Performance Monitor Display

id, you
system,
strict an
e cells
ith no

 on a

ouse
ant to
r of the

n. To
ay the

erator
shown

mati-
Operator Display Control

Not all operators execute on all nodes. By observing the data connections to an operator’s gr
can determine the number of nodes used to execute it. For example, if you have a 16-node
each grid contains 16 cells. However, constraints applied to an operator or to the step can re
operator to executing on a subset of the 16 Orchestrate processing nodes. Only th
corresponding to nodes actually executing the operator have a data connection. Cells w
connection correspond to nodes not used by the operator.

The performance monitor provides the following controls for operator display:

• To move an operator in the window, you use the middle mouse button (or both buttons
two-button mouse) to click and drag the operator grid in the window.

• To display a window with a snapshot of the statistics about the operator, click the right m
button on the operator-grid cell that represents the operator instance on which you w
obtain statistics. The statistics display includes the operator number and instance numbe
operator cell on which you clicked, as shown below:

The statistics window remains open as long as you hold down the right mouse butto
refresh the statistics display, release the mouse button and then click again to displ
updated statistics.

• To display statistics about an operator for which you know the operator number and op
instance number, you can also use the menu to display the operator statistics window
above. Choose the Data -> Operator Stats menu selection to open the Specify Operator dia-
log box. Enter the operator number into the Specify Operator Number field, and enter the
instance number into the Specify Instance Number field. Then, click the stats... button to
open the statistics window for the operator.

When opened via the menu, the window remains open until you dismiss it, and it is auto
cally updated every 5 seconds.

Instance number

Operator number

The Performance Monitor 7 – 7Visual Orchestrate User’s Guide

ine the
ach data-
rator to

o nodes
o nodes

tion

on the
 down
en con-

shown

dis-
of the

 win-

ords

pro-
Data Set Display Control

The performance monitor displays virtual data sets as dashed or solid lines, and it displays
persistent data sets as grids. The performance monitor lets you control some aspects of the display
of data sets, and to display statistical information about your data.

Not all persistent data sets are transferred using all processing nodes. From the performance
monitor window, you can see the data connections to a data set’s grid and therefore determ
number of nodes used to store the a data set. For example, if you have a 16-node system, e
set grid contains 16 cells, but constraints applied to an operator or to the step restrict an ope
transferring the data set on fewer than 16 nodes. Only the data-set grid cells corresponding t
actually used for the data set have a data connection. Cells with no connection correspond t
that are not used to transfer the data set.

The performance monitor provides the following options for controlling the display of informa
about a data set:

• To display a snapshot of statistics about a data set, control-click the right mouse button
data flow (solid or dashed line). The statistics window remains open as long as you hold
the right mouse button. To refresh the statistics display, release the mouse button and th
trol-click again to display the updated statistics.

The window includes the data-set number and the reading and writing operators, as
below:

At the bottom of the window is the information on Arc(N,M), where N is the instance number
of the writing operator and M is the instance number of the reading operator. This window
plays information about the partition of the data set connecting the output of instance 0
writing operator to the input of instance 0 of the reading operator.

You can determine the data-set number from this window in order to open the statistics
dow for the operator, described next.

• To display statistical information about a data set and a specific arc in it, choose the Data ->
DataSet Stats menu selection. The statistics displayed include the time running, total rec
passed, and data-flow rate. The performance monitor updates this window continuously.

• To show the volume of records processed, select Options from the menu to open the Options
dialog box. In that dialog box, check the selection DS Spectrum Coloring Marker (No. of
Records). By default, the data-flow line color is determined by the node number of the

Data-set number Writing operator Reading operator

Data-set arc information

Visual Orchestrate User’s Guide7 – 8 Controlling the Performance Monitor Display

e
ance

t the

-
, and
ption

lid line,

a
ling

athers
t you
l, so

 at the
n-

pec-
cessing node writing the data, and the color remains constant throughout processing. Setting
the DS Spectrum Coloring Marker option causes the performance monitor to indicate record
volume by cycling through the color palette, from orange to violet, changing color when your
specified number of records has been processed.

• To show the rate of data flow, you can use either of two selections in the Options dialog box:

• DS Spectrum Coloring Marker (Records per Second). Check this option, and enter th
number of records per second at which you want the color to change. The perform
monitor cycles through the color palette (from orange to violet), changing color a
number of records you specify.

• DS Binary Rate Coloring (Records per Second). Using his option causes the perfor
mance monitor to display in red the data flows that transfer data below the cutoff rate
to display in green the data flow arcs with a rate at or above the cutoff. Check the o
and set the cutoff rate in the Records per Second field, and then press Enter.

• To set the number of records processed after which a virtual data set is displayed as a so
check the Options dialog box selection Set DS Solid Line Marker (No. of Records). The
default number of records is 100,000.

• To cause the performance monitor to display inactive data connections, use the Options dialog
box selection Show Data Set By Blockage (Solid Line). The performance monitor treats
data connection as inactive if no records have been transferred over it during one samp
period (approximately five seconds).

Generating a Results Spreadsheet

The performance monitor lets you save to a file, in a spreadsheet layout, the information it g
on record flow in your data set. The information is saved as tab-delimited ASCII text, so tha
can open the file in any ASCII text editor. The format is also compatible with Microsoft Exce
you can use Excel to view your results spreadsheet.

Use the following procedure save your record-flow data to a spreadsheet:

1. In the performance monitor, choose the File -> Save Spread Sheet menu command to open a
dialog box prompting you for the name of the file.

2. Enter the name of the file.

3. Click the Save Spread Sheet button to save the current data flow information to the file.

This action saves the number of records transferred by every data-flow arc in the step
time you click the Save Spread Sheet button. Clicking on the button again overwrites the co
tents of the file with new information.

4. View the file using either an ASCII text editor or in Microsoft Excel.

When you read the file into Excel, Excel opens a text import dialog box allowing you to s
ify the layout of the file. Use the default value of Delimited text to read the file, then click on
the Finish button.

The Performance Monitor 7 – 9Visual Orchestrate User’s Guide

7 for
The following is an example of the contents of the saved spreadsheet:

Orchestrate Performance Spreadsheet, Copyright (C) 1995 - 2000
Torrent Systems, Inc. All Rights Reserved.

Sequence Number: 3
Spreadsheet Version: 1
Current Date 1997 10 28
Current Time 12:35:50
Unique Orchestrate Step ID: 60346-878059706
Step Start Date 1997 10 28
Step Start Time 12:28:26

Data Section:

data saved: detailed data set flow volumes.
begin data:

End Data
End Data Section
Sequence Number: 3

In the spreadsheet, the row labels (such as 0,0) specify the partition numbers of the reading and
writing operators for each data-flow arc, in the form.

(writing_partition, reading_partition)

The column labels identify the data sets. To determine the data set that corresponds to the label for
a column (such as DS0), control-click the right mouse button on the data flow arc in the
performance monitor display. See the section “Data Set Display Control” on page 7-
information about data set arcs.

DS0 DS1 DS2 DS3 DS4 DS5 DS6

(0,0) 673 673 1346 1346 1346 337 337

(0,1) 673 673 0 0 0 337 337

(0,2) 673 673 0 0 0 336 336

(0,3) 672 672 0 0 0 336 336

(1,0) 0 0 0 0 0 337 337

(1,1) 0 0 1346 1346 1346 337 337

(1,2) 0 0 0 0 0 336 336

(1,3) 0 0 0 0 0 336 336

(2,0) 0 0 0 0 0 337 337

(2,1) 0 0 0 0 0 337 337

(2,2) 0 0 1346 1346 1346 336 336

(2,3) 0 0 0 0 0 336 336

Visual Orchestrate User’s Guide7 – 10 Controlling the Performance Monitor Display

ntire
lay the
Each cell in the spreadsheet body corresponds to a single arc in the display of the performance
monitor. The cell contains the number of records transferred from the writing operator to the
reading operator for a partition of the data set.

Creating Movie Files

The performance monitor movie feature lets you record and play back the run-time display of your
program. You save one or more steps to a movie file, and you play it back in the performance
monitor. Once the display information is saved, you can repeatedly play back the file.

To save a step to a movie file, choose the File -> Save Movie As menu command before you run
the step. This command prompts you for the file name for the movie.

To play a movie file back, choose the File -> Play Movie menu command, and enter the name of a
file containing a movie.

You can also view a step’s configuration stored in a movie file, without playing back the e
movie. The step configuration is a snapshot of all operators and data sets in a step. To disp
step configuration stored in a movie file, choose the File -> View Step menu command.

8 – 1Visual Orchestrate User’s Guide

g

e

f

e

rs are
 detail
8: Partitioning in Orchestrate

Partitioning is the action of dividing a data set into multiple segments or partitions. Partition-
ing implements the “divide and conquer” aspect of parallel processing, where each processin
node in your system performs an operation on a portion of a data set rather than on the entire
data set. Therefore, your system produces much higher throughput than it does using a singl
processor.

One of the goals of Orchestrate is to insulate application developers from the complexities o
partitioning. Usually, a parallel operator defines its own partitioning algorithm, or method, so
that you do not have to modify how the operator partitions data.

However, Orchestrate allows you to specify an explicit partitioning method in certain circum-
stances. The first section of this chapter describes how Orchestrate partitions data during
normal program execution and how you can control the partitioning behavior of an applica-
tion.

Note that sequential Orchestrate operators do not use a partitioning method. Instead, a
sequential operator defines a collection method. A collection method defines how a sequential
operator combines the partitions of an input data set for processing by a single node. See th
chapter “Collectors in Orchestrate” for more information.

This chapter contains the following sections:

• “Partitioning Data Sets” on page 8-1

• “Partitioning Methods” on page 8-3

• “Using the Partitioning Operators” on page 8-7

• “The Preserve-Partitioning Flag” on page 8-11

Partitioning Data Sets

A record comprises one row of a data set and is the unit of partitioning in Orchestrate. An operator
partitions an input data set by dividing it record by record to distribute the data set to all processing
nodes executing the operator.

All records assigned to a single processing node are referred to as a data-set partition. An operator
executing on a processing node performs an action only on those records in its input partition. All
records on a processing node output by an operator are written to the same partition of the output
data set. For each partitioning method, Orchestrate provides a partitioning operator (also called a
partitioner), which you use to partition data for a parallel operator. Partitioning methods are
described in the section “Partitioning Methods” on page 8-3, and the partitioning operato
introduced in the section “Using the Partitioning Operators” on page 8-7 and are described in
in the Orchestrate User’s Guide: Operators.

Visual Orchestrate User’s Guide8 – 2 Partitioning Data Sets

ata set.
erator
tputs a

he opera-
single

nput.
t of the

nput
 from a
mber
Partitioning and a Single-Input Operator

Partitioning operators work closely with parallel operators, so that all partitioning and parallelism
are hidden from the application user. In the following figure, the left-hand data-flow diagram is an
application user’s view of a parallel operator that takes one input data set and outputs one d
The detailed diagram on the right shows the application developer’s view: a partitioning op
partitions the data that the parallel operator then processes, and the parallel operator ou
partitioned data set.

As shown in the right-hand diagram, the partitioning operator performs the following tasks:

• Takes as input a data set, which may have already been partitioned

• According to its partitioning method, determines the output partition for each record

• Writes each record to an output partition

The parallel operator runs as a separate instance on each processing node in the system. T
tor instance processes records from a single input partition, and it writes all its output to a
output partition.

Partitioning and a Multiple-Input Operator

A multiple-input parallel operator can use a different partitioning operator to partition each i
However, the partitioning operators must create the same number of partitions for each inpu
parallel operator.

In the figure below, the left-hand data-flow model is an application user’s view of a two-i
operator. The right-hand diagram shows the details: the operator takes each of its two inputs
different partitioning operator. It also shows that each partitioning operator takes a different nu

...

Input data set partitions

Output data set partitions

...

Partitioning operator

Processing nodes
executing the operator

Operator (user’s view)

Output data set

Input data set

Parallel operator

Partitioning in Orchestrate 8 – 3Visual Orchestrate User’s Guide
of partitions (four partitions to the left-hand partitioning operator and two partitions for the right-
hand partitioning operator), as output by differently partitioned upstream operators.

The right-hand diagram shows that each partitioning operator creates three partitions for one of the
two inputs to the parallel operator.

Partitioning Methods

Each Orchestrate partitioning operator uses a different method to determine how to partition a data
set. A partitioning method may be as simple as the random distribution of records, or it may involve
complex analysis of the data.

The Benefit of Similar-Size Partitions

In selecting a partitioning method, an important objective is to make all partitions similar in size, so
that processing will be distributed fairly evenly among processing nodes. Greatly varied partition
sizes can result in heavy record processing by some of your processing nodes and little processing
by others.

For example, suppose that you need to partition a data set in which every record contains a zipcode
field. You could select a partitioning method that partitions the data according to value of the zip-
code field. If there are approximately the same number of records for each zipcode, your partitions
will be of similar size. However, if most of your data set records have one zipcode value and few
records have other zipcode values, your partitions will vary significantly in size.

Input data sets

Output data set

Output data set partitions

Operator (user’s view)
Parallel operator

Partitioning operators

Input data set

Input
data set

Visual Orchestrate User’s Guide8 – 4 Partitioning Methods

d pro-
ystem, it
qual in

h pro-

late

put the
n the

ata set
 of the
tioning

ning
 same

s

tains
 that

le, if
isting
g DB2
 DB2

would

C++
on-
Partitioning Method Overview

Many Orchestrate operators specify a default partitioning method of any. The any method allows
Orchestrate to partition the input data set in any way that it determines will optimize the
performance of the operator. However, insertion of a partitioning operator in front of the operator
overrides the any method.

Orchestrate supports a number of the following commonly used partitioning methods, briefly
described below. The Orchestrate operators that implement these methods are described in the sec-
tion “Using the Partitioning Operators” on page 8-7.

• Round robin: The first record goes to the first processing node, the second to the secon
cessing node, and so on. When Orchestrate reaches the last processing node in the s
starts over. This method is useful for resizing partitions of an input data set that are not e
size. The round robin method always creates approximately equal-sized partitions.

• Random: Records are randomly distributed across all processing nodes. Like round robin, ran-
dom partitioning can rebalance the partitions of an input data set to guarantee that eac
cessing node receives an approximately equal-sized partition. The random partitioning has a
slightly higher overhead than round robin because of the extra processing required to calcu
a random value for each record.

• Same: The operator using the data set as input performs no repartitioning and takes as in
partitions output by the preceding operator. With this partitioning method, records stay o
same processing node; that is, they are not redistributed. Same is the fastest partitioning
method.

• Entire: Every instance of an operator on every processing node receives the complete d
as input. It is useful when you want the benefits of parallel execution, but every instance
operator needs access to the entire input data set. You are most likely to use this parti
method with operators that create lookup tables from their input.

• Hash by field: Partitioning is based on a function of one or more fields (the hash partitio
keys) in each record. This method is useful for ensuring that related records are in the
partition.

• Modulus: Partitioning is based on a key field modulo the number of partitions. This method i
similar to hash by field, but involves simpler computation.

• Range: Divides a data set into approximately equal-sized partitions, each of which con
records with key fields within a specified range. This method is also useful for ensuring
related records are in the same partition.

• DB2: Partitions an input data set in the same way that DB2 would partition it. For examp
you use this method to partition an input data set containing update information for an ex
DB2 table, records are assigned to the processing node containing the correspondin
record. Then, during the execution of the parallel operator, both the input record and the
table record are local to the processing node. Any reads and writes of the DB2 table
entail no network activity. See the chapter on interfacing with DB2 in the Orchestrate User’s
Guide: Operators for more information.

• Other: You can define a custom partitioning operator by deriving a class from the
APT_Partitioner class. Other is the partitioning method for operators that use custom partiti
ers. See the chapter on partitioning in the Orchestrate/APT Developer’s Guide for more infor-

Partitioning in Orchestrate 8 – 5Visual Orchestrate User’s Guide

 of
mation.

Partitioning Method Examples

This section describes examples of different partitioning methods used with several basic data-
flows.

The following figure shows a data flow between two Orchestrate operators:

On the left, the operators appear in a data-flow diagram. The rest of the figure shows the internal
data flow.

Operator 1 processes its input data set on multiple nodes. Each processing node receives a single
partition of the input data set. As Operator 1 writes its results to its output data set, Operator 2
redistributes the records based on its partitioning method.

Case 1: If Operator 2 uses any, round robin, random, hash by field, modulus, range, or other, an
output record from a node executing Operator 1 may be sent to any node executing Operator 2
because this second operation repartitions the data. Note that the number of partitions for Operator
1 and Operator 2 do not need to be equal.

Case 2: If Operator 2 uses same, each node executing Operator 2 inherits a complete partition of
the data set as created by a node executing Operator 1. No repartitioning is performed. Note that the
any partitioning method is treated as same if the input data set has its preserve-partitioning flag set.
See the section “The Preserve-Partitioning Flag” on page 8-11 for more information.

Case 3 (not shown): If Operator 2 uses entire, each node executing Operator 2 receives a copy
the entire input data set.

Operator 1

Operator 2

Processing node

Record data flow

Case 1 Case 2

...

...

...

...

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

Partitioning method = Partitioning method = sameany,
round robin,
random,
hash by field,
modulus,
range
other

Visual Orchestrate User’s Guide8 – 6 Partitioning Methods

 parallel
, as
Case 4: Orchestrate lets you include both parallel and sequential operators in a step. Sequential
operators execute on a single processing node and therefore always take an entire data set as input.
Sequential operators input the output of all processing nodes in the upstream, parallel operator. This
fan-in operation is shown in the following figure:

You have the option of using a collector operator to control how the partitions are gathered for input
to the sequential operator; see the chapter “Collectors in Orchestrate” for more information.

Case 5: This case is the converse of Case 4 above. When a sequential operator precedes a
operator, the parallel operator fans out the sequential operator’s output to the processing nodes
shown in the following figure:

This fan -out is controlled by the partitioning method of the parallel operator.

Operator 1

Operator 2

(parallel)

(sequential)

Processing node

Record data flow

...1 1 1 1

2

Operator 1

Operator 2

Processing node

Record data flow

(sequential)

(parallel)
...2 2 2 2

1

Partitioning in Orchestrate 8 – 7Visual Orchestrate User’s Guide

 that

allows

 “Parti-

te

tput
rd
Using the Partitioning Operators

Nearly all Orchestrate built-in operators have a predefined partitioning method, Only the psort
operator and the group operator in hash mode. require that you specify a partitioning method.

Many Orchestrate operators have the predefined partitioning method any. You can place any
partitioning operator in front of an operator that specifies the any method. Overriding an operator’s
partitioning method is useful for controlling the distribution of records in your system. Note
inserting a partitioning operator before an operator with a partitioning method other thanany
causes an error.

You can also use a partitioning operator before you write a persistent data set to disk. This
you to distribute your data set as a preprocessing operation before the write.

Orchestrate has a partitioning operator for each partitioning method described in the section
tioning Method Overview” on page 8-4, as follows:

• roundrobin operator

• random operator

• same operator

• entire operator

• hash operator

• range operator

• modulus operator

For example, the following figure shows the roundrobin operator inserted before the Orchestra
pcompress operator:

A benefit of the roundrobin operator is that it creates relatively equal-sized partitions in its ou
data set. If processing previous to the roundrobin operator, such as a filter or duplicate-reco
removal, creates partitions that are unequal in size, you can use roundrobin to redistribute records
before inputting them to the pcompress operator.

roundrobin operator

pcompress operator

Partitioning method = any

Visual Orchestrate User’s Guide8 – 8 Using the Partitioning Operators

ashing
 be a
ate a

 many
racter

s dis-
The following figure shows the random operator used to distribute the output partitions of the
remdup operator before writing a data set to disk:

Like the roundrobin operator, the random operator also performs a load balancing form or
repartitioning so that the partitions in its output data set are approximately equal in size.

Note: The optional Orchestrate Analytics Library includes the specialized operator smartparti-
tioner, which uses model-building techniques to partition a data set. The Analytics Library man-
ual describes how to use smartpartitioner to support parallelizing modeling algorithms.

Choosing a Partitioning Operator

This section contains an overview of how to use the partitioning operators in an Orchestrate
application. See the Orchestrate User’s Guide: Operators for a complete description of each
operator.

General Guidelines for Selecting a Partitioning Method
Following are some general guidelines for choosing a partitioning method and, therefore, an
Orchestrate partitioning operator:

• Choose a partitioning method that creates a large number of partitions. For example, h
by the first two digits of a zipcode produces a maximum of 100 partitions. This may not
large enough number of partitions for a particular parallel processing system. To cre
greater number of partitions, you could hash by five digits of the zipcode, to produce as
as 10,000 partitions. Or, you could combine a two-digit zipcode hash with a three-cha
name hash, to yield 1,757,600 possible partitions (100 * 26 * 26 * 26).

• Choose a partitioning method that creates partitions that are roughly uniform in size, a

remdup operator

random operator

Partitioning in Orchestrate 8 – 9Visual Orchestrate User’s Guide

ou are
e same

pera-
n each
ge
num-

 The

ration.
alues
e you
hat all

ring or

t-name
 and,

ill be
 if you
are from
ad to
.
cussed in the section “Partitioning Methods” on page 8-3.

• Make sure the partitioning method matches the action of the operator. For example, if y
performing a comparison, choose a partitioning scheme that assigns related records to th
partition, so the processing node can compare them.

• Do not use a complicated partitioning method with an operator that performs a uniform o
tion on all records, for example, extracting data. If the processing operation performed o
record is not related to any other records, use any. Remember that you are processing hu
amounts of data. Any additional processing on an individual record is multiplied by the
ber of records in the data set.

Keyed and Keyless Partitioning
Keyed partitioners examine one or more fields of a record, called the partitioning key fields, to
determine the partition to which to assign the record. The keyed partitioning operators are hash,
modulus, and range.

Keyless operators determine the partition for a record without regard to the record itself.
keyless partitioning operators are the random, roundrobin, and same.

The keyed partitioning operators hash and range are discussed in more detail below.

Hash Partitioning
Hash partitioning is useful when you need to compare records, such as in a sort or join ope
You use hash to hash-partition the data set, to assign records with the same partitioning key v
are to the same partition. Then, you sort or join the individual partitions of the data set. Whil
cannot control which partition receives which records, the hash partitioner guarantees t
records with the same hashing keys are assigned to the same partition.

You can also use hash partitioning when the processing operation relies on a particular orde
relationship among the records of each partition. For example, suppose that you use the remdup

operator to remove duplicate records from a data set, according to the first-name and las
fields. If you randomly partition records, duplicate records might not be in the same partition
therefore, would not be detected and removed.

While the hash partitioning operator guarantees that all records with the same hashing keys w
assigned to the same partition, it does not control the size of each partition. For example,
hash partition a data set based on a zipcode field, where a large percentage of your records
one or two zipcodes, a few partitions will contain most of your records. This behavior can le
bottlenecks because some nodes will be required to process more records than other nodes

Visual Orchestrate User’s Guide8 – 10 Using the Partitioning Operators
For example, the figure below shows the possible results of hash partitioning a data set using the
field age as the partitioning key:

The hash operator assigns records with the same age value to the same partition. As evident in this
figure, the key values are randomly distributed among the partitions, but the number of keys per
partition is the same.

The partition sizes resulting from a hash partitioner depend on the distribution of records in the data
set. The example distribution shown above could be created when the data set contains an unequal
record distribution based on the age field. Note that you may be able to choose a set of partitioning
keys for this example that creates equal-sized partitions. Or, your application may not care that the
partitions are of different sizes.

See the chapter on the hash operator in the Orchestrate User’s Guide: Operators for more
information.

Range Partitioning
The range partitioning operator guarantees that all records with the same partitioning key values
are assigned to the same partition and that the partitions are approximately equal in size. This
means that all nodes perform an equal amount of work when processing the data set.

Using the range operator always results in partitions with a size distribution similar to that in the
figure below:

Partition number

Partition size
(in records)

. . .

10

54

17

15

44

39

12

18

27

35

5

60

Age values

36

40

22

Partition

Partition size
(in records)

. . .

Age values

0 -
2

3 -
17

18 -
25

26 -
44

66 -
71

Partitioning in Orchestrate 8 – 11Visual Orchestrate User’s Guide

te your
ing, as
ection
As shown in the figure, all partitions are approximately the same size. In an ideal distribution,
every partition would be the same size. However, you will usually observe small differences in
partition size, based on your choice of partitioning keys.

In order to size the partitions, the range operator orders the partitioning keys. The range operator
then calculates partition boundaries based on the partitioning keys in order to evenly distribute
records to the partitions. The above figure shows that the distribution of partitioning keys is not
even; that is, some partitions contain many partitioning keys, and others contain relatively few.
However, based on the calculated partition boundaries, the number of records in each partition is
approximately the same.

The range operator offers the advantages of keyed partitioning, while guaranteeing similar-size
partitions. The random and round robin partitioning method also guarantee that the partitions of a
data set will be equivalent in size. However, these two partitioning methods are keyless and,
therefore, do not allow you to control how the records of a data set are grouped within a partition.

See the chapter on the range operator in the Orchestrate User’s Guide: Operators details on using
that operator.

The Preserve-Partitioning Flag

Some Orchestrate operators produce as output a data set with a specific partition layout. For
example, the tsort operator produces a data set in which the records in each partition are sorted. If
you then use the output data set from tsort as input to an operator with a partitioning method
other than same, Orchestrate by default repartitions the data set and consequently destroys the
sorted order of the records.

To let you control automatic repartitioning, Orchestrate provides the preserve-partitioning flag,
which when set, prevents repartitioning of the data set. In some cases, Orchestrate automatically
sets the preserve-partitioning flag, and in others, you specify the flag’s setting when you crea
step. Orchestrate’s setting of the preserve-partitioning flag and the propagation of the sett
well as how you specify the setting when you create a step, are described in the s
“Manipulating the Preserve-Partitioning Flag” on page 8-13.

Example of the Preserve-Partitioning Flag’s Effect

In the figure below, the data-flow diagram on the left shows the tsort operator outputting data that
is partitioned and sorted. The tsort output is then input to another operator, which has a partitioning
method of any. The diagram in the middle shows that with the preserve-partitioning flag clear, the

Visual Orchestrate User’s Guide8 – 12 The Preserve-Partitioning Flag
data is automatically repartitioned before it is input to the operator. The right-hand diagram shows
that with the preserve-partitioning flag set, the partitioning is preserved.

Only operators that allow a partitioning method of any or same allow you to set the preserve-
partitioning flag for an input data set. In fact, operators that specify the same partitioning method
issue a warning if the preserve-partitioning flag set is not set for an input data set. If the flag is set
for an input data set to a partitioning operator, Orchestrate issues a warning and repartitions the data
set.

The state of the preserve-partitioning flag is stored to disk along with the records of a persistent
data set. Therefore, when you read a persistent data set into Orchestrate, the saved state of the
preserve-partitioning flag will control how the data set is partitioned.

You need to be concerned with the preserve-partitioning flag only if you include operators in your
application that explicitly set the flag. Because most Orchestrate operators ignore the flag when it
has not been set, you can create an entire application without manipulating the flag.

Filtered data set

Sorted data set

Unsorted data set

tsort

Operator

Partitioning method=any
. . .

. . .

. . .

. . .
Processing nodes

Processing nodes

Record data flow

Preserve-partitioning
flag = Clear

Preserve-partitioning
flag = Set

Partitioning in Orchestrate 8 – 13Visual Orchestrate User’s Guide

how

s your

d:

te sets

n input
n a care-

art of

refully
its
Preserve-Partitioning Flag with Sequential Operators

Sequential operators use as input the output of all processing nodes from the preceding operator, as
shown in the following figure:

In this example, the sequential operator has to repartition the input data set, regardless of the state
of the preserve-partitioning flag, because all partitions must be collected into a single input stream.
Orchestrate issues a warning if the preserve-partitioning flag is set and a sequential operator repar-
titions a data set. In the example above, if Operator 1 is sequential, that is, its output data set has
only one partition, Orchestrate will not issue the warning.

See the section “Partitioning Method Examples” on page 8-5 for more information on
Orchestrate performs partitioning with parallel and sequential operators.

Manipulating the Preserve-Partitioning Flag

A data set’s preserve-partitioning flag may be set indirectly by Orchestrate as it execute
application or directly by you using the Advanced tab area of the Link Properties dialog box for
the data set. The following rules define how the preserve-partitioning flag can be manipulate

Rule 1. If any data set input to an operator has the preserve-partitioning flag set, Orchestra
the preserve-partitioning flag in all the operator’s output data sets.

This means that Orchestrate automatically propagates the preserve-partitioning flag from a
data set to an output data set. This is necessary when you want to perform several actions o
fully partitioned data set.

Rule 2. An operator can set or clear the preserve-partitioning flag of an output data set as p
writing its results to the data set.

The ability to manipulate the preserve-partitioning flag is required by operators that create ca
partitioned data as output. For example, the tsort operator sets the preserve-partitioning flag in
output data set.

Operator 1

Operator 2

(parallel)

(sequential)

Processing node

Record data flow

...1 1 1 1

2

Visual Orchestrate User’s Guide8 – 14 The Preserve-Partitioning Flag

g the
e-
nts; an
pplica-

ets. The

erve-
Several Orchestrate operators set the preserve-partitioning flag in the output data set as part of nor-
mal execution. These operators include:

• The tsort operator

• The psort operator

• The pcompress operator (compress mode)

• The encode operator (encode mode)

• The hash partitioning operator

• The range partitioning operator

Rule 3. You can directly set or clear the preserve-partitioning flag for any data set usin
Advanced tab area of the Link Properties dialog box. An operator cannot modify the preserv
partitioning flag of a data set if the flag has been explicitly set or cleared using these argume
attempt by an operator to modify the flag is ignored. This rule means that an Orchestrate a
tion programmer has final control of the state of the preserve-partitioning flag.

In order to set the flag, double click on the link to open the Link Properties dialog box, then select
the Advanced tab, as shown below:

You can use this dialog box to set the flag, clear the flag, or do nothing (the default).

Example: Using the Preserve-Partitioning Flag

This section presents a sample Orchestrate step that uses four operators and five data s
operators are the following:

• The Orchestrate hash operator, which hash-partitions the input data set and sets the pres
partitioning flag in its output data set.

• The Orchestrate tsort operator.

Partitioning in Orchestrate 8 – 15Visual Orchestrate User’s Guide

 sorted.

This

errid-
the
rve-par-
• The Orchestrate remdup operator, which specifies a partitioning method of same. This opera-
tor removes duplicate records from its input data set. The input data set is assumed to be

• ComputeOperator, a third-party operator which calculates values on an input data set.
operator assumes no order in its input data set and defines its own partitioning method.

In this example, you manipulate the preserve-partitioning flag as required by each operator.

The figure below shows the data-flow diagram for this example:

The state of the preserve-partitioning flag for each of the data sets is described below:

1. The hash operator sets the preserve-partitioning flag in its output data set (Rule 2).

2. The tsort operator sets the preserve-partitioning flag on the output data set (Rule 2).

3. Note that you can explicitly clear the preserve-partitioning flag in the output data set, ov
ing the default tsort setting (Rule 3). remdup creates a single output data set. Because
input data set has its preserve-partitioning flag set, the output data set also has its prese
titioning flag set (Rule 1).

unsortedDS.ds

Preserve-partitioning flag cleared
Virtual data set

remdup operator

finalDS.ds

Partitioning method = same

ComputeOperator

Virtual data set
Preserve-partitioning flag set

Preserve-partitioning flag cleared

1

Partitioning method = ????

tsort operator

hash operator

Virtual data set
Preserve-partitioning flag set

2

3

4

Visual Orchestrate User’s Guide8 – 16 The Preserve-Partitioning Flag
4. However, the next operator, ComputeOperator, does not care about ordering to perform its
action; therefore, ComputeOperator should be allowed to repartition its input data sets. Use
the Link Properties dialog box to clear the flag.ComputeOperator writes its output to a per-
sistent data set. Since ComputeOperator takes as input a data set with the preserve-partition-
ing flag cleared, and it does not modify the flag of its output data set (Rules 1 and 2), the flag is
cleared in its output data set.

The state of the preserve-partitioning flag is stored to disk along with the records of the data
set.

This example shows how you can manipulate the preserve-partitioning flag as part of an
Orchestrate application. Note, however, that the partitioning rules are designed so that your step
functions properly if you ignore the flag. However, because you limit the system ability to
repartition data in this case, your application may not function as efficiently as possible.

9 – 1Visual Orchestrate User’s Guide

n

9: Collectors in Orchestrate

Partitioning is the process by which a parallel operator divides a data set into multiple seg-
ments, or partitions. Each processing node in your system performs an operation on one par-
tition of a data set, rather than on the entire data set. A collector defines how a sequential
operator combines the partitions of an input data set for processing by a single node. Collect-
ing for sequential operators is the inverse of partitioning for parallel operators.

Usually, a sequential operator defines its own collection algorithm or method, and you do not
have to modify this method. However, in certain circumstances Orchestrate gives you the
option of modifying an operator’s collection method.

Building on information in the chapter “Partitioning in Orchestrate”, this chapter describes
how sequential operators perform collection. It then describes how to select and use collectio
operators to modify the partitioning behavior of an operator. This chapter contains the fol-
lowing sections:

• “Sequential Operators and Collectors” on page 9-1

• “Choosing a Collection Method” on page 9-3

• “Setting a Collection Method” on page 9-4

For details on using the Orchestrate operators described in this chapter, see the Orchestrate
User’s Guide: Operators.

Sequential Operators and Collectors

Orchestrate allows you to use both parallel and sequential operators in a step. Parallel operators
execute on multiple processing nodes, where each node receives a partition of an input data set.
Sequential operators execute on a single processing node, which receives all partitions of an input
data set.

Visual Orchestrate User’s Guide9 – 2 Sequential Operators and Collectors

g flag
hod of

erve-
erve-

on, no
When a sequential operator takes as input a data set with multiple partitions, the operator must
combine all partitions into a single input stream. This fan-in operation is shown in the following
figure:

In this figure, Operator 2 is a sequential operator that combines the partitions of its input data set.
Once these partitions have been combined, all partition boundaries are lost. This process of
combining the input partitions by a sequential operator is called collecting the partitions. The
mechanism used by a sequential operator to combine the partitions is called a collector.

A collector defines the way a sequential operator combines the partitions of an input data set for
processing by a single node. Collectors are the inverse of partitioners, which define how a parallel
operators distribute input data sets over multiple processing nodes.

Sequential operators offer various algorithms, called collection methods, that control the way an
operator combines partitions. A sequential operator with multiple inputs can define one collection
method for all input data sets, or it can use a different method for each input. The following section
describes the collection methods available for sequential operators.

Sequential Operators and the Preserve-Partitioning Flag

As described in the chapter “Partitioning in Orchestrate”, you can set the preserve-partitionin
for a data set, to prevent its repartitioning by a parallel operator that uses a partitioning met
any. However, the preserve-partitioning flag applies only to parallel operators.

A sequential operator repartitions an input data set without regard to the state of its pres
partitioning flag. Before a sequential operator repartitions an input data set with its pres
partitioning flag set, Orchestrate issues a warning. If the input data set has only one partiti
warning is issued.

Operator 1

Operator 2

(parallel)

(sequential)

Processing node

Record data flow

...1 1 1 1

2

Collectors in Orchestrate 9 – 3Visual Orchestrate User’s Guide

 a
rst-
d

d so
ition,

tion,
s. In a
es are

fields

ctor.
Collection Methods

A collection method may be as simple as combining the partitions on a first-come first-served
basis, in which the sequential operator processes records in the order in which they are received
from the preceding operator. More complex collection methods may determine the collection order
from information in the records of the data set.

Orchestrate also supports the following collection methods:

• Any: By default, Orchestrate built-in operators in sequential mode use the any collection
method. (The one exception is the group operator in sort mode, for which you must specify
collection method.) With the any method, the operator reads records on the first-come fi
served basis. Operators that use the any method allow you to override that collection metho
with another.

• Round robin: Read a record from the first input partition, then from the second partition, an
on. After reaching the last partition, start over. After reaching the final record in any part
skip that partition in the remaining rounds.

• Ordered: Read all records from the first partition, then all records from the second parti
and so on. This collection method preserves the order of totally sorted input data set
totally sorted data set, both the records in each partition and the partitions themselv
ordered. See the chapters on the Sorting Library in the Orchestrate User’s Guide: Operators
for more information on totally sorting a data set.

• Sorted merge: Read records in an order based on one or more fields of the record. The
used to define record order are called collecting keys. You use the sortmerge collection oper-
ator to implement the sorted merge collection method.

• Other: You can define a custom collection method by deriving a class from APT_Colle
Operators that use custom collectors have a collection method of other. See the chapter on col-
lectors in the Orchestrate/APT Developer’s Guide for information on creating a collection
method.

Choosing a Collection Method

When you choose a collection method, take into account the particular action of its associated
operator. The built-in collection methods any, round robin, and ordered are keyless. A keyless
collector does not rely on information in the records to define the order of records read by the
operator.

Visual Orchestrate User’s Guide9 – 4 Setting a Collection Method

tors:
Unless your sequential operator requires a deterministic order for processing records, the any
collection method is likely to serve your needs. For more control over the order of records
processed by the operator, you can use the ordered method, the sortmerge collection operator, or
a custom collector that you define.

Operators use any when the location of the record in the data set is irrelevant and the operator
performs the same operation on every record. For example, in an unsorted data set, each record has
no relationship to the record immediately before or after it. When you specify any, your sequential
operator is never forced to wait for a record from a particular partition.

The ordered method requires that all records are read from partition 0 before any records from
partition 1 are read. Even if all records of partition 1 are ready for processing before all records of
partition 0, the sequential operator must wait in order to process the partitions in order, possibly
creating a processing bottleneck in your application. However, that the ordered collection method
is necessary if you want to preserve the sort order when you process a totally sorted data set with a
sequential operator.

Setting a Collection Method

To set an operator’s collection method, you use one of the three Orchestrate collection opera

• roundrobin_coll

• ordered

• sortmerge

These operators implement respectively the round robin, ordered, and sorted merge methods (see
the section “Collection Methods” on page 9-3).

The output of a collection operator must be one of the following:

• A virtual data set that is input to a sequential operator that uses the any collection method.

• A persistent data set. If the data set exists, it must contain only one partition.

Collectors in Orchestrate 9 – 5Visual Orchestrate User’s Guide
Collection Operator and Sequential Operator with Any Method

The output virtual data set from a collection operator overrides the collection method of an operator
using the any collection method. For example, the following figure shows the ordered operator
inserted before the Orchestrate export operator:

This example uses the ordered operator to read all records from the first partition, then all records
from the second partition, and so on. This collection method preserves the order of the input data
set that has been totally sorted. The export operator can then write the data set to a single data file
that contains ordered partitions.

Note: You can insert a collection operator before an operator that uses the any collection method.
Inserting a collection operator before an operator with another collection method causes an error.

Collection Operator before Write to Persistent Data Set

You can insert a collection operator before the write operation to a persistent data set. Inserting a
collection operator before the write operation allows you to control how the partitions of the data
set are collected for writing to a single partition.

ordered operator

export operator

Collection method = any

Data file

Visual Orchestrate User’s Guide9 – 6 Setting a Collection Method
For example, the following figure shows the sortmerge operator used to collect the output
partitions of the remdup operator:

The sortmerge operator collects records based on one or more collecting keys.

remdup operator

sortmerge operator

10 – 1Visual Orchestrate User’s Guide

-

lt

r
h as
e

n

trate
h node
ds the

ication

ake a
art an
s the
tion
10: Constraints

A parallel processing system contains multiple processing nodes and multiple disk drives.
Orchestrate’s view of your system is controlled by the contents of the Orchestrate configura
tion file.

The configuration file includes definitions for the default node and disk pools. Most Orches-
trate operators by default execute on all processing nodes that are members of the defau
node pool. In addition, Orchestrate data sets are stored on all disk drives in the default disk
pool.

However, you can limit the processing nodes used by a specific operator or an entire step o
the disks used to store a data set. For example, an operator may use system resources, suc
a tape drive, not available to all nodes, or the action of the operator may be memory intensiv
and you want to execute the operator only on nodes with a large amount of memory.

To limit an operator or step to specific processing nodes, you impose a constraint. A constraint
configures an operator or step to execute only on a particular set of processing nodes. You ca
also constrain a data set to a specific set of disks on a specific set of processing nodes.

This chapter first introduces constraints, then describes how to apply constraints to both you
code and to your data. The chapter contains the following sections:

• “Using Constraints” on page 10-1

• “Using Constraints with Operators and Steps” on page 10-5

• “Data Set Constraints” on page 10-9

Using Constraints

An Orchestrate application’s view of your system is defined by the current Orches
configuration file. This file describes the processing nodes and disks drives connected to eac
allocated for use by Orchestrate. Whenever it invokes an application, Orchestrate first rea
configuration file to determine allocated system resources, and it then distributes the appl
accordingly.

Whenever you modify your system by adding or removing nodes and disks, you need to m
corresponding modification to the Orchestrate configuration file. Then, the next time you st
application, Orchestrate reads the modified configuration file and automatically scale
application to fit the new system configuration, without requiring you to modify the applica
itself.

Visual Orchestrate User’s Guide10 – 2 Using Constraints

ount of
ld be
uiring

h you
For example, the following figure shows a six-node MPP system, with four nodes configured as
logical nodes for Orchestrate applications:

In this configuration, Orchestrate applications run on nodes 0 and 1 and I/O nodes 0 and 1, but not
on nodes 2 and 3. Suppose your system gains a node, node4 (with processor and disk), that you
want Orchestrate to use in running your application. You modify your configuration file to allocate
node4 for Orchestrate processing and I/O. Then, on its next run your application would use node4
according to your modified configuration file.

See the Orchestrate Installation and Administration Manual for detailed information on creating
and administering configuration files.

Controlling Where Your Code Executes on a Parallel System

The Orchestrate configuration file provides a great deal of flexibility in controlling the processing
nodes that execute your application and the disk drives that store your data. All the processing
nodes in your system may not be identically configured — some nodes may have a large am
data storage, while other nodes have a large amount of physical memory that cou
advantageous in performing complex calculations. Your application may use an operator req
a particular system resource, such as a tape drive, that is not available to all nodes.

You can use the Orchestrate configuration file to define subgroups of nodes, called node pools,
within your group of logical nodes. Using node pools, you select the specific nodes on whic
want to perform certain actions.

High-speed network

node0 node1 node2 node3ionode0 ionode1

CPUCPU CPU CPUCPUCPU

Orchestrate logical nodes

Constraints 10 – 3Visual Orchestrate User’s Guide

ecific
ecified

tor. A
 over-
.

ation

ystem
w node
The following figure shows an example of the nodes specified for use by Orchestrate applications:

In this example, the group of Orchestrate logical nodes is divided into two node pools: compute
nodes and I/O nodes. A processing node may be a member of multiple pools; in this example,
node1 is part of both the compute node pool and the I/O node pool.

You can choose to execute an entire step, or any operator within the step, on all four processing
nodes or on either node pool. Specifying the processing nodes that execute your application is
called constraining the application. A node pool constraint limits execution (processing and I/O) to
the nodes in the pool(s) that you allocate to the step or operator.

You can apply two other types of constraints to control the processing nodes that execute your
code:

• Resource constraints limit the execution of an operator or step to nodes that have a sp
resource, such as a disk or scratch disk (for temporary storage), or a resource in a sp
resource pool.

• Node map constraints specify the list of processing nodes for a specific run of an opera
node map constraint applies only to the particular operator invocation and while in effect,
rides any other constraint (node pool or other resource) previously specified for the step

See the section “Using Constraints with Operators and Steps” on page 10-5 for more inform
on all three types of constraints.

Using Node Constraints on a Stand-alone SMP
A stand-alone SMP (symmetric multiprocessing system) uses multiple CPUs that share s
resources such as memory, disk drives, and network connection. This section describes ho
constraints affect application execution on a stand-alone SMP.

High-speed network

node0 node1 node2 node3ionode0 ionode1

CPUCPU CPU CPUCPUCPU

Compute node pool

Orchestrate logical nodes

I/O node pool

Visual Orchestrate User’s Guide10 – 4 Using Constraints
For each operator in a step, Orchestrate creates one UNIX process for each Orchestrate processing
node defined in the Orchestrate configuration file. On an SMP, each CPU executes a different
process, allowing multiple processes to execute simultaneously.

The degree of parallelism in an Orchestrate application is determined by the number of Orchestrate
processing nodes that you define in the configuration file. When applying node constraints on a
stand-alone SMP, you can control the degree of parallelism (number of processes) that Orchestrate
uses to execute an operator or step. Note, however, that you cannot select a particular CPU to exe-
cute a particular process.

Suppose, for example, that your SMP has four CPUs. You can define four Orchestrate processing
nodes for the SMP, so that your application executes in a four-way parallel mode. However, you
can also define only two Orchestrate processing nodes for the SMP, so that your application exe-
cutes in a two-way parallel mode.

Note: Torrent recommends that you initially define one Orchestrate processing node for every two
CPUs in an SMP. Later, during application testing and evaluation, you can modify this configura-
tion to determine the optimal configuration for your system and application.

Controlling Where Your Data Is Stored

Orchestrate lets you designate the logical nodes and the disk drives that store your application data.
To control storage of an Orchestrate data set, you use the Orchestrate configuration file to define
one or more disk pools, which are groups of disks that store your data. The disks in a disk pool can
be all on one node or on multiple nodes.

For example, the following figure shows a system that defines two disk pools:

High-speed network

node0 node1 node2 node3ionode0 ionode1

CPUCPU CPU CPUCPUCPU

Disk pool 2Disk pool 1

Orchestrate logical nodes

Constraints 10 – 5Visual Orchestrate User’s Guide

traints”

n first
etails

 in stor-

by an
 shown

at-

disk’s
s
st it.
In this example, ionode0 has one disk in disk pool 1 and two disks in disk pool 2. Also, ionode1
has two disks in disk pool 2.

You can constrain an operator to use a particular disk pool; see the section “Data Set Cons
on page 10-9 for more information.

Using Constraints with Operators and Steps

You use the Orchestrate configuration file to set up node pools and disk pools. This sectio
briefly describes how to use your configuration file to set up node pools and disk pools. (For d
on configuration file statements, see the Orchestrate Installation and Administration Manual.) It
then describes how to use the constraints in execution of steps and individual operators and
age of your data.

Configuring Orchestrate Logical Nodes

The configuration file contains a node definition for each logical node that can be used
Orchestrate application. The node definition can specify node pools and resource pools, as
in the following example:

node "node0" {
fastname "node0_css"
pools "" "node0" "node0_css" "compute_node" /* node pools */
resource disk "/orch/s0" {pools "" "pool1"}
resource scratchdisk "/scratch" {}

}

In this example:

• The node argument, node0, is the node name.

• The fastname argument, node0_css, is the name used internally for data transfers.

• The pools option lists the node pools of which this node is a member.

The first argument "" is the default node pool; the other arguments are node pools node0,
node0_css, and compute_node. If you do not assign a node to any node pools, it is autom
ically a member of the default node pool.

• The resource resource_type "directory" {resource_pools p1...pn} option
defines a disk or scratch disk connected to the node. You can optionally specify the
membership in non-default disk pools by including a pools clause inside the required brace
{}; if you also want the disk or scratch disk to belong to the default disk pool, you must li
Without a pools clause, the disk is automatically a member of the default disk pool.

In the example, the resource disk clause assigns file directory /orch/s0 to this node for
permanent storage, and assigns the disk to the default pool and to pool1. The resource
scratchdisk clause assigns to this node the file directory /scratch, for temporary storage;
the empty braces {} indicate that the scratch disk is in the default scratch disk pool only.

Visual Orchestrate User’s Guide10 – 6 Using Constraints with Operators and Steps
Using Node Pool Constraints

After you have defined a node pool, you can constrain an Orchestrate operator or an entire
Orchestrate step to execute on only the processing nodes in the node pool.

To set a node pool constraint on an operator:

1. Double click the operator in the Program Editor to open the Operator Properties dialog box.

2. Click the Advanced tab.

3. Click the Add button under Constraints to add a new constraint, using the following dialog
box:

4. Select Node Pool from the Constraint Type pull-down list.

5. Select the Orchestrate configuration from the Config Name list, containing the names of
Orchestrate configuration files (created by the Orchestrate server administrator).

6. Enter the node pool name in the Pool Name area. You can enter multiple node pool names,
separated by commas. For example, to specify the node pool compute_node, you enter:

Pool Name: compute_node

In addition, you can constrain an entire step to a node pool. To constrain a step, double click the
step in the Program Editor to open the Step Properties dialog box. In that dialog box, choose the
Constraints tab to set a node pool constraint for all the operators in a step.

Multiple node pool constraints are ANDed together, so that a node must meet all constraints in
order to process the operator. For example, the following command constrains an operator to all
nodes in both the compute_node and io_node node pools:

Pool Name: compute_node, io_node

In this case, only node1 satisfies both constraints; therefore, the operator executes only on node1.

You can combine the nodepool and resources statements to combine constraints. See the
section “Combining Node and Resource Constraints” on page 10-8 for more information.

Constraints 10 – 7Visual Orchestrate User’s Guide

ia-

source

 double

ies both
Using Resource Constraints

Each processing node in your system can have access to specific resources. Orchestrate allows you
to impose constraints on operators based on node resources. As described in the section
“Configuring Orchestrate Logical Nodes” on page 10-5, the resource disk and resource
scratchdisk options allow you to specify pools for each type of disk storage.

To set a resource constraint on an operator:

1. Double click the operator in the Program Editor to open the Operator Properties dialog box.

2. Click the Advanced tab.

3. Click the Add button under Constraints to add a new constraint. This opens the following d
log box:

4. Select Resource Pool from the Constraint Type pull down list.

5. Select the Orchestrate configuration from the Config Name list. A configuration corresponds
to a configuration file and is created by the Orchestrate server administrator.

6. Enter the resource pool type and name under Resource Pool Constraint. You can enter multi-
ple pool names, separated by commas.

The following example constrains an operator to execute only on those nodes with a disk re
in the pool pool1:

Pool Type: disk

Pool Name: pool1

In addition, you can constrain an entire step to a resource pool. In order to constrain a step,
click a step in the Program Editor to open the Step Properties dialog box. Then choose the
Constraints tab to set a resource pool constraint for all the operators in a step.

Orchestrate applies all resource constraints, so that a node must have a disk that satisf
constraints in order to execute the operator. In this case, only ionode0 has a disk in both pool1
and pool2 and is therefore the only node to execute the operator.

Visual Orchestrate User’s Guide10 – 8 Using Constraints with Operators and Steps
The following example constrains an operator to the nodes with a disk resource in pool1 and
pool2:

Pool Type: disk

Pool Name: pool1, pool2

Combining Node and Resource Constraints

You can combine node and resource constraints. Node and resource constraints are ANDed
together; a node must meet all constraints in order to execute the operator.

To combine constraints, you use the Constraint Editor for either a step or an operator to set both
Node Pool and Resource Pool constraints. The following example sets both a node and a resource
constraint:

Node Pool:
Pool Name: compute_node

Resource Pool:

Pool Type: disk

Pool Name: pool1

In this example, only node1 is in the compute_node pool and has a disk in pool1.

Using Node Maps

Node maps allow you to constrain a particular run of an operator to execute on a specific set of
processing nodes. A node map applies to an operator invocation overrides any node pool or
resource pool constraint applied to the operator or to its step. You cannot combine node maps with
any other type of constraint.

To set a node map constraint on an operator:

1. Double click the operator in the Program Editor to open the Operator Properties dialog box.

2. Click the Advanced tab.

Constraints 10 – 9Visual Orchestrate User’s Guide

uring

 store a
 Node
3. Click the Add button under Constraints to add a new constraint. This opens the following dia-
log box:

4. Select Node Map from the Constraint Type pull down list.

5. Select the Orchestrate configuration from the Config Name list. A configuration corresponds
to a configuration file and is created by the Orchestrate server administrator.

6. Enter the node names, as defined by either the node or fastname parameter in the configura-
tion file, in the Node(s) area. You can enter multiple node names, separated by commas.

For example, to specify that an operator executes only on node1 and node2, you enter:

Node(s): node1, node2

Note that you can specify a node map only for an individual operator and not for an entire step.

Data Set Constraints

By default, Orchestrate writes a persistent data set to all disks assigned to the default disk pool.
However, Orchestrate lets you to use disk pool constraints to specify the disk drives that store
persistent and temporary data sets on your system. The data set constraints are based on the disk
pool assignments in your Orchestrate configuration file, described in the section “Config
Orchestrate Logical Nodes” on page 10-5.

In addition, you can use node pools and node maps to control the processing nodes used to
data set. See the section “Using Node Pool Constraints” on page 10-6 or the section “Using
Maps” on page 10-8 for more information on using these constraint types.

To set a resource constraint on a data set:

1. Double click the link for the data set in the Program Editor to open the Link Properties dia-
log box.

2. Click the Constraints tab.

Visual Orchestrate User’s Guide10 – 10 Data Set Constraints
3. Click the Add button under Constraints to add a new constraint. This opens the following dia-
log box:

4. Select Node Pool, Resource Pool, or Node Map from the Constraint Type pull down list.

5. Select the Orchestrate configuration from the Config Name list. A configuration corresponds
to a configuration file and is created by the Orchestrate server administrator.

6. Enter the constraints.

For example, to specify that an output persistent data set is written only to the disks in the pool
pool1, you set the following constraint:

Resource Pool:

Pool Type: disk

Pool Name: pool1

The number of partitions of the data set equals the number of nodes that have disks in the specified
pool. All processing nodes executing the writing operator must contain at least one disk in the
specified disk pool. See the Orchestrate Installation and Administration Manual for more
information on disk pools.

11 – 1Visual Orchestrate User’s Guide

or error

estrate

n and

allows
ility,
essage
g in

copy the

 error
11: Run-Time Error and Warning
Messages

During execution of your application, Orchestrate detects and reports error and warning
conditions. This chapter describes the format of Orchestrate warning and error messages and
describes how to control the format of message display, in the following sections:

• “How Orchestrate Detects and Reports Errors” on page 11-1

• “Error and Warning Message Format” on page 11-2

• “Controlling the Format of Message Display” on page 11-4

How Orchestrate Detects and Reports Errors
During execution of your application, Orchestrate detects error and warning conditions, which can
be generated by the following:

• Orchestrate operators, used in your application steps. For details on Orchestrate operat
messages, see the Orchestrate User’s Guide: Operators.

• Your application code, outside the Orchestrate steps. For information on using the Orch
error-handling class, see the Orchestrate/APT Developer’s Guide.

• Subprocesses in your application, including wrappers and third-party applications.

When Orchestrate detects an error or warning condition, it writes the applicable informatio
message to the error log.

If the condition is not severe, after writing a warning message to the error log, Orchestrate
the application to continue execution. At various points in running an application or ut
Orchestrate checks the error log for new entries. It writes new warning messages to the m
window on the screen of the workstation from which you invoked the application. Right-clickin
the message window pops up a menu of standard commands that you can use to edit and
messages.

If the condition is so severe that application execution cannot continue, after writing an
message, Orchestrate terminates the application.

Visual Orchestrate User’s Guide11 – 2 Error and Warning Message Format

ee the

thers
iable-

ponents.
ge text,
Error and Warning Message Format

The table below lists the components of Orchestrate error and warning messages, as follows:

• The first column shows whether the default is on or off for display of the component.

• The second column is the keyword (case-insensitive) for changing the default display (s
section “Controlling the Format of Message Display” on page 11-4).

• The third column is the component length, which for some components is fixed and for o
is variable. Orchestrate left-pads with zeros all fixed-length components. For any var
length component, you can configure Orchestrate to display the component length.

• The last column describes the component.

Note that except where indicated, there is a one-space separator between message com
Every message is terminated with a newline. Only the last message component, the messa
may contain spaces.

Default Display Keyword Length Description

On 2 The string "##". You cannot suppress display
of this component.

0 [No separator]

On severity 1 Severity of condition: "F", "E", "W", or "I", for
Fatal, Error, Warning, or Informational mes-
sage.

Off vseverity 7 Verbose severity indicator: "Fatal",
"Error", "Warning", or "Inform".

Off jobid 3 Job identifier of the Orchestrate application, to
let you identify concurrently running Orches-
trate applications. The default job ID is 0.

On moduleId 4 Module identifier, which is one of the follow-
ing:

For Orchestrate-defined error messages, a four-
character string beginning with "T".

For user-defined error messages, the string
"USER".

For a message from a subprocess, the string
"USBP".

0 [No separator]

On errorIndex 6 Index of the message at the time it was written.

On timestamp 13 Message time stamp, consisting of the string
"HH:MM:SS(msg_seq)", which is the hour,
minute, second, and message sequence number
at the time the message was written.

Note that error messages written within one
second have ordered sequence numbers.

Run-Time Error and Warning Messages 11 – 3Visual Orchestrate User’s Guide

lays the
module
Messages from Subprocesses

The message display configuration also controls display of error messages from subprocesses run
by Orchestrate, including wrappers and third-party applications. Orchestrate catches subprocess
messages written to the subprocess’s standard output or standard error. Orchestrate disp
messages using the current message display configuration, on a per-line basis. The

Off ipaddr 15 IP address of the node generating the message.
This 15-character string is in octet form, with
octets zero-filled; e.g., 104.032.007.100.

Off lengthprefix 2 Length in bytes of the following field,
nodeplayer.

Off nodeplayer Variable String "(node,player)", containing the
number of the section leader and player that
generated the message.

Off lengthprefix 2 Length in bytes of the following field,
nodename.

Off nodename Variable Name of the node generating the message.

Off lengthprefix 2 Length in bytes of the following field, opid.

On opid Variable Operator identifier, which is one of the follow-
ing:

For messages originating in the main program
(not in a step), the string
"<main_program>".

For system messages originating on a node, the
string "<node_nodename>", where node-
name is the name of the node.

For messages originating in a step, the operator
originator identifier, which identifies the
instance of the operator that generated the mes-
sage. This identifier is the string "ident,
partition_n". ident is the operator name.
If there is more than one instance of the opera-
tor, ident includes an operator index in
parentheses. partition_n identifies the par-
tition of the operator issuing the message. An
example of an opid originating in a osh step is
<myop,4>

Off lengthprefix 5 Length in bytes of the following field, mes-
sage.

On message Variable Text of the message. Maximum message length
is 15 KBytes.

1 Newline

Default Display Keyword Length Description

Visual Orchestrate User’s Guide11 – 4 Controlling the Format of Message Display
identifier for all subprocess output is "USBP". Orchestrate gives messages written to standard
output Informational severity and a message index of 1. Orchestrate gives messages written to
standard error Warning severity and a message index of 2.

Controlling the Format of Message Display

The following is an example of a warning message with all its components displayed:

##I Inform 000 TOSH000010 10:46:15(001) 010.000.002.119 05 (0,0) 09
localhost 14 <main_program> 00016 orchsort: loaded

You can limit the message components that Orchestrate displays. Suppose, for example, that you
limit the display of the sample warning message above to message severity, module and index, pro-
cessing node, operator identifier, and message text. Orchestrate would then display the message as
follows:

##I TOSH000010 localhost <main_program> orchsort: loaded

You use keywords to control message display. Specifying an unmodified keyword configures
Orchestrate to display the associated message component. Preceding the keyword with an
exclamation point (!) configures Orchestrate to suppress display of the associated component.

For example, shown below is the default message configuration for all messages originating from
Orchestrate applications:

severity, !vseverity, !jobid, moduleid, errorIndex, timestamp,
!ipaddr, !nodeplayer, !nodename, opid, message, !lengthprefix

This example specifies suppression of the display of verbose severity, job identifier, IP address,
node name, and length prefixes are all suppressed.

The display of messages from Orchestrate command utilities (such as buildop and cbuildop)
has the following default:

severity, !vseverity, !jobid, moduleid, errorIndex, !timestamp,
!ipaddr, !nodeplayer, !nodename, !opid, message, !lengthprefix

For messages from command utilities, Orchestrate suppresses the display of verbose severity, job
identifier, time, IP address, node player, node name, operator identifier, and length prefixes.

To control message display format, you use the APT_ERROR_CONFIGURATION environment
variable.

For further details on APT_ERROR_CONFIGURATION and other environment variables, see the
Orchestrate Installation and Administration Manual.

The environment variable APT_ERROR_CONFIGURATION lets you configure error and warning
message display for all Orchestrate applications and utilities. To use the variable

Run-Time Error and Warning Messages 11 – 5Visual Orchestrate User’s Guide

 11-2.
ain

 the

 the

,

tween
e sure

e to the
APT_ERROR_CONFIGURATION, you issue a UNIX command to set it to a string containing the
component keywords defined in the section “Error and Warning Message Format” on page
Any keywords omitted from your command to set APT_ERROR_CONFIGURATION rem
unchanged from their previous state.

For example, the following commands set and export APT_ERROR_CONFIGURATION, in
syntax for the Korn and Bourne shells:

APT_ERROR_CONFIGURATION=’! severity, ! timestamp, ipaddr, nodename’

export APT_ERROR_CONFIGURATION

Following is the equivalent command to set and export APT_ERROR_CONFIGURATION, in
syntax for the C shell:

setenv APT_ERROR_CONFIGURATION "\! severity, \! timestamp, ipaddr,
nodename’"

In the C shell command, you must precede an exclamation point (!) with the escape character
backslash (\).

In both versions of the command to set APT_ERROR_CONFIGURATION, note the space be
the exclamation point and the keyword. It is recommended that you insert this space, to mak
that the command shell does not interpret the exclamation point and keyword as a referenc
command history buffer.

Visual Orchestrate User’s Guide11 – 6 Controlling the Format of Message Display

12 – 1Visual Orchestrate User’s Guide
12: Creating Custom Operators

Many Orchestrate applications require specialized operators to perform application-specific
data processing, in parallel. You may need an operator to perform a simple operation such as
adding two particular fields. Or, you may need an operator to carry out a much more com-
plex task.

Visual Orchestrate gives you the ability to create two kinds of custom operators: native oper-
ators and UNIX command operators. This chapter describes how to create native operators,
for which you supply a few C or C++ statements to perform the operator’s action. (Creating
UNIX command operators is described in the chapter “Creating UNIX Operators”.)

This chapter includes the following sections:

• “Custom Orchestrate Operators” on page 12-1

• “Using Visual Orchestrate to Create an Operator” on page 12-5

• “Specifying Operator Input and Output Interfaces” on page 12-8

• “Examples of Custom Operators” on page 12-14

• “Using Orchestrate Data Types in Your Operator” on page 12-20

• “Using the Custom Operator Macros” on page 12-27

• “How Visual Orchestrate Executes Generated Code” on page 12-31

• “Designing Operators with Multiple Inputs” on page 12-31

Custom Orchestrate Operators

Visual Orchestrate lets you create custom (native) operators by supplying only a few lines of C or
C++ code for the operator body, and some configuration information. From this information,
Orchestrate creates the operator by automatically generating C/C++ code, and then compiling and
linking the operator.

This section describes the characteristics of the custom operators that you can create. It then
describes how custom operators perform input and output and process data.

Visual Orchestrate User’s Guide12 – 2 Custom Orchestrate Operators

ave mul-
ws a

de to

-
dify

et, as

ma as

on page

n users
Kinds of Operators You Can Create

Orchestrate allows you to create custom operators with the following characteristics:

• The operator has at least one input data set and one output data set. The operator can h
tiple input data sets and multiple output data sets. The following data flow diagram sho
custom operator with multiple inputs and outputs:

• By default, the operator’s execution mode is parallel. However, you can override this mo
specify sequential execution when you use the operator in a step.

• The default partitioning method of the operator is any (parallel mode), and the default collec
tion method is any (sequential mode). You can use a partitioner or collector operator to mo
these defaults.

• You can optionally define a transfer to copy an entire input record to an output data s
shown in the data-flow diagram below:

Note that the transferred record is represented in the operator input interface sche
inRec:*, and in the output interface schema as outRec:*. For a complete description of the
Orchestrate transfer feature, see the section “Record Transfers and Schema Variables”
5-11.

• You can define user-settable options, or arguments, passed to an operator. Then, whe
insert the operator into a step, they can set those control options by using the Options Editor
dialog box.

. . .

. . .

Input data sets

Output data sets

Custom operator

inRec:*

Output data set

Input data set

outRec:*

Creating Custom Operators 12 – 3Visual Orchestrate User’s Guide
How a Generated Operator Processes Data

To plan and create an operator, you need to understand how Orchestrate operators process one or
more input data sets and create one or more output data sets. This section describes this operation.

The following figure shows an operator with a single input and a single output data set:

An operator executes an I/O and processing loop, with iteration (time through the loop) for every
input record. After all the required number of input records have been read from one or more
inputs, the operator terminates.

How the Operator Executes the Loop
For each input record, the operator executes the following steps in the I/O and processing loop:

1. Reads a record from the input data set (unless there are no remaining records or automatic read
has been disabled).

2. Performs the action of the operator.

3. As needed, assigns results to the current output record.

4. If specified, performs a transfer of the entire input record to the output record (unless there are
no more records to transfer or automatic transfer has been disabled).

5. Writes the current output record to the output data set (unless automatic write has been dis-
abled).

Note that your operator does not have to produce one output record for each input record. Some
operators read multiple input records before producing a single output record, such as an operator
that removes duplicate records from the input data set. Other types of operators can create multiple
output records from a single input record.

Input data set

Output data set
.
.
.

Input data set

Operator

Previously processed
input records

.

.

.
(not available)

.

.

.

.

.

.

Previously written
output records
(not available)

Output data set

Current output record

Current input record

Order of record writeOrder of record read

Visual Orchestrate User’s Guide12 – 4 Custom Orchestrate Operators

erface
r more

 to the
 a new
 has
rd.

tting.
efault
 Data

ry UNIX
kages,

access

of the
-13.

omati-
How the Operator Processes the Input Data Sets
An operator reads each input data set record by record, to process its data. The operator continues
to read and process records until it has read all records in the input data set. Once the operator has
moved beyond a record of an input data set, it can no longer access that record.

Note that the fields of all input data sets are read-only, while the fields of all output data sets are
readable and writable.

How the Operator Writes to the Output Data Set
In creating your operator, you define the operator’s input interface schema and output int
schema. See the section “Specifying Operator Input and Output Interfaces” on page 12-8 fo
information.

After the operator assigns the processing results to the record fields, it writes the record
output data set. Writing the output record commits the record to the data set, and it creates
output record with default values for all fields. As with input data sets, once processing
advanced beyond a record of an output data set, the operator can no longer access the reco

The default value for an output record field is based on the field’s data type and nullability se
For a complete list of default values for fields of all types, see the description. For a list of d
values for fields of all types, see the section the section “Default Values for Fields in Output
Sets” on page 4-27.

Configuring Orchestrate For Creating Operators

To allow creation of operators, the Orchestrate server must be able to access the necessa
C++ compiler and other utilities. The appendix on supported operating systems, software pac
and databases in the Orchestrate Installation and Administration Manual lists these compilers and
utilties.Your Orchestrate server administrator must ensure that you have the correct
privileges and path settings to run these utilities.

You can specify a non-default compiler for your custom operators, by using the Paths tab
Program Properties dialog box. See the section “Setting Program Directory Paths” on page 2

Included Header Files
The custom operator utility lets you to use standard I/O, I/O stream, and math functions aut
cally. In order to do so, the utility includes the following header files:

• stdio.h

• iostream.h

• math.h

Creating Custom Operators 12 – 5Visual Orchestrate User’s Guide
Using Visual Orchestrate to Create an Operator

To create a custom operator, choose the Custom -> Define Custom Operator menu command. If
there are no existing custom operators in your system, the New Operator dialog box (shown on the
next page) opens. If there are existing custom operators, the following dialog box opens:

The Create New Operator dialog box allows you to select an existing custom operator to copy as
a starting point for your new operator, or to create a completely new custom operator. If you choose
Copy of Existing Operator, you then select an operator from the Operator Name list. When you
click OK, the Customer Operator dialog box appears with the definition of the existing operator.

Visual Orchestrate User’s Guide12 – 6 Using Visual Orchestrate to Create an Operator

uts for

erface
section

This
If in the Create New Operator dialog box you select New Operator, clicking OK opens an empty
Custom Operator dialog box, as shown below

By default, the Native Operator radio button is selected. The Library text box defaults to your
user name. You can type in a new library name or the name of any existing library.

In the Name text box (upper left of dialog box), type the name of this operator. A name can be up to
250 characters long. An operator name must be unique within its library, but it can be the same as
the name of an operator in another library.

You define the operator by using the Custom Operator dialog box tabs, as follows:

Interfaces (shown above): Specify the names and schemas of the operator’s inputs and outp
the operator input and output interfaces.

Specifying your operator interface schemas is described in the section “Specifying the Int
Schema” on page 12-10. Also specify and configure record transfers, as described in the
“Defining Transfers” on page 12-13.

Per-record: Specify the code loop, which is executed once for every input record.

Definitions: Optionally, specify definitions to include before the operator’s executable code.
option allows you to specify header files or other information needed to compile your code.

Native Operator selected

Creating Custom Operators 12 – 7Visual Orchestrate User’s Guide

 under
dicate
-

n. The
By default, Orchestrate always includes the header files stdio.h, iostream.h, and math.h.

Pre-loop: Optionally, specify code to execute before the operator executes the Per-record code to
process the record. You can use this code section to initialize variables used in the Per-record sec-
tion.

Post-loop: Optionally, specify code to execute after the operator has completed the Per-record sec-
tion and before the operator terminates.

Misc: Optionally, specify the following options for operator execution:

Operator Execution Mode: You can select Parallel, Sequential, or Operator Default
(default for this option). Specifying Operator Default allows the operator user to set the exe-
cution mode upon inserting the operator into a step.

Compiler Options: You can specify options passed to the C++ compiler (and linker) used to
create the operator:

Verbose: Echoes commands and compiler messages to the message window.

Debug: Runs the compiler in debug mode.

Optimize: Optimizes the speed and efficiency of the compiled code.

Additional Compiler Flags: You can specify additional compiler command options.

Additional Linker Flags: You can specify additional linker command options.

Operator Description: Optionally, type your notes about this operator, to be saved with the
operator definition. Right-clicking the text box opens a menu of standard text-editing com-
mands, such as cut and paste.

Options: Optionally, define user-settable controls for the operator, with which the operator user can
control the action of the operator.

Access: Set the access privileges of the operator, by selecting one of the following:

Public Write (default): Anyone can read, write, or execute the operator.

Public Read: Anyone can read and execute the operator; only the operator creator can modify
it.

Private: Only the operator creator can read, write, or execute the operator.

At any time after you have specified a name and library for the operator, you select a dialog box
buttons to do one of the following:

• Save the information about the operator, but do not create it. A saved operator appears
the specified library in the Server View area of Visual Orchestrate in parentheses, to in
that the operator user cannot use it. (You must press Create to make it usable in an applica
tion.)

• Create the operator, so that an operator user can insert it into an Orchestrate applicatio
created operator appears under the specified library in the Server View area.

• Cancel operator definition.

• Open online Help.

Visual Orchestrate User’s Guide12 – 8 Specifying Operator Input and Output Interfaces

tomatic

nless

en dis-

in the

r” on
The Per-record, Pre-loop, Post-loop, and Definitions tabs each have an Import button. That
option lets you specify an ASCII text file on the PC, containing your code for the section, which
Orchestrate will read into that section of your operator definition.

How Your Code Is Executed

The following steps show how an operator executes to process its input data set and write to its out-
put data set:

1. If specified, the operator executes the code in the Pre-loop section.

2. For each record in the input data set, performs the steps of the I/O and processing loop (intro-
duced in the section “How the Operator Executes the Loop” on page 12-3):

a. Reads a record from the input data set (unless there are no records to input or au
read has been disabled).

b. Executes the processing code specified in the Per-record section.

c. As needed, assigns results to the current output record.

d. As specified, performs a transfer of the entire input record to the output record (u
there are no more records to transfer or automatic transfer has been disabled).

e. Writes the current output record to the output data set (unless automatic write has be
abled). After the write, the operator creates a new, empty output record.

3. If specified, the operator executes the code in the Post-loop section.

Specifying Operator Input and Output Interfaces

This section describes how to create an input and output interface for your operator,
following sections:

• “Adding and Editing Definitions of Input and Output Ports” on page 12-8

• “Reordering the Input Ports or Output Ports” on page 12-10

• “Deleting an Input or Output Port” on page 12-10

• “Specifying the Interface Schema” on page 12-10

• “Defining Transfers” on page 12-13

• “Referencing Operator Interface Fields in Operator Code” on page 12-13

Adding and Editing Definitions of Input and Output Ports

To view and modify the input and output interfaces, you use the Interfaces tab in the Custom
Operator dialog box, shown in the section “Using Visual Orchestrate to Create an Operato

Creating Custom Operators 12 – 9Visual Orchestrate User’s Guide

so have
tor’s

ecting

, click
page 12-5. From the Custom menu, select Define Custom Operator or Edit Custom Operator,
to open the Custom Operator dialog box. In the Interfaces tab, the top list shows the ports defined
for the input interface, and the middle list shows the port defined for the output interface. The input
and output interface ports are always indexed 0...numPorts-1. When you create the operator,
Orchestrate automatically creates input port 0 for the input interface and output port 0 for the output
interface.

To add an input port click the Add button to the right of the input interface list. The Input
Interface Editor dialog box opens, with an Input Name text field and the input interface schema
name. You can type a port name (see below for naming guidelines), or you can leave Input Name
blank to accept the default name. If you want to disable automatic read, check the Disable
automatic record read box. Click OK to create the port. The new port then appears in the input
interface list.

To create an output port, click the Add button next to the output interface list to open the Output
Interface Editor. Optionally type a name into the Output Name text field. If you want to disable
automatic write, check the Disable automatic record write box. Click OK to add the port, which
then appears in the output interface list.

Note: To save the changes that you make to the input and output interfaces, you must click Update,
Save, or Create, in order to rebuild the operator with your changes. If you close the Custom Oper-
ator dialog box without updating the operator, any changes you have made to the operator are dis-
carded.

Also note that the checkbox Automatic reject output on the Interfaces tab is to support
applications created with earlier releases of Orchestrate. For a description of creating an operator
with a reject data set, see the section “Example Operator: reject” on page 12-30.

Naming Input and Output Ports
By default, Orchestrate names the input ports of your operator input interface in0...innum_ins-
1, and it names the output ports of the operator output interface out0...outnum_outs-1. You
can use these default names to refer to input and output ports in your operator code. You al
the option of specifying non-default names for any input or output port in your opera
interfaces. The only restriction is that you cannot specify a name of the form inn or outn, which is
reserved for the default naming.

Editing Port Definitions
You can create or modify a non-default name for an input or output port at any time, by sel
Edit from the Interfaces tab to open the Input Interface Editor or Output Interface Editor
dialog box. You can type in a new name or modify an existing one. To accept the new name
OK. To save the change to the operator interface, click Create or Update in the Interfaces tab.

Visual Orchestrate User’s Guide12 – 10 Specifying Operator Input and Output Interfaces

y the
ge the
nsfer.
e does

h the

annot
rts and
t port
defined

 detailed
Reordering the Input Ports or Output Ports

To reorder the list of inputs or outputs, use the Up and Dn buttons for the list. Clicking Up
exchanges the position and index of the selected port with the position and index of the port above
it (at a lower index number) in the list. Clicking Dn makes the exchange between the selected port
and the one below it.

Deleting an Input or Output Port

To delete an input port, select the port and click the Delete button for the input interface. To delete
an output port, select the port and click the Delete button for the output interface. When you delete
an input or output port, Orchestrate immediately removes the port from the interface list and
decrements the index of any input or output port that was below it in the interface list. To save the
change to the operator interface, click Update in the Interfaces tab.

As an operator must have at least one input and one output, the Delete button is not active for an
input or output interface with only one port.

Port Deletions and Transfer Definitions
As described in the section “Defining Transfers” on page 12-13, transfer definitions identif
input and output by index only, so that changing a port’s name or schema does not chan
transfer definition, even though the port change may affect the result of performing the tra
Likewise, If your operator defines a transfer that uses a port affected by a deletion, the chang
not affect the transfer definition as long as there is still an input or output port defined wit
index used in the transfer definition.

However, if your port deletion results in the loss of a port index that is used in a transfer, you c
save the interface change. For example, suppose your operator input interface has two po
defines a transfer from the input port at index 1. If you deleted an input port, leaving only inpu
0, clicking Update to rebuild the operator would produce an error message regarding the un
input port 1 in the transfer.

Specifying the Interface Schema

To create and edit the input and output interface schemas, you use the Schema Editor. For a
description of the Schema Editor, see the chapter “Orchestrate Data Sets”.

Creating or Editing an Interface Schema
To create an input or output interface schema, open the Custom Operator dialog box, as described
in the section above. Click Add to add a new port, or select an existing port and click Edit. In the

Creating Custom Operators 12 – 11Visual Orchestrate User’s Guide

olumn in

r

Input Interface Editor or Output Interface Editor dialog box, click the Details button to open
the Schema Editor, shown below:

In the Schema Editor, you can click New to create a new schema. The Schema Editor window
displays the Name and Library text fields, with radio buttons Named and Unnamed. Naming an
interface schema enables you to use the schema for more than one input or output port. If you select
the Named radio button, you then enter a schema name in the Name field, and you can optionally
modify the schema library name (the default is your user name). The schema name be unique
within its library, but it can be the same as a name in another schema library.

In creating a new schema, you add and edit fields in the schema. You can optionally modify the
owner and access control for the schema. To save the new schema, click Save to save the new
schema. When you save a named schema, its name appears in the selected port’s schema c
the Interfaces tab; however, to save the change to the port definition, you must click Update on the
Interfaces tab.

You can create an unnamed schema, by selecting the Unnamed radio button in the Schema Edito
window. When you save an unnamed schema, it appears as (local) in the definition for the
selected port, and it is not available to be used in the definition of other ports.

Visual Orchestrate User’s Guide12 – 12 Specifying Operator Input and Output Interfaces

lements,

NFOR-
rd. See
To edit an existing schema, click Edit in the Schema Editor window. You can access properties, and
fields of the schema. If it is a named schema, you can also edit the schema name and library name.
To save the changes to the schema, click Save in the Schema Editor window.

Selecting an Existing Named Schema for a Port
After you have saved a named schema, you can select it for an input or output port other than the
one for which you created it. When you add or edit an input port, you can define it with any named
input schema defined for the interface, and likewise, you can define an output port with any named
output interface schema. To change the schema for a port, select the schema name from the list in
the Input Interface Editor or Output Interface Editor dialog box, and click OK. To save the
change to the operator interface, be sure to click Update in the Interfaces tab.

Special Restrictions on Interface Schema Field Definitions
Note that every input and output interface schema must be a legal record schema. In addition, the
following elements are not allowed in operator interface schemas:

• Subrecord or tagged aggregate elements

• Import/export or generator properties

• Schema variables

If you attempt to save or create an operator interface schema that contains any of these e
the action will fail with an error message.

Naming Fields in the Interface Schemas
You cannot a name record schema field with any of the C++ reserved words, listed below:

In addition, you cannot use either of the following as field names:

• _r_

• _record__ (two trailing underscores)

If you create an operator used in an application that accesses an RDBMS (such as DB2, I
MIX, Teradata, or Oracle), do not create a field with the same name as an SQL reserved wo
the SQL manual for your RDBMS for a list of these reserved words.

asm class double friend new return switch union

auto const else goto operator short template unsigned

break continue enum if private signed this virtual

case default extern inline protected sizeof throw void

catch delete float int public static try volatile

char do for long register struct typedef while

Creating Custom Operators 12 – 13Visual Orchestrate User’s Guide

 a
 part of

 of the
ort,

fers

, and
sfer,
g

it (at a
 and

x
delete

ld
ong all
efault

ence it
ee
amed,
index
Defining Transfers

You can define one or more transfers for your operator. As described in the section “How
Generated Operator Processes Data” on page 12-3, Orchestrate performs a transfer as
executing the code loop of the operator.

To define, modify, or delete a record transfer, open the Custom Operator dialog box, by clicking
Define Custom Operator or Edit Custom Operator in the Custom menu. On the Interfaces tab,
the bottom list shows all transfers defined for your operator. The transfer column is the index
transfer (0-n-1), From Index is the index of the input port, To Index is the index of the output p
and Properties is the automatic transfer setting (AUTO or NOAUTO) followed by the combine-transfer
setting (COMBINE or SEPARATE). When you create an operator, by default there are no trans
defined, and transfer definition is optional.

To define a transfer, click the Add button to the right of the transfer list to open the Transfer
Editor dialog box. From the From Input list, select the index of the input port for the transfer
from the To Output list, select the output port index. If you want to disable automatic tran
check the Disable Automatic Transfer box. If you want to prevent Orchestrate from combinin
this transfer with others to the same output, check the Transfer Separately box. Click OK to
create the transfer. The transfer then appears in the transfer list on the Interfaces tab.

To reorder the list of transfers, use the Up and Dn buttons for the list. Clicking Up exchanges the
position and index of the selected transfer with the position and index of the transfer above
lower index number) in the list. Clicking Dn makes the exchange between the selected transfer
the one below it.

To delete a transfer, select it in the transfer list and click Delete. Orchestrate decrements the inde
of any transfers below it in the list. For example, if there are two transfers defined and you
the first transfer in the list (index 0), the index of the second transfer is changed from 1 to 0.

Referencing Operator Interface Fields in Operator Code

In your Pre-loop, Post-loop, and Per-record code, you refer to schema components with the fie
name, as defined in the input or output interface schema. If the field name is not unique am
interfaces, both input and output, for the operator, you must prefix the field name with the d
or explicitly defined port name followed by a dot (.).

If the field name is not unique among all the operator’s interface schema, then you must refer
with portname.field_name, where portname is either the name you have given the port (s
the section “Naming Input and Output Ports” on page 12-9) or, for a port that you have not n
the default name. For example, for a field price in your input schema for the third input port (
2), which you have not explicitly named, you use the reference in2.price.

Visual Orchestrate User’s Guide12 – 14 Examples of Custom Operators

bbrevi-
Processing Fields According to Data Type and Properties
To let you process fields according to Orchestrate data type and properties, including nullable fields
and vector fields, Orchestrate supplies functions that you can use in your code. These functions are
described in the section “Using Orchestrate Data Types in Your Operator” on page 12-20.

Examples of Custom Operators

This section describes how to define the following sample operators:

• “Example: Sum Operator” on page 12-15

• “Example: Sum Operator Using a Transfer” on page 12-16

• “Example: Operator That Recodes a Field” on page 12-17

• “Example: Adding a User-Settable Option to the Recoding Operator” on page 12-17

Convention for Property Settings in Examples

In all custom operator examples, the property settings for inputs, outputs, and transfers are a
ated, as follows:

• Inputs: Auto stands for automatic input (Disable automatic read is not checked), and
Noauto stands for no automatic input (Disable automatic read is checked).

• Outputs: Auto stands for automatic output (Disable automatic write is not checked), and
Noauto stands for no automatic output (Disable automatic write is checked).

• Transfers: Auto stands for automatic transfer (Disable automatic transfer is not checked),
and Noauto stands for no automatic transfer (Disable automatic transfer is checked). Com-
bine stands for combine transfer (Transfer separately (don’t combine with other transfers
to the same output) is not checked), and Separate stands for separate transfer (Transfer
separately... is checked).

Creating Custom Operators 12 – 15Visual Orchestrate User’s Guide

n.
Example: Sum Operator

This section describes how to define a sample operator, sum, shown in the following diagram:

This operator sums two fields of an input record to create a new field in the output record. Each
record of the output data set contains a single field containing the sum.

Shown below is the definition for this operator.

Name: Sum

Input 0 Name: SumIn0

Input 0 Properties: Auto

Input 0 Interface Schema: record (a:int32; b:int32;)

Output 0 Name: SumOut0

Output 0 Properties: Auto

Output 0 Interface Schema: record (sum:int32;)

Per-record: sum = a + b;

You can modify this operator to also copy the input fields to the output record. Shown below is a
version of the operator to copy fields a and b to the output record:

Name: Sum

Input 0 Name: SumIn0

Input 0 Properties: Auto

Input 0 Interface Schema: record (a:int32; b:int32;)

Output 0 Name: SumOut0

Output 0 Properties: Auto

Output 0 Interface Schema: record (a:int32; b:int32; sum:int32;)

Per-record:
sum = SumIn0.a + SumIn0.b;
SumOut0.a = SumIn0.a;
SumOut0.b = SumOut0.b;

Note that field name references include the input and output port names. See the section
“Referencing Operator Interface Fields in Operator Code” on page 12-13 for more informatio

a:int32; b:int32;

Output data set

 sum:int32;

 Operator sum

Input data set

Visual Orchestrate User’s Guide12 – 16 Examples of Custom Operators

g

Example: Sum Operator Using a Transfer

This section contains a modified version of the sum operator described in the section “Specifyin
Operator Input and Output Interfaces” on page 12-8. This version of the sum operator performs a
transfer from input to output, as shown below:

For a description of defining a transfer, see the section “Defining Transfers” on page 12-13.

Shown below is the definition for this operator.

Name: Sum

Input 0 Name: SumIn0

Input 0 Properties: Auto

Input 0 Interface Schema: record (a:int32; b:int32;)

Output 0 Name: SumOut0

Output 0 Properties: Auto

Output 0 Interface Schema: record (sum:int32;)

Transfer 0: Input From: 0; Output To: 0

Transfer 0 Properties: Auto, Combine

Per-record: sum = SumIn0.a + SumIn0.b;

a:int32; b:int32; inRec:*;

Output data set

 sum:int32; outRec:*;

Operator sum

Input data set

Creating Custom Operators 12 – 17Visual Orchestrate User’s Guide
Example: Operator That Recodes a Field

This section describes how to define another sample operator, classifyPurchase, shown in the
following diagram:

In this example, operator ClassifyPurchase reads a record and transfers the entire input record
to the output data set. The operator also defines the field, code, for the output data set. The operator
assigns code the value 1 if the input field price is greater than or equal to 100, and 0 if price is
below 100.

Shown below is the definition for this operator:

Name: ClassifyPurchase

Input 0 Name: PurchIn0

Input 0 Properties: Auto

Input 0 Interface Schema: record (price:dfloat;)

Output 0 Name: PurchOut0

Output 0 Properties: Auto

Output 0 Interface Schema: record (code:int8;)

Transfer 0: Input From: 0; Output To: 0

Transfer 0 Properties: Auto, Combine

Per-record:

if (PurchIn0.price >= 100) PurchOut0.code = 1;
else PurchOut0.code = 0;

Example: Adding a User-Settable Option to the Recoding Operator

In the example above, operator ClassifyPurchase set the code field according to a set
condition: whether the price field has the cutoff value of 100 or greater. This example alters the
ClassifyPurchase operator, to define a parameter cutoff that operator users set. The operator
then uses that cutoff to determine whether to set code to 1 or 0.

price:dfloat; inRec:*;

Output data set

 code:int8; outRec:*;

classifyPurchase

Input data set

Visual Orchestrate User’s Guide12 – 18 Examples of Custom Operators
The following is the Per-record code for this modified ClassifyPurchase operator, in which
cutoff is a floating-point variable holding a value set by the operator user:

Per-record:
if (price >= cutoff) code = 1;
else code = 0;

Defining the User-Settable Option
To define the user-settable option cutoff, you perform the following steps:

1. Open the Custom Operator dialog box, and select the Options tab:

2. Press the Add button to open the Custom Operator Option Editor dialog box:

Creating Custom Operators 12 – 19Visual Orchestrate User’s Guide
3. Specify the Option Name, which the operator user will select in the Option Editor dialog
box. For this example, you enter the name cutoff.

4. Select the Option Type from the pull-down list. As shown in the figure above, available data
types are boolean, float, integer, string, and pathname. (An option of type pathname
takes a directory path, the validity of which must be determined by the operator.)

For this example, select type float.

5. Set the Option Name to cutoff.

6. Set the Option Type to float.

7. Click OK to close the Custom Operator Option Editor.

8. Click Update to rebuild operator ClassifyPurchase with the cutoff option.

How the Operator User Sets the Option
To set the cutoff option for ClassifyPurchase, the operator user opens the Operator
Properties dialog box for ClassifyPurchase operator. The Add and Edit buttons open the
Options Editor dialog box, with which the user adds or edits an option setting. The user can also
use the Delete button to delete a setting, and the Up and Down buttons to rearrange the order of
option settings.

To add a setting for option cutoff, click Add to open the Option Editor. In that dialog box, enter a
value in the Value field. (Note that for a boolean option, the operator user simply selects or
deselects it.)

To add the setting to the operator without closing the Option Editor dialog box, click Add. Or, the
click OK to add the setting and close the Option Editor dialog box.

Visual Orchestrate User’s Guide12 – 20 Using Orchestrate Data Types in Your Operator
The following figure shows the Option Editor dialog box with the value 300.5 entered as a
cutoff option setting, and the Operator Properties dialog box after that option has been added.

To save the setting, in the Operator Properties dialog box, you must either click the Apply button
to apply the setting to the operator, or click OK to apply the setting and close the Operator
Properties dialog box.

Using Orchestrate Data Types in Your Operator

This section describes how to code your operators to use all the Orchestrate data types, in the fol-
lowing sections:

• “Using Numeric Fields” on page 12-21

• “Using Date, Time, and Timestamp Fields” on page 12-21

• “Using Decimal Fields” on page 12-23

• “Using String Fields” on page 12-24

• “Using Raw Fields” on page 12-25

• “Using Nullable Fields” on page 12-25

• “Using Vector Fields” on page 12-26

Creating Custom Operators 12 – 21Visual Orchestrate User’s Guide

les of
erator

ses the

ta

rface
Orchestrate implements some of its data types using C++ classes. The Orchestrate C++ Classes
and Headers Reference Cards provide a listing of the header (.h) files in which the Orchestrate
C++ classes and macros are defined.

Using Numeric Fields

This section contains a basic example using numeric fields. A numeric field can have one of the
following data types:

• int8, int16, int32, int64

• uint8, uint16, uint32, uint64

• sfloat, dfloat

See the section “Specifying Operator Input and Output Interfaces” on page 12-8 for examp
declaring of integer fields in input and output interface schemas, and using integer fields in op
code.

Using Date, Time, and Timestamp Fields

Orchestrate allows you to access fields containing a date, time, or timestamp. Orchestrate u
following C++ classes to represent these data types:

• APT_Date

• APT_Time

• APT_TimeStamp

You can use any public member function of these classes in your operator. See the Orchestrate
C++ Classes and Headers Reference Cards for a listing of the classes implementing these da
types.

For example, the following figure shows an operator containing a date field in its inte
schemas:

field1:date; inRec:*;

Input data set

Output data set 0

Output data set 1

DateFilter

outRec:* outRec:*

Visual Orchestrate User’s Guide12 – 22 Using Orchestrate Data Types in Your Operator
In this example, the operator copies all records with a year greater than 1990 to the output data set.
All records with year before 1990 are copied to the reject data set.

Name: DateFilter

Input 0 Name: DateIn0

Input 0 Properties: Auto

Input 0 Interface Schema: record (field1:date;)

Output 0 Name: DateOut0

Output 0 Properties: Auto

Output 0 Interface Schema: record ()

Output 1 Name: DateOut1

Output 1 Properties: Noauto

Output 0 Interface Schema: record ()

Transfer 0: Input From: 0; Output To: 0

Transfer 0 Properties: Noauto, Combine

Transfer 1: Input From: 0; Output To: 1

Transfer 1 Properties: Noauto, Combine

Per-record:

// Check year component of date.
if (DateIn0.field11.year() < 1990)
// Send record to reject output

transferAndWriteRecord(1);
else {
// Copy record to accepted output

doTransfersTo(0);
// Write the record.

writeRecord(0);
}

Creating Custom Operators 12 – 23Visual Orchestrate User’s Guide
Using Decimal Fields

Orchestrate implements decimal fields using the C++ class APT_Decimal. The most common
functions of APT_Decimal that you may need to use in your operator are shown below:

You can use any public member function of these classes in your operator. See the Orchestrate
C++ Classes and Headers Reference Cards to find the header file containing a complete
description of APT_Decimal.

For example, Orchestrate decimals do not provide arithmetic functions. In order to use a decimal
within an arithmetic expression, you must first convert it to an integer or float, perform your
arithmetic operation, and convert it back to a decimal.

For example, the following operator adds two decimal fields and outputs a field containing the
total:

Name: sum

Input 0 Name: SumIn0

Input 0 Properties: Auto

Input 0 Interface Schema:
record (field1:decimal[6,2]; field2:decimal[6,2];)

Output 0 Name: SumOut0

Output 0 Properties: Auto

Output 0 Interface Schema:
record (total:decimal[7,2];)

Per-record:

float var1 = SumIn0.field1.asDFloat();
float var2 = SumIn0.field2.asDFloat();

float total_temp = var1 + var2;
SumOut0.total.assignFromDFloat(total_temp);

Class APT_Decimal

assignFromDecimal()
assignFromDFloat()
assignFromInt32()
assignFromString()
asDFloat()
asInteger()
asString()
compare()
scale()
stringLength()

Visual Orchestrate User’s Guide12 – 24 Using Orchestrate Data Types in Your Operator

h
APT-

e

ld. To
ction
Using String Fields

One possible data type for a field is string—a field containing a fixed-length or variable-lengt
character string. Orchestrate uses the class APT_StringField to define a string field.
_StringField defines member functions that you use to manipulate a string field.

A string field has the following characteristics:

• The string can be fixed-length or variable-length.

• You can assign various kinds of strings to the field.

• A string field is not null-terminated; that is, it always has an explicit length.

• A string field can contain white-space characters and, if nullable, the null character ('\0').

The following figure shows common functions in the public interface to APT_StringField:

You can use any public member function of these classes in your operator. See the Orchestrate
C++ Classes and Headers Reference Cards to find the header file containing a complet
description of APT_StringField.

For example, you can define an operator that takes as input a variable-length string fie
determine the runtime length of the field in an input record, you can use the string field fun
length().

Input 0 Name: LenIn0

Input 0 Properties: Auto

Input 0 Interface Schema: record (a:string;)

Output 0 Name: LenOut0

Output 0 Properties: Auto

Output 0 Interface Schema: record (a:string;)

Per-record:

int length = LenIn0.a.length();
// If length is 0, discardRecord;
if (length == 0) discardRecord();

// Process string...

Class APT_StringField

assignFrom()
content()
isFixedLength()
isVariableLength()
length()
padChar()
setFixedLength()
setLength()
setPadChar()
setVariableLength()

Creating Custom Operators 12 – 25Visual Orchestrate User’s Guide
// Copy string to output record
LenOut0.a = LenIn0.a;

Using Raw Fields

Orchestrate lets you create raw fields, an untyped collection of contiguous bytes. You can also
create an aligned raw field, a special type of raw field where the first byte is aligned to a specified
address boundary. Raw and aligned raw fields may be either fixed- or variable-length.

Orchestrate uses the class APT_RawField to define both raw and aligned raw fields.
APT_RawField includes member functions that you use to manipulate these fields. The following
figure shows common member functions of APT_RawField:

You can use any public member function of these classes in your operator. See the Orchestrate
C++ Classes and Headers Reference Cards to find the header file containing a complete
description of APT_RawField.

To process raw fields, you use the same techniques described above for string fields. However, you
copy raw fields into a destination field of type void *, rather than of type char *.

Using Nullable Fields

Orchestrate supports a null value representation for all field types. To define a field as nullable in an
input or output interface schema, you use the nullable keyword, as shown in the following sam-
ple schema declarations:

Input 0 Interface Schema: record (a:nullable int32; b:nullable int32;
c:int8;)

Output 0 Interface Schema: record (d:nullable int32; e:int16;)

You can specify nullability for any field in the schema. In this example, fields a, b, and d are
declared as nullable, and fields c and e are declared as not nullable (the default). All fields in
the output interface schema defined as nullable are initialized to null in each output record.

An expression using a nullable source field generates an error if the source field contains a null.
For example, the following expression uses fields a, b, and d:

Class APT_RawField

assignFrom()
content()
isFixedLength()
isVariableLength()
length()
setFixedLength()
setLength()
setVariableLength()

Visual Orchestrate User’s Guide12 – 26 Using Orchestrate Data Types in Your Operator

hown

 ele-
vector

tor

ld

-

fied

fied

t

d = a / b;

In this case, both source fields (a and b) must not be null. If either field is null, the expression
causes an error that terminates your application. Field d may contain a null, as it is the destination.
The result of the expression is written to field d, replacing the null.

To process nullable fields, you can use the following functions:

• fieldName_null(): Returns the boolean value of true if fieldName contains a null and
false if not.

• fieldName_setnull(): Sets an output field to null (input fields are read-only)

• fieldName_clearnull(): Sets an output field to non-null (input fields are read-only)

You can rewrite the example expression above to avoid an error caused by a nullable field, as
shown below:

if (!a_null() && !b_null())
d = a / b;

Using Vector Fields

Orchestrate record schemas allow you to define vector fields (one-dimensional arrays). S
below is an example interface schema using vector fields:

Input 0 Interface Schema: record (a[10]:int8;)

Output 0 Interface Schema: record (total:int32;)

In this example, field a is a 10-element vector.

You can use the following functions with vector fields:

• fieldName[index]: Accesses the vector element at the specified index, where the first
ment in the vector is at index 0. Vector elements in an input record are read-only, and
elements in an output record are read/write.

• fieldName.vectorLength(): Returns, as an integer, the number of elements in the vec

• fieldName.setVectorLength(length): Sets the length of a variable-length vector fie
in an output record (input fields are read-only)

• fieldName_null(index): Returns the boolean value true if the vector element at the spec
ified index is null, and false if it is not

• fieldName_setnull(index): Sets the vector element in an output record at the speci
index to null (input fields are read-only)

• fieldName_clearnull(index): Sets the vector element in an output record at the speci
index to non-null (input fields are read-only)

The following code sums all the elements in the input vector a and stores the results in the outpu
field total:

total = 0;

Creating Custom Operators 12 – 27Visual Orchestrate User’s Guide

inputs,

 your
 more
“How
erators
for (int i = 0; i < 10; i++)
{

total = total + a[i];

}

Using the Custom Operator Macros

Orchestrate provides a number of macros for you to use in Pre-loop, Post-loop, and Per-record
code for your custom operator. This section describes these macros, which are grouped into the fol-
lowing four categories:

• Informational macros

• Flow-control macros

• Input and output macros

• Transfer macros

Informational Macros

You can use the informational macros in your operator code, to determine the number of
outputs, and transfers, as follows:

Flow-Control Macros

Flow-control macros let you override the default behavior of the input and processing loop in
operator’s action section. Modifying the loop makes your operator code more complex and
difficult to debug. Before coding with these macros, be sure to carefully read the section
Visual Orchestrate Executes Generated Code” on page 12-31 and the section “Designing Op
with Multiple Inputs” on page 12-31.

inputs() Returns number of declared inputs.

outputs() Returns number of declared outputs.

transfers() Returns number of declared transfers.

endLoop() Causes operator to stop looping, following completion of the current loop and
after writing any auto outputs for this loop.

nextLoop() Causes operator to immediately skip to start of next loop, without writing any
outputs.

failStep() Causes operator to return a failed status and terminate the enclosing Orches-
trate step.

Visual Orchestrate User’s Guide12 – 28 Using the Custom Operator Macros

nd

, you

 on
For an example of using endLoop() in an $action section, see the section “Using Both auto a
noauto Inputs” on page 12-34.

Input and Output Macros

The input and output macros let you control read, write, and transfer of individual records.

Each of the input and output macros listed below takes an argument, as follows:

• An input argument is the index (0-n) of the declared input, and an output argument is the
index (0-n) of the declared output. If you have defined a port name for an input or output
can use portname.portid_ in place of the index.

• An index argument is the index (0-n) of the declared transfer.

For examples of using input and output macros, see the following:

• readRecord() in the section “Example Operator: reject” on page 12-30

• writeRecord() in several examples, including the section “Example Operator: reject”
page 12-30 and “Example Operator: noauto” on page 12-34

• inputDone() in “Example Operator: noauto” on page 12-34

• discardRecord() and discardTransfer() in the example below

Example Using discardRecord() and discardTransfer(): Operator divide
The following example definition file is for operator divide, which calculates the quotient of two
input fields. The operator checks to see if the divisor is zero. If it is, divide calls discardTrans-

readRecord(input) Immediately reads the next record from input, if there is one. If
there is no record, the next call to inputDone() will return
false.

writeRecord(output) Immediately writes a record to output.

inputDone(input) Returns true if the last call to readRecord() for the specified
input failed to read a new record, because the input has no more
records.

holdRecord(input) Causes auto input to be suspended for the current record, so that
the operator does not automatically read a new record at the start
of the next loop. If auto is not set for the input, holdRecord()
has no effect.

discardRecord(output) Causes auto output to be suspended for the current record, so
that the operator does not output the record at the end of the cur-
rent loop. If auto is not set for the output, discardRecord()
has no effect.

discardTransfer(index) Causes auto transfer to be suspended, so that the operator does
not perform the transfer at the end of the current loop. If auto is
not set for the transfer, discardTransfer() has no effect.

Creating Custom Operators 12 – 29Visual Orchestrate User’s Guide

, you

e

fer() so that the record is not transferred, and then calls discardRecord(), which drops the
record (does not copy it from the input data set to the output data set).

Name: divide

Input 0 Name: [default]

Input 0 Properties: Auto

Input 0 Interface Schema: record(a:int32; b:int32;)

Output 0 Name: [default]

Output 0 Properties: Auto

Output 0 Interface Schema: record(quotient:int32; remainder:int32;)

Transfer 0: Input From: 0; Output To: 0

Transfer 0 Properties: Auto, Combine

Per-record:

if (b == 0) {
discardTransfer(0); // Don’t perform transfer.
discardRecord(0); // Don’t write output record.

}
else {

quotient = a / b;
remainder = a % b;

}

Transfer Macros

This section describes how to use the transfer macros. Each of the transfer macros, listed below,
takes an argument, as follows:

• An input argument is the index (0-n) of the declared input, and an output argument is the
index (0-n) of the declared output. If you have defined a port name for an input or output
can use portname.portid_ in place of the index.

• An index argument is the index (0-n) of the declared transfer.

A transfer copies the input record to the output buffer. If your definition file specifies auto transfer
(the default setting), immediately after execution of the Per-record code, the operator transfers th
input record to the output record.

doTransfer(index) Performs the transfer specified by index.

doTransfersFrom(input) Performs all transfers from input.

doTransfersTo(output) Performs all transfers to output.

transferAndWriteRecord(output) Performs all transfers and writes a record for the speci-
fied output. Calling this macro is equivalent to calling
the macros doTransfersTo(output) and
writeRecord(output);

Visual Orchestrate User’s Guide12 – 30 Using the Custom Operator Macros

ge

ng

also

,
e

For an example of using doTransfer(), see the section “Example Operator: score” on pa
12-32.

The code example below shows how you can use doTransfersTo() and transferAndWriteR-
ecord() in a sample operator, reject. Following the code description is an example of usi
reject in an osh command.

Example Operator: reject
This example operator, reject, has one automatic input. It has two non-automatic outputs. It
declares two non-automatic transfers, the first to output 0 and the second to output 1.

The input record holds a dividend in field a and a divisor in field b. The operator checks the divisor
and if it is zero, calls transferAndWriteRecord(1) to perform a transfer to output 1 and writ
the record to output 1. If the divisor is not zero, the operator calls doTransfersTo(0) to perform
the transfer to output 0, assigns the division results to the fields quotient and remainder, and
finally to call writeRecord(0) to write the record to output 0.

Name: reject

Input 0 Name: [default]

Input 0 Properties: Auto

Input 0 Interface Schema: record(a:int32; b:int32;)

Output 0 Name: [default]

Output 0 Properties: Noauto

Output 0 Interface Schema: record(quotient:int32; remainder:int32;)

Transfer 0: Input From: 0; Output To: 0

Transfer 0 Properties: Noauto, Combine

Output 1 Name: [default]

Output 1 Properties: Noauto

Output 1 Interface Schema: record()

Transfer 0: Input From: 0; Output To: 1

Transfer 0 Properties: Noauto, Combine

Per-record:

if (b == 0) {
// Send record to reject output

transferAndWriteRecord(1);
}
else {

// Copy record to normal output
doTransfersTo(0);

// Set additional data fields.
quotient = a / b;
remainder = a % b;

// Write the record.
writeRecord(0);

}

Creating Custom Operators 12 – 31Visual Orchestrate User’s Guide

ns-

op

ra-

of mul-
gested
inputs.
How Visual Orchestrate Executes Generated Code

This section describes how Visual Orchestrate executes the code generated from your custom
operator definition. If you are writing simple operators and your code uses only the default,
automatic I/O handling, you do not need to be concerned with the details of this section. If you are
writing more complex operators with non-default I/O handling, these details can be helpful.

Visual Orchestrate executes your custom operator code, as follows:

1. Handles any definitions that you have entered in the Definitions tab of the Custom Operator
dialog box.

2. If you have entered any code in the Pre-loop section, executes it.

3. Loops repeatedly until either all inputs have run out of records, or the Per-record code has
explicitly invoked endLoop(). In the loop, performs the following steps:

a. Reads one record for each input, except where any of the following is true:

• The input has no more records left.

• The input has been declared with noauto.

• The holdRecord() macro was called for the input last time around the loop.

b. Executes the Per-record code, which can explicitly read and write records, perform tra
fers, and invoke loop-control macros such as endLoop().

c. Performs each specified transfer, except where any of the following is true:

• The input of the transfer has no more records.

• The transfer has been declared with noauto.

• The discardTransfer() macro was called for the transfer during the current lo
iteration.

d. Writes one record for each output, except where any of the following is true:

• The output was declared with noauto.

• The discardRecord() macro was called for the output during the current loop ite
tion.

4. If you have specified Post-loop code, executes it.

5. Returns a status value, which is one of the following:

APT_StatusOk (value 0). The default.

APT_StatusFailed (value 1). Returned only if your code has invoked failStep().

Designing Operators with Multiple Inputs

Orchestrate supports creation of operators that perform complex data handling, through use
tiple inputs and outputs, flow control, and transfers. This section describes some sug
approaches for designing operators that successfully handle the challenge of using multiple

Visual Orchestrate User’s Guide12 – 32 Designing Operators with Multiple Inputs

t.

more
s per-
rator to

eeded

eeded
ing the
ecords

ed fea-
ultiple

cord
 on any

s on

every

 and
s score
Note: Whenever possible, use the standard, automatic read, write, and record transfer features
described in this chapter. In using non-automatic inputs, outputs, or record transfers in your opera-
tor definition, you introduce complexity and a greater possibility of programming errors.

Requirements for Coding for Multiple Inputs

To use multiple inputs effectively, your operator code needs to meet the following two require-
ments:

• Perform a read of a record’s fields only when the record is available on the specified inpu

Make sure that your operator code will not attempt to read a field from an input with no
records. It also must not attempt to read a field on a non-automatic input before it ha
formed a read on that input. Failure to prevent either of these situations causes the ope
fail with an error message similar to the following:

isUsable() false on accessor interfacing to field "fieldname"

• Terminate the reading of records from each input immediately after (but not before) all n
records have been read from it.

If you declare any inputs as non-automatic, your operator must determine when all n
records have been read from all inputs, and at that point to terminate the operator by call
endLoop() macro. Remember that the operator continues to loop as long as there are r
remaining on any of its inputs.

Strategies for Using Multiple Inputs and Outputs

In general, the best approach to coding for multiple inputs is the simplest, using the automat
tures as much as possible. Below are three simple strategies for designing an operator with m
inputs:

Using Automatic Read for All Inputs
In this approach to multiple inputs, your definition file defines all inputs as automatic, so all re
reads are handled automatically. You code your operator so that each time it accesses a field
input, it first invokes the inputDone() macro to determine whether there are any more record
the input.

Note that this strategy is appropriate only if you want your operator to read a record from
input, every time around the loop.

Example Operator: score
This example operator, score, uses two automatic inputs. It also uses non-automatic outputs
record transfers, so that it writes record only when the operator code has determined that it
field has the highest value among all records of that type.

Creating Custom Operators 12 – 33Visual Orchestrate User’s Guide
Name: score

Input 0 Name: [default]

Input 0 Properties: Auto

Input 0 Interface Schema: record(type:int32; score:int32;)

Output 0 Name: [default]

Output 0 Properties: Noauto

Output 0 Interface Schema: record ()

Transfer 0: Input From: 0; Output To: 0

Transfer 0 Properties: Noauto, Combine

Pre-loop:

int current_type = -1;

int current_score = -1;

Per-record:

// Operator score uses the output record as a buffer for
// the highest-scoring record of each type processed.

// Assumptions about input:
// The input data is hash-partitioned on the type field.
// All records are guaranteed to have a score value not equal to -1.

// If the input has passed the final record of a type,
// output the buffered high-scoring record for that type,
// and reset the score.

if (type != current_type && current_type != -1) {
// write highest scored record from previous group.
writeRecord(0);
// start tracking new type
current_type = type;
current_score = -1;

}

// If current record beats previous score, transfer it
// to the output buffer, but don’t write it yet.
if (score > current_score) {

doTransfersTo(0);
current_score = score;
current_type = type;

}

$post

// If there’s a remaining record, write it to output.
if (current_type != -1) {

writeRecord(0);
}

Visual Orchestrate User’s Guide12 – 34 Designing Operators with Multiple Inputs

perator:

l

s,

is
orms all
erges

his
m

Using Both auto and noauto Inputs
Your definition file declares one automatic input (or possibly more than one), and the remaining
inputs as non-automatic. You code your operator to let the processing of records from the automatic
input drive the handling of the other inputs. Each time around the loop, your operator calls input-
Done() on the automatic input. When the automatic input has no more records, your code calls
exitLoop() to complete the operator action.

For an example of an operator that uses this coding strategy, see the section “Example O
reject” on page 12-30.

Using noauto for All Inputs
Your definition file declares all inputs as non-automatic (noauto), so your code must perform al
record reads. You declare a Pre-loop section, which you code to call readRecord() once for each
input. You code the Per-record section to invoke inputDone() for every input, on every iteration
of the loop, to determine whether it obtained a record on the most recent readRecord(). If it did,
process the record, and then call readRecord() on that input. When all inputs run out of record
the operator automatically exits the Per-record section.

Example Operator: noauto
The following example operator, noauto, illustrates this strategy for reading multiple inputs. Th
example uses non-automatic inputs, outputs, and transfers, so that the operator code perf
reading and writing explicitly. This operator takes three inputs, with similar schemas, and m
them into a single output. It also has a separate output for records that have been rejected.

Unlike the Orchestrate merge operator, this operator filters and modifies some of the input. T
operator modifies the id field to reflect the input source (0, 1, or 2). It also filters records fro
inputs 1 and 2, according to the values of fields a and b.

Name: noauto

Input 0 Name: [default]

Input 0 Properties: Noauto

Input 0 Interface Schema: record (id:int32;)

Input 1 Name: [default]

Input 1 Properties: Noauto

Input 1 Interface Schema: record (id:int32; a:int32;)

Input 2 Name: [default]

Input 2 Properties: Noauto

Input 2 Interface Schema: record (id:int32; a:int32; b:int32;)

Output 0 Name: [default]

Output 0 Properties: Noauto

Output 0 Interface Schema: record (id:int32;)

Output 1 Name: [default]

Output 1 Properties: Noauto

Creating Custom Operators 12 – 35Visual Orchestrate User’s Guide
Output 1 Interface Schema: record ()

Transfer 0: Input From: 0; Output To: 0

Transfer 0 Properties: Noauto, Combine

Transfer 1: Input From: 1; Output To: 0

Transfer 1 Properties: Noauto, Combine

Transfer 2: Input From: 2; Output To: 0

Transfer 2 Properties: Noauto, Combine

Transfer 3: Input From: 0; Output To: 1

Transfer 3 Properties: Noauto, Combine

Transfer 4: Input From: 1; Output To: 1

Transfer 4 Properties: Noauto, Combine

Transfer 5: Input From: 2; Output To: 1

Transfer 5 Properties: Noauto, Combine

Pre-loop:

// Before looping, it initially calls readRecord() once for each input,

// either to get the first record or to detect that input is empty.

int i;
for (i=0; i<inputs(); i++) {
readRecord(i);

}

Per-record:

// Each time around the loop, look for any input that is
// not done, i.e. has a record, and process that input.
for (i=0; i<inputs(); i++) {

if (! inputDone(i)) {
// Process current record for this input
switch (i) {
case 0:

// Input 0 needs no processing, so just copy to output.
out0.id = in0.id;
doTransfer(0); // from input 0 to output 0
writeRecord(0);
break;

case 1:
// Input 1 needs some filtering/rejection of records.
if (in1.a > 50) {

// Reject the record.
doTransfer(4); // from input 1 to output 1
writeRecord(1);

}
else {

// Modify the id, and copy record to output 0.

Visual Orchestrate User’s Guide12 – 36 Designing Operators with Multiple Inputs
out0.id = in1.id + 10000;
doTransfer(1); // from input 1 to output 0
writeRecord(0);

}
break;

case 2:
// Input 2 needs different filtering/rejection.
if (in2.a > 50 || in2.b > 50) {

// reject the record
doTransfer(5); // from input 2 to output 1
writeRecord(1);

}
else { // Modify the id appropriately.

if (in2.a > in2.b)
out0.id = in2.id + 20000;

else
out0.id = in2.id + 30000;

// Copy the record to output 0.
doTransfer(2); // from input 2 to output 0
writeRecord(0);

}
break;

}

// Get next record for this input (or detect end of input).
readRecord(i);

}
}

// When all inputs are exhausted, operator automatically terminates.

13 – 1Visual Orchestrate User’s Guide

ges:

it can

hes-
13: Creating UNIX Operators

Orchestrate lets you use UNIX programs and commands in your Orchestrate application,
just as you use predefined Orchestrate operators. This capability lets you run existing UNIX
programs in parallel within an Orchestrate application, without having to rewrite them.

To execute your existing UNIX programs in Orchestrate, you create UNIX command opera-
tors. UNIX command operators execute your UNIX application in parallel or sequentially as
part of an Orchestrate step. You can use UNIX command operators in the same step that you
use Orchestrate operators.

This chapter describes how to create UNIX command operators. It describes how to handle
various kinds of operator inputs and outputs and how to define operators that accept user-
settable options. The final section of this chapter describes optimizations that Orchestrate
performs with UNIX command operators.

This chapter contains the following sections:

• “Introduction to UNIX Command Operators” on page 13-1

• “Handling Operator Inputs and Outputs” on page 13-7

• “Passing Arguments to and Configuring UNIX Commands” on page 13-22

• “Handling Command Exit Codes” on page 13-35

• “How Orchestrate Optimizes Command Operators” on page 13-36

Introduction to UNIX Command Operators

The Orchestrate framework includes many operators, which you use to perform basic data
processing tasks such as copy, sample, and merge. Orchestrate also lets you create custom operators
from existing or new code, to run in parallel in your Orchestrate application. This chapter describes
how to use Visual Orchestrate to create custom operators from existing UNIX shell commands.
UNIX shell commands can be invoked from a UNIX shell prompt, and include UNIX built-in
commands such as grep, UNIX utilities such as SyncSort, and your own UNIX applications. (You
can also create custom operators from your own code in C or C++; see the chapter “Creating
Custom Operators”.)

Executing an existing UNIX application as a UNIX command operator has two main advanta

1. Orchestrate’s parallel execution improves the performance of your UNIX application, as
process larger amounts of data than it can in sequential execution.

2. You can use your existing UNIX application, without any reimplementation, in your Orc
trate application,.

Visual Orchestrate User’s Guide13 – 2 Introduction to UNIX Command Operators

trate’s
arallel

d by

le data
utputs.
You insert a UNIX command operator into a step just as you would any other operator. The follow-
ing figure shows a UNIX command operator used in an Orchestrate step:

UNIX command operators can be executed sequentially or in parallel. When executed sequentially,
the UNIX command operator adds the functionality of your existing application code to your
Orchestrate application.

When executed in parallel, your UNIX command operator also takes advantage of Orches
parallel execution performance. Orchestrate handles all the underlying tasks required to run p
applications, including partitioning your data on the multiple nodes in a parallel system.

Characteristics of a UNIX Command Operator

A UNIX command operator has the following characteristics:

• Parallel or sequential execution mode (selectable by the creator or user of the operator)

• Partitioning method of any (parallel execution mode) and collection method of any (sequential
execution mode)

• Multiple input and output data sets

• Execution environment (environment variable definitions, exit code handling) controlle
the operator creator

The UNIX operator in the figure above takes a single data set as input and produces a sing
set as output. You can also create UNIX command operators that take multiple inputs and o

UNIX operator

Step

sort

remdup

Creating UNIX Operators 13 – 3Visual Orchestrate User’s Guide

pro-

 this

, the
e com-

ds of

or or
The following figure shows an operator that takes two input data sets and produces one output data
set:

In addition, you can build node and resource constraints into the operator.

UNIX Shell Commands

The command executed by a UNIX command operator is any UNIX application, file, or command
that can be executed from a UNIX shell prompt. UNIX shell commands include:

• A UNIX-executable program, compiled from code written in COBOL, C, C++, or another
gramming language

• A built-in UNIX command, such as grep, or a UNIX utility, such as SyncSort

• A UNIX shell script

Overview of UNIX Commands
This section contains an overview of UNIX shell commands, terms, and syntax. You will find
information useful when designing and developing your UNIX command operators.

A UNIX command has the following general form:

command_name arg_list input_list output_list

where:

• command_name is the name of the UNIX shell command. Example shell commands are grep,
sort, or any executable file or shell script.

• arg_list is a list of arguments to the command, required and optional. For example
SyncSort sorting package takes arguments that define the sorting characteristics. Som
mands use environment variables to set arguments.

• input_list is a list of inputs to the command. Inputs include data sets and other kin
data, such as parameter files.

• output_list is a list of outputs from the command. Outputs can be any output data, err
log messages, and result summaries.

For example, the UNIX grep command has the following form:

UNIX operator

Input data set 0 Input data set 1

Output data set 0

Visual Orchestrate User’s Guide13 – 4 Introduction to UNIX Command Operators

put.

put.

r.

mand
its
UNIX

 can be
 are
grep [-bchilnsvw] limited-regular-expression [filename ...]

The grep command searches one or more input files for a pattern and outputs all lines that contain
that pattern. If the command line specifies no input files, grep takes its input from the standard
input. By default, grep writes output to standard output.

UNIX commands take their input from one of the following sources:

• Standard input (stdin): Each UNIX command can have a single connection to standard in
By default, standard input is the keyboard.

• Files: Data files specified as arguments to the UNIX command.

UNIX commands write their output to one of the following:

• Standard output (stdout): A UNIX command can have a single connection to standard out
By default, standard output is the screen.

• Standard error (stderr): A UNIX command can have a single connection to standard erro

• Files: Data files are specified as arguments to the UNIX command.

For example, the following command line causes grep to reads its input from the file custs.txt
and to write all lines of the file containing the string MA to standard output (the screen):

grep MA custs.txt

You can also use standard input and output to connect UNIX commands, as shown below:

cat options | grep options

where options are any arguments passed to the commands. The pipe symbol (|) indicates a
connection between two UNIX commands. In this example, cat writes its output to its standard
output, and grep reads its input from cat on the standard input of grep.

UNIX Commands Must Be Pipe-Safe
Orchestrate imposes one requirement on the UNIX command executed by a UNIX com
operator: the command must be pipe-safe. To be pipe-safe, a UNIX command always reads
input sequentially, from beginning to end. More specifically, the command does not use the
random-access command, seek, on any of its inputs.

UNIX commands that are pipe-safe can be connected with a UNIX pipe, as shown below:

$ cat options | grep options | sort options

UNIX commands that read from standard input or write to standard output are pipe-safe and
included in a UNIX command operator. UNIX commands that read from or write to files
usually pipe-safe.

Creating UNIX Operators 13 – 5Visual Orchestrate User’s Guide

 a file
mand

ile.

 a file
ads as
Execution of a UNIX Command Operator

A UNIX command operator takes as input a data set containing data in the Orchestrate record
format. The embedded shell command then processes Orchestrate records one by one. The left-
hand side of the figure below shows an Orchestrate application step that uses a UNIX command
operator, and the right-hand side shows an expanded representation of the operator as it processes
data.

In the figure above, the UNIX command operator performs both an export and an import operation.
It performs the export to convert the input data set to the data format required by the UNIX
command, and it performs the import to convert the output of the UNIX command to the
Orchestrate data set format. The UNIX command, executed by the command operator, receives and
processes data normally from either standard input or a file.

The following procedure summarizes the action of the UNIX command operator:

1. To convert input records to a format compatible with the UNIX command, Orchestrate exports
the data set records.

You control how the output of the export operator is delivered to the input of the UNIX com-
mand: either through the command’s standard input or through a file name. If you use
name, rather than writing the data to disk Orchestrate creates a UNIX pipe that the com
reads in the same way that it reads a file.

2. The UNIX command processes its input and writes its output to standard output or to a f

3. The result of the UNIX command is sent to the import operator, which converts it to an
Orchestrate data set.

You control how the output of the UNIX command is delivered to the input of the import

operator: either through the command’s standard output or through a file name. If you use
name, rather than writing the data to disk Orchestrate creates a UNIX pipe that import re
it reads a file.

UNIX operator

Operator

Step export

import

UNIX command

file or stdin

file or stdout

1

2

3

Visual Orchestrate User’s Guide13 – 6 Introduction to UNIX Command Operators

 ASCII

trings

 new-
ecord
s

 For
erator

and
estrate

enerated
uts and

g exe-

stead, the
For UNIX command operators with multiple inputs, Orchestrate separately exports data for each
input. For each output of the operator, Orchestrate separate imports data for each output.

Default Properties for Operator Export and Import
By default, a UNIX command operator uses the following export properties:

• A new-line character delimits the end of each record.

• An ASCII space (0x20) separates all fields.

• The record uses a text representation for all data including numeric data (an unpacked
representation with one byte per digit).

This export format corresponds to the record schema:

record()

With this default export format, the embedded UNIX command receives its input as text s
terminated by new-line characters.

By default, a UNIX command operator imports data by creating one output record from each
line delimited text string that is output by the embedded UNIX shell command. Each output r
contains a single, variable-length, string field named rec. This default import format correspond
to the record schema:

record(rec:string;)

Many UNIX command operators require a non-default schema for import or export.
information on specifying the import and export schemas, see the section “Handling Op
Inputs and Outputs” on page 13-7 for more information.

Orchestrate can perform several kinds of performance optimization on your UNIX comm
operators, based on their import and export record schemas. See the section “How Orch
Optimizes Command Operators” on page 13-36 for more information.

Handling Other Input/Output Types
The example UNIX command operators shown above have taken data sets as inputs and g
data sets as outputs. However, many UNIX commands operators handle other types of inp
outputs, including;

• Input parameter files used to configure the command

• Environment variables specifying configuration information

• Output message and error logs containing information generated by the command durin
cution

• Output files containing results or result summaries

Inputs and outputs of these types do not have to be represented by Orchestrate data sets. In
UNIX command can read directly from these inputs or write directly to these outputs.

Creating UNIX Operators 13 – 7Visual Orchestrate User’s Guide

more

ver, if
nce of
 section

 access
and
 on all
les to

arious
e fol-

s by
he end,

n by an
ibute it
 retrieve

d out-
ection
For example, when a step passes the name of a parameter file as an argument to a UNIX command
operator, the UNIX command directly reads the parameter file for its configuration information.
See the section “Handling Configuration and Parameter Input Files” on page 13-25 for
information.

Likewise, an embedded UNIX command can write directly to message and error logs. Howe
you are running the UNIX command operator in parallel, you must make sure that each insta
the operator writes to a separate file, as defined by a file name or a path name. See the
“Handling Command Exit Codes” on page 13-35.

If an embedded UNIX command uses environment variables, the command must be able to
the environment variable to obtain runtime configuration information. If the UNIX comm
operator runs in parallel, you must make sure that the environment variable is set correctly
processing nodes executing the operator. See the section “Using Environment Variab
Configure UNIX Commands” on page 13-26 for more information.

Handling Operator Inputs and Outputs

One of the most important aspects of creating UNIX command operators is handling the v
kinds of inputs and outputs that UNIX commands can require. UNIX commands can take th
lowing kinds of inputs:

• Data (from a file, or standard input)

• Command-line arguments

• Parameter files

UNIX commands can write the following kinds of output:

• Data (to a file, standard output, or standard error)

• Messages (to a file, standard output, or standard error)

• Results (to a file or standard output)

Orchestrate uses a data-flow programming environment, in which you define application
connecting operators using data sets. In this way, data flows from the beginning of a step to t
as each operator processes a stream of input records to create an output record stream.

You use Orchestrate data sets to input data to an operator and to hold the output data writte
operator. By using data sets, you let Orchestrate handle the partitioning of your data to distr
to the processing nodes executing a parallel operator. In addition, data sets let you store and
your data in parallel.

For command operators that invoke UNIX commands that require other types of inputs an
puts, you must decide how your operator will handle those inputs and outputs. This s

Visual Orchestrate User’s Guide13 – 8 Handling Operator Inputs and Outputs

by an
tion your

ts are
 from
ard

ta set

UNIX
describes how to handle different inputs to and outputs from an UNIX command operator, through
the following topics:

• “Using Data Sets for Inputs and Outputs” on page 13-8

• “Handling Command Exit Codes” on page 13-35

• “Handling Configuration and Parameter Input Files” on page 13-25

• “Using Environment Variables to Configure UNIX Commands” on page 13-26

Using Data Sets for Inputs and Outputs

The application data processed by a UNIX command operator is usually represented
Orchestrate data set. Orchestrate data sets have a parallel representation that lets you parti
data to distribute it to the multiple processing nodes in a parallel system.

When you create a UNIX command operator, you specify how input and output data se
connected to the UNIX command. For example, UNIX commands usually read input data
standard input (stdin) or from a file. For output, commands usually write output data to stand
output (stdout) or to a file.

For example, the following figure shows a UNIX command operator taking a single input da
and creating a single output data set:

In this example, the UNIX command operator performs an export of the data set to the
command, runs the UNIX command, and then imports the data to the output data set.

export

UNIX command
UNIX operator

Input data set

Output data set

Input data set

Output data set

file or stdin

file or stdout

1

2

3

rec:string;

import

rec:string;

Creating UNIX Operators 13 – 9Visual Orchestrate User’s Guide

 for a
each
ted by a

 field.
puts it

UNIX

 output
UNIX command operators use a default record schema for the input and output data sets, as
described in the section “Default Properties for Operator Export and Import” on page 13-6
description of these defaults. The following figure shows two UNIX command operators,
using the default input and output record schemas. The two command operators are connec
data set:

In this case, the output data set of the first UNIX command operator contains a single string
By default, the second operator converts that string to a new-line delimited string and then in
to its UNIX command.

Example: Operator Using Standard Input and Output

This section describes how to create a parallel UNIX command operator that runs the
command grep. The following figure shows this sample operator, my_grep:

In this example, the grep command:

• Takes its input from standard input.

• Writes its output to standard output.

• Uses the default export schema on its input data set and the default import schema on its
data set.

• Takes no user-specified arguments.

• Is invoked with the following command line: grep MA.

UNIX operator

 rec:string;

UNIX operator

 rec:string;

Input data set

my_grep

record(rec:string;)

record()

Visual Orchestrate User’s Guide13 – 10 Handling Operator Inputs and Outputs
This command line defines a simple filter operator that outputs only the records containing the
string MA.

To create a UNIX command operator, perform the following steps:

1. Choose Custom -> Define Custom Operator from the Orchestrate menu. This command
opens the following dialog box:

This dialog box allows you to create a new operator (default), or to copy the definition of an
existing operator and edit that definition to create a new operator. You create a New Operator
in this example.

2. Click OK to open the Custom Operator dialog box.

3. Click the UNIX Command button, as shown in the figure below:
UNIX Command

Command echo

Creating UNIX Operators 13 – 11Visual Orchestrate User’s Guide

 Oper-

p.

 and

des
ccess-
4. Specify the Name of the operator: my_grep.

5. Specify the Library name for the operator: User.

6. Specify the Command: grep MA.

As you enter the command, you see it echoed in the Sample Command Line area of the dia-
log box. This area shows how the UNIX application will be invoked by the operator.

In the Command Line Argument Order area, the list of operator arguments is empty. For a
description of adding and using command operator arguments, see the section “Handling
ator Inputs and Outputs” on page 13-7.

7. Specify the Operator Type as Parallel.

You can specify Parallel, Sequential, or Operator Default (default). Operator Default
allows the operator user to set the execution mode when inserting the operator into a ste

8. Choose the Exit & Environment tab:

This dialog box lets you define the environment variables used by the UNIX command
control how Orchestrate handles exit codes returned by the command.

In the Command Exit Code Handling area, specify how Orchestrate interprets the exit co
returned from the UNIX command. By default, Orchestrate treats an exit code of 0 as su
ful and all others as errors.

For this operator, specify:

Success Codes = 0 and 1: Exit codes 0 and 1 indicate success; all others are errors.

Visual Orchestrate User’s Guide13 – 12 Handling Operator Inputs and Outputs

ars in

erator

use a

 default
 output,
descrip-
You must set 1 as a valid exit code because grep returns both 0 and 1 to indicate success.
An exit code of 0 means grep found the search string; an exit code of 1 means it did not.

See the section “Handling Command Exit Codes” on page 13-35 for more information.

9. Enter 1 in the Success Code field.

10. Press the Add button to add 1 as a success code.

11. Use the New Operator dialog box buttons to do one of the following:

• Save the information about the operator, but do not create it. A saved operator appe
the Server View area in parentheses, to indicate that it has not yet been created.

• Create the operator so that you can use it in your application. You must create the op
before an operator user can use it.

• Cancel operator creation.

• Open on-line Help.

If you chose Create above, you can now use the operator in an Orchestrate step, as you
predefined Orchestrate operator. The following figure shows a step using this operator:

Additional Tabs in the Custom Operator Dialog Box
For this example, you can leave the settings for the three tabs Inputs, Outputs, and Options in
their default states. The operator in this example takes as its input, data received over the
standard input and uses the default export schema. It writes its output to the default standard
and it uses the default import schema. The operator defines no user-settable options (for a

Creating UNIX Operators 13 – 13Visual Orchestrate User’s Guide

).

u
ts” for

lity in

and’s
the

t” on
dard
ed by

 file
ipe that

eates a
tion of setting options, see the section “Handling Operator Inputs and Outputs” on page 13-7

You can use the Advanced tab to set the Constraints option for the operator. Constraints let yo
specify node pool or resource pool constraints on the operator. See the chapter “Constrain
more information on using constraints.

To change the owner or access rights for the operator, use the Access tab.

Example: Operator Using Files for Input and Output

This section shows how to create a UNIX command operator that runs the UNIX SyncSort uti
parallel. The following figure shows this sample operator, my_sort:

In this example, the SyncSort command is invoked with the following command line:

syncsort /fields age 1 integer 1 /fields state 12 char 2
/keys age
/statistics
/infile source /outfile dest

This command invokes the SyncSort utility to sort records, using a 1-byte integer field age. The
/fields argument specifies the name, position, data type, and length of a field in the comm
input. The /statistics option configures SyncSort to output statistical information about
sort operation.

In the my_grep example (in the section “Example: Operator Using Standard Input and Outpu
page 13-9), the grep command takes its input from standard input and writes its output to stan
output. In this example, SyncSort accesses its input and output via file names specifi
command-line arguments. SyncSort takes its input from the file specified by the /infile

argument and writes its output to a file specified by the /outfile argument.

Therefore, the my_sort UNIX command operator delivers input records to SyncSort using a
name. Orchestrate does not write the data to a disk file, but instead creates a UNIX named p
the command reads in the same way that it reads a file. The my_sort operator similarly takes the
SyncSort output from a named pipe.

The name of the pipe is defined at run time. When you define this operator, Orchestrate cr
temporary variable for the pipe name, which it replaces at run time.

my_sort

record(rec:string;)

record()

Visual Orchestrate User’s Guide13 – 14 Handling Operator Inputs and Outputs
To create the UNIX command operator my_sort, perform the following steps:

1. Choose Custom -> Define Custom Operator from the Orchestrate menu.

2. Click the UNIX Command button to create a UNIX command operator.

3. Specify the Name of the operator: my_sort

4. Specify the Library name for the operator: User.

5. Specify the Command:

syncsort /fields age 1 integer 1 /fields state 12 char 2
/keys age /statistics

Note that you omit any reference to the input or output files in the command string.

6. Specify the Operator Type as Parallel.

Creating UNIX Operators 13 – 15Visual Orchestrate User’s Guide
7. Choose the Input tab to configure the input data set. Shown below is the Input dialog box:

By default, the first input data set is defined to pass the input stream to the command through
standard input. You must modify this input data set to use a file name, as follows.

8. Select Data set # 0.

List of defined inputs

Visual Orchestrate User’s Guide13 – 16 Handling Operator Inputs and Outputs
9. Press the Edit button to open the UNIX Command Input dialog box, shown below, to config-
ure the input:

10. Specify the Orchestrate Input Link: 0

The first input data set is link 0, the second is link 1, and so forth.

11. Do not modify the Export Schema, as this example uses the default export schema.

12. Under Command Input, choose how the source data is delivered to the UNIX command. This
setting defines how the data from the input data set is delivered to the UNIX command.

Click Program reads from a named file to indicate that the input data set is connected to the
command using a file name.

13. Under Generated Filename Input select Pass filename on command line.

14. For Argument Name, specify /infile, the name of the SyncSort command-line argument
used to specify the input file.

15. Click OK to save the settings.

Creating UNIX Operators 13 – 17Visual Orchestrate User’s Guide
16. Click the Command tab. The Sample Command Line area of the dialog box displays the
command and the new arguments for the input data set: /infile <inputfile>.

<inputfile> is a placeholder for the name of a UNIX pipe that connects the input data set to
the UNIX command. At run time, Orchestrate replaces <inputfile> with the actual pipe
name. UNIX commands, such as SyncSort, do not differentiate between reading data from a
named pipe from reading data from an actual file.

17. Choose the Outputs tab to configure the operator’s output.

Command echo

Visual Orchestrate User’s Guide13 – 18 Handling Operator Inputs and Outputs

f the

riting
18. From the Output to area of the Outputs tab, select the default output, output 0, and then press
Edit. This opens the following dialog box:

By default, the first output data set is defined to read the output stream of the command over
standard output. You must modify this output data set to use a file name.

19. Click Program writes to named file.

20. For Argument Name, enter /outfile.

21. Click Set Preserve Partitioning Flag.

When set, the preserve-partitioning flag indicates that a data set must not be repartitioned. By
default, the flag is clear, to indicate that repartitioning is permissible. For details on the pre-
serve-partitioning flag, see the section “The Preserve-Partitioning Flag” on page 8-11.

22. Click OK.

23. Click the Command tab to view the Sample Command Line.

The command /outfile <outputfile> appears on the sample UNIX command line.

<outputfile> is a placeholder for the name of a UNIX pipe that connects the output o
UNIX command to the output data set. At run time, Orchestrate replaces <outputfile> with
the actual pipe name. UNIX commands, such as SyncSort, do not differentiate between w
data to a named pipe and writing data to an actual file.

24. Click Create to create the operator.

Creating UNIX Operators 13 – 19Visual Orchestrate User’s Guide
Example: Specifying Input and Output Record Schemas

You can as define a UNIX command operator to handle input and output data of types other than
ASCII strings delimited by spaces. For example, you may want to create an operator that runs a
UNIX command that processes binary data. To configure your command operator to handle non-
default data types and formats, you define schema for the import and/or output performed by the
command operator.

For example, the following figure shows a UNIX command operator with a defined export and
import schema:

The UNIX command in this example requires input data in binary format with no field delimiters,
as defined in the export schema. In addition, the output data set requires a non-default data format,
as defined in the import schema. The following steps describe how to use Visual Orchestrate to
define the input and output schemas for this sample UNIX command operator.

To set the record schemas of the input and output, do the following:

1. Choose the Input tab of the Custom Operator dialog box to configure the operator input.

The first time you select the Input tab, you see input Data set # 0, the default input data set,
already defined.

2. Select Data set # 0.

UNIX command operator

record {binary, field_delim = none} (
a:int32; b:dfloat; c:string[10];)

record {binary, field_delim = none} (
a:int32; b:dfloat; c:string[10];)

Input data set

Output data set

Export schema

Import schema

Visual Orchestrate User’s Guide13 – 20 Handling Operator Inputs and Outputs
3. Press the Edit button to edit Data set # 0. This opens the UNIX Command Input dialog box,
shown below:

4. Press the Details button to define the record schema for input data set 0. The Schema Editor
window opens, as shown below:

Creating UNIX Operators 13 – 21Visual Orchestrate User’s Guide

e to

amed

ime
een

 page

se one

 you
5. Press New to define a new record schema.

6. Use the Schema Editor to define the input record schema shown in the figure above.

7. Press Save to save the record schema.

8. In the UNIX Command Input dialog box, choose how the records of the input data set are
delivered to the UNIX command. Choose either:

Program reads from standard input or other file descriptor

The UNIX command reads its input from standard input, or from a file descriptor that you
specify.

Program reads from named file

In this case, you have two options:

• Pass filename on command line

Specify the Argument Name. Orchestrate adds the argument name and a file nam
the UNIX command in the form:

/arg_name <inputfile>

where arg_name is the value specified for Argument Name and <inputfile> is a
temporary variable. At run time, Orchestrate replaces <inputfile> with a UNIX
pipe name. UNIX commands do not differentiate between reading data over a n
pipe and reading data from an actual file.

• Pass filename in environment variable

Specify the Variable Name. Orchestrate creates the environment variable at run t
and initializes it to a UNIX pipe name. UNIX commands do not differentiate betw
reading data over a named pipe and reading data from an actual file.

See the section “Example: Passing File Names Using Environment Variables” on
13-26 for an example using environment variables.

9. Click the Output tab to define the export schema of the output data set.

The first time you select the Output tab, you see input Data set # 0 already defined, as the
default output data set.

10. Select Data set # 0.

11. Click the Edit button to edit Data set # 0.

12. Click the Details button to define the record schema. The Schema Editor window opens.

13. Use the Schema Editor to define the output record schema shown above.

14. Specify how the records of the input data set are delivered to the UNIX command. Choo
of these two:

Program writes to standard output or other file descriptor

The UNIX command writes its output to standard output, or to a file descriptor that
specify.

Program writes to named files

In this case, you have two options:

• Pass filename on command line

Visual Orchestrate User’s Guide13 – 22 Passing Arguments to and Configuring UNIX Commands

ime
een

 sec-
.

and
 to the
 com-
e fol-

NIX
rform
ts to the

he shell
atory,
Specify the Argument Name. Orchestrate adds the argument name and a file name to
the UNIX command in the form:

/arg_name <outputfile>

where arg_name is the value specified for Argument Name and <outputfile> is a
temporary variable. At run time, Orchestrate replaces <outputfile> with a UNIX
pipe name. UNIX commands do not differentiate between writing data over a named
pipe and writing data to an actual file.

• Pass filename in environment variable

Specify the Variable Name. Orchestrate creates the environment variable at run t
and initializes it to a UNIX pipe name. UNIX commands do not differentiate betw
writing data over a named pipe and writing data to an actual file.

For a description of passing environment variables to a UNIX command, see the
tion “Example: Passing File Names Using Environment Variables” on page 13-26

Passing Arguments to and Configuring UNIX Commands

This section describes how to define your UNIX command operator to call the UNIX comm
with a script for more flexibility in passing arguments, to define user-settable options to pass
UNIX command, to use environment variables to configure a UNIX command, and to handle
mand input and output files with configuration and other information. This section covers th
lowing topics:

• “Using a Shell Script to Call the UNIX Command” on page 13-22

• “Handling Message and Information Output Files” on page 13-24

• “Handling Configuration and Parameter Input Files” on page 13-25

• “Using Environment Variables to Configure UNIX Commands” on page 13-26

• “Example: Passing File Names Using Environment Variables” on page 13-26

• “Example: Defining User-Settable Options for a UNIX Command” on page 13-28

Using a Shell Script to Call the UNIX Command

You can define the operator so that it calls a UNIX shell script instead of directly calling the U
command or application. Using a script this way is useful when your operator must pe
processing on options passed to the operator, before it can pass those options as argumen
UNIX command.

Orchestrate calls the shell script, passing it the dynamic options set by the operator user. T
script parses the options and configures the UNIX command accordingly. While not mand
using a shell script is a convenient way to handle parameter parsing in Orchestrate.

Creating UNIX Operators 13 – 23Visual Orchestrate User’s Guide

ation

mand

r shell

 those
ation
l script
You can also use a shell script to pass configuration information to a particular instance of an
operator run in parallel. For information, see the sections “Handling Message and Inform
Output Files” on page 13-24.

For example, suppose you define a UNIX command operator and specify the following com
under the Command tab:

In your shell script, you can reference the arguments with shell variables of the form $1...$n. The
table below shows the values of the shell variables for the example above, as well as othe
variables you can use in your script.

For example, you could code your shell script so that when a user specifies -e on an SMP, the
script appends APT_PARTITION_NUMBER to the file name /data/my_dataFile, thus
generating a unique file name from each processing node.

Using the Here-Document Idiom in Shell Scripts
UNIX command operators that take user-specified options often call a shell script to process
options before invoking the UNIX command. For commands that read configuration inform
from a parameter file, the shell script can write any parameter values calculated by the shel
to a file, before calling the UNIX command.

One technique that you can use in a shell script to write information to a file is the here-document
idiom. Shown below is an excerpt from a shell script using this idiom:

cat > file_name <<EOF
.
.
.

EOF

Shell Variable Argument

$0 Wrapper file name
Example: my_shell_script

$1 First argument
Example: -a

$2 Second argument
Example: -c

$3 Third argument
Example: -e

$# Number of arguments passed to the script
Example: 4

$* All arguments as a single string

my_shell_script -a -c -e /data/my_data_file

Static portion Dynamic portion

Visual Orchestrate User’s Guide13 – 24 Passing Arguments to and Configuring UNIX Commands
In this example, cat writes everything after <<EOF to the file named file_name, until it
encounters an EOF on a line by itself. This procedure lets you calculate values from user-supplied
options in the shell script and write those values to the parameter file.

Handling Message and Information Output Files

UNIX commands can create output files containing messages (information and error log files) or
output summaries. For operator outputs that do not contain data, the command can write directly to
the files without using an Orchestrate data set. Suppose, for example, that you want to run a UNIX
command with the form:

unix_command options -e error_file

This command creates a file containing any error messages that the command generates.

When executing this command in parallel with a UNIX command operator, you can let the
command generate a file on each processing node, as shown in the following figure:

On an MPP, each processing node has its own disk storage. The UNIX command writes its output
files to the local disk storage on the processing node. Upon completion of the Orchestrate
application, you can examine the output files.

On an SMP, all processing nodes frequently share disk drives. You must assign unique names to
the output files, so that a file generated by one processing node does not overwrite a file generated
by another processing node.

You can define the UNIX operator to call a shell script to execute the UNIX command. You code
the shell script to create a unique file name for each error file. For example, the following shell
script executes unix_command on an SMP:

#!/bin/ksh
my_command options -e error_file.$APT_PARTITION_NUMBER

APT_PARTITION_NUMBER is an environment variable, set by Orchestrate, that contains the
partition number of the operator on each processing node. If an operator has three partitions (runs
on three processing nodes), Orchestrate sets APT_PARTITION_NUMBER to 0 on the first
processing node, 1 on the second, and 2 on the third processing node. Therefore, this shell script
would create three output files: error_file.0, error_file.1, and error_file.2.

UNIX operator Processing nodes ...

Output files

Creating UNIX Operators 13 – 25Visual Orchestrate User’s Guide

more

eter
ator’s
 your

.

ith its
 same

e disk
access

 page
ssing
By using APT_PARTITION_NUMBER, you guarantee that each instance of the UNIX command
operator on an SMP creates an error file with a unique name. When the operator runs again, it will
overwrite all the error files.

Note that you must create a shell script to run the command shown above. You cannot use the
Command tab in the Custom Operator dialog box to enter and run the command, because
Orchestrate evaluates the command in the Command tab at the time you invoke your application.
At invocation time, APT_PARTITION_NUMBER evaluates to the number of the processing node
that invokes the application; therefore, each processing node executing the command would use the
same value for APT_PARTITION_NUMBER.

A shell script, by contrast, is executed only when the operator runs on each processing node, so that
APT_PARTITION_NUMBER evaluates to the number of the processing node executing the shell
script.

See the section “Using a Shell Script to Call the UNIX Command” on page 13-22 for
information.

Handling Configuration and Parameter Input Files

Many UNIX commands and applications take input files that contain configuration or param
information. You then modify the input file instead of editing the operator to change the oper
action. This section describes how to use files as input to the UNIX command called by
operator.

For example, the following command line, specified in the Command tab of the Custom Opera-
tor dialog box, uses a parameter file:

unix_command options -p p_file

In this example, the command reads the parameter file p_file to determine the command’s action

On an MPP, each instance of a parallel operator executes on a different processing node, w
own disk storage. You must make sure that there is a copy of the parameter file in the
directory on each processing node executing the operator.

On an SMP, all processing nodes, corresponding to the CPUs in the system, frequently shar
storage. You need only one copy of the file, as all instances of the operator on the SMP will
the same file.

You can also use the environment variable APT_PARTITION_NUMBER and a shell script to exe-
cute the UNIX command, as described in the section “Handling Command Exit Codes” on
13-35. Using a shell script enables you create a different configuration file for each proce
node. For example, you could invoke the command in the following shell script:

#!/bin/ksh
unix_command options -p p_file.$APT_PARTITION_NUMBER

Visual Orchestrate User’s Guide13 – 26 Passing Arguments to and Configuring UNIX Commands

 that

et con-
g envi-

 way,

name.
rator,

 oper-

ains the
 of an

name.
g data
This shell script causes the command to look for a parameter file named p_file.0 on the first
processing node, p_file.1 on the second processing node, and so forth.

Using Environment Variables to Configure UNIX Commands

One common way to configure a UNIX command is to use environment variables. Environment
variables can define the location of system resources or hold configuration options for a command.
For a UNIX command to access an environment variable, the variable must be set in the UNIX
shell that invokes the command.

To run a command from a UNIX command operator, Orchestrate first creates a UNIX shell using
the login name of the user invoking the application. The shell contains environment variables
defined by the user’s execution environment.

In addition, in defining your UNIX command operator, you can create environment variables
hold the following:

• File names used as inputs to or outputs from a command.

You create these environment variables when you configure the input and output data s
nections used by the operator. The example below describes how to pass file names usin
ronment variables.

• Configuration settings for the command.

The Exit & Environment tab area of the Custom Operator dialog box lets you define envi-
ronment variables that Orchestrate will set before it invokes your UNIX command. In this
you can pass information to the command.

Example: Passing File Names Using Environment Variables

Many UNIX commands access an environment variables to determine an input or output file
In addition to letting you handle command-line arguments to a UNIX command in your ope
Orchestrate lets you define your UNIX command operator to handle environment variables.

Suppose, for example, that you want to run the following command using a UNIX command
ator:

filter args

This command filters its input based on the arguments passed to it. The command also obt
name of an input file by the value of the environment variable FILTER_INPUT, and the name
output file from the environment variable FILTER_OUTPUT.

Orchestrate creates the environment variable at run time and initializes it to a UNIX pipe
UNIX commands do not differentiate between reading data from a named pipe and readin
from an actual file.

Creating UNIX Operators 13 – 27Visual Orchestrate User’s Guide
To define the environment variables for this example, do the following:

1. Choose the Input tab of the Custom Operator dialog box to configure the operator input.

2. Select Data set # 0.

3. Press the Edit button to edit Data set # 0. This opens the UNIX Command Input dialog box.

4. In the UNIX Command Input dialog box, choose how the records of the input data set are
delivered to the UNIX command. Select the following:

Program reads from named file

5. Choose how the file name is passed to the UNIX command. For this example, select the fol-
lowing:

Pass filename in environment variable

6. Specify the Variable Name: FILTER_INPUT.

Orchestrate creates the environment variable at run time and initializes it to a UNIX pipe
name.

7. Click the Output tab to define the export schema of the output data set.

8. Select Data set # 0.

9. Click the Edit button to edit Data set # 0.

10. Choose how the record of the input data set are delivered to the UNIX command. Choose:

Program writes to named files

11. Specify how the file name is passed to the UNIX command. For this example, select the fol-
lowing:

Pass filename in environment variable

12. Specify the Variable Name: FILTER_OUTPUT.

Orchestrate creates the environment variable at run time and initializes it to a UNIX pipe
name.

Example: Defining an Environment Variable for a UNIX Command

In this example, a UNIX operator executes a UNIX command that uses the environment variable
MY_ENV_VAR to determine the location of its parameter file. To configure the UNIX command
operator to set that environment variable, perform the following steps:

Visual Orchestrate User’s Guide13 – 28 Passing Arguments to and Configuring UNIX Commands

t” on
 with a

perator
sed to
ype of
1. In the Custom Operator dialog box, select the Exit & Environment tab, shown below:

2. Under Environment for Invocations of this Command, enter the following information:

Name: MY_ENV_VAR

Value: /home/my_dir/myconfig

3. Click the Add button.

This environment variable will be set in the UNIX shell when Orchestrate executes the operator.

Example: Defining User-Settable Options for a UNIX Command

The my_sort example (in the section “Example: Operator Using Standard Input and Outpu
page 13-9) describes a UNIX command operator that always runs the SyncSort command
predefined command line. The user interface to this command operator is static, always sorting the
input file using the same sorting key and always generating statistics about the sort.

Orchestrate also lets you define UNIX command operators with a dynamic interface, which allows
the operator user to specify options when using the operator in a step. Suppose, that the o
user needs to perform multiple sorting operations, in which the sorts differ by the key fields u
perform the sort. Rather than creating a different, static UNIX command operator for each t

Creating UNIX Operators 13 – 29Visual Orchestrate User’s Guide

 for
erator
sort operation, you can create a single, dynamic sort operator that allows the user to pass
configuration options to the operator.

To create a dynamic command operator, you define at least part of the UNIX command as dynamic.
For example, in the Command tab you could specify the following as the static portion of the
sample UNIX command above:

syncsort /fields age 1 integer 1 /fields state 12 char 2

The static portion of this command defines the data format of the sorted data, but does not specify
the sorting keys or statistics option. The dynamic portion of the command lets the user optionally
specify the /key and /statistics options. The operator user can specify one, both, or neither
option to the operator each time the operator is invoked in a step.

This example describes how to create a command operator that lets the operator user set two
options. It also describes how the operator user sets the options, and the results of setting the
options.

Adding Options to an Operator
To create a sort operator that takes user-settable options, perform the following steps:

1. Create the my_sort operator as described in the section “Example: Operator Using Files
Input and Output” on page 13-13. However, instead of the command line used in that op
definition, enter the following command line in the Command tab:

syncsort /fields age 1 integer 1 /fields state 12 char 2

Note that this command line contains no specification for /keys or /statistics.

Visual Orchestrate User’s Guide13 – 30 Passing Arguments to and Configuring UNIX Commands
2. To create user-settable options for the operator, first choose the Options tab of the Custom
Operator dialog box:

3. Press the Add button to open the Custom Operator Option Editor dialog box:

4. Specify the Option Name.

This is the name of the option that the operator user selects in the Option Editor dialog box.

5. Select the Option Type.

This is the data type of any value specified to the option. Available data types are Boolean,
Integer, Float, String, and Pathname. For details on the operator user interface to options of
each type, see the section “How the Operator User Sets Options” on page 13-31.

6. Set the Option Name to keys.

Creating UNIX Operators 13 – 31Visual Orchestrate User’s Guide

ecifies

, as

serts the
n the

ptions.
Note that Orchestrate sets the default Argument Name to -keys.

7. Set the Option Type to String.

You let the user specify a string as the option’s value, because the /keys argument takes a
string specifying one or more sorting keys, separated by commas.

8. Set the Argument Name to /keys.

9. Click OK to close the Custom Operator Option Editor.

10. Click Add to add the stats option.

11. Set the Option Name to stats.

12. Set the Option Type to Boolean.

A flag argument means that the option takes no additional value from the user.

13. Set the Argument Name to /statistics.

14. Click OK.

15. Click the Command tab to view the command. Note that the Sample Command Line shows
both arguments. These arguments will be included in the command only if the user sp
them when using the operator in a step.

Also note that the options appear in the Command Line Argument Order list. You can use
the Up and Down buttons to change the order of the arguments to the UNIX command
reflected in the Sample Command Line area.

16. Press Create to create the operator.

An operator user inserting this operator into a step can now specify the key option to set the sorting
keys and the stats option to enable statistic generation.

How the Operator User Sets Options
To access the user-settable options on this sample command operator, the operator user in
operator into the application. Then, the operator user double clicks the operator to ope
Operator Properties dialog box. The user presses the Add button to open the Option Editor
dialog box. From the list in that dialog box, the user selects and sets one or more operator o

Visual Orchestrate User’s Guide13 – 32 Passing Arguments to and Configuring UNIX Commands
Shown below are the Operator Properties dialog box, and the Option Editor dialog box after
each option (keys and stats) has been selected:

For the key option in this example, the operator can specify one or more sorting keys, separated by
commas. For the stats option, simply specifying stats enables the option.

Below are detailed descriptions of the operator user interface for options of each supported type.

Setting Boolean Options
Options with the type Boolean do not take a value. Specifying the option name is all that is
required. For example, the SyncSort /statistics option does not require a value; simply speci-
fying the option enables the generation of sorting statistics.

Creating UNIX Operators 13 – 33Visual Orchestrate User’s Guide
An option using Boolean has the following dialog box in the Option Editor:

Setting Integer Options
The option takes a single integer value. Integer options have the following dialog box in the
Option Editor:

Setting Float Options
Float options have the same dialog box as Integer, described above.

Visual Orchestrate User’s Guide13 – 34 Passing Arguments to and Configuring UNIX Commands

page
o set

tion of

r

Setting String Options
An option using String has the following dialog box in the Option Editor:

Setting Pathname Options
Pathname arguments have the following dialog box in the Option Editor:

The default value of Path is the current working directory (set in the Paths tab of the Program
Properties dialog box, as described in the section “Setting Program Directory Paths” on
2-13). Pressing Browse opens the Visual Orchestrate file browser to allow the operator user t
the Paths value.

Results of Setting Options
If the operator user sets no option, the UNIX command operator executes only the static por
the command line:

syncsort /fields age 1 integer 1 /fields state 12 char 2
/infile source /outfile dest

However, the operator user can also set the keys option to the value age. In this case, the operato
executes the command line:

Creating UNIX Operators 13 – 35Visual Orchestrate User’s Guide
syncsort /fields age 1 integer 1 /fields state 12 char 2
/keys age
/infile source /outfile dest

A user specifying the stats option and the key option with a value of age would invoke the com-
mand line:

syncsort /fields age 1 integer 1 /fields state 12 char 2
/keys age /statistics
/infile source /outfile dest

Handling Command Exit Codes

All UNIX commands return an exit code indicating the success, failure, or other result of the com-
mand. Orchestrate interprets the exit code when it executes a UNIX command operator, to deter-
mine whether the command has executed successfully. You can control how Orchestrate interprets
exit codes.

Note: If, for any reason, the UNIX command returns an exit code that Orchestrate interprets as a
failure, the operator fails. When any operator in a step fails, Orchestrate terminates the entire step.

When you create a UNIX command operator, you use the Exit & Environment tab in the Custom
Operator dialog box to define how Orchestrate interprets exit codes. This tab is shown below:

Visual Orchestrate User’s Guide13 – 36 How Orchestrate Optimizes Command Operators

odes

odes
 to

ault a
owing

mand,
le, on a

ator.
By default, Orchestrate interprets an exit code of 0 as a success and all other exit codes as a failure.

In the Command Exit Code Handling area you can set the following options:

• Exit codes default successful: Causes all exit codes to be treated as success, except c
explicitly designated as errors using Failure Codes. Ignores any settings defined by Success
Codes.

• Success Codes: Specifies exit codes defining successful execution of the command; all c
that you have not specified as Success Codes are considered errors. Configures Orchestrate
ignore any settings defined by Failure Codes.

You can specify either Success Codes or Exit codes default successful, but not both. Some com-
mon specifications are:

• Success Codes = 0 and 1: Exit codes 0 and 1 indicate success; all others are errors.

• Exit codes default successful selected: All exit codes indicate success.

• Exit codes default successful selected and Failure Codes = 1: All exit codes other than 1
indicate success; exit code 1 indicates an error.

How Orchestrate Optimizes Command Operators

As described in the section “Execution of a UNIX Command Operator” on page 13-5, by def
UNIX command operator consists of the three parts shown on the right-hand side of the foll
figure:

When executing the operator, Orchestrate creates one UNIX process each for the export, com
and import parts of the operator on each processing node executing the operator. For examp
four node system, Orchestrate creates 12 UNIX processes for the four instances of the oper

UNIX operator

 export

import

UNIX command

Creating UNIX Operators 13 – 37Visual Orchestrate User’s Guide

mand

on the
ree of

 same

hema,
t of the
ple, if
export
 import
This section describes how Orchestrate can optimize your UNIX command operator. In many of
these optimizations, Orchestrate skips either the export or the import process.

This section covers the following topics:

• “Cascading UNIX Command Operators” on page 13-37

• “Using Files as Inputs to UNIX Command Operators” on page 13-38

• “Using FileSets as Command Operator Inputs and Outputs” on page 13-39

• “Using Partial Record Schemas” on page 13-39

Cascading UNIX Command Operators

In creating an Orchestrate step, you can cascade (connect in succession) UNIX com
operators, as shown below:

By default, Orchestrate performs an import on the output of the first operator and an export
input of the second. However, Orchestrate eliminates both the import and the export, if all th
the following conditions are met:

• Both operators have the same execution mode (parallel or sequential).

• Both operators have the same constraints.

• The output port of the first operator and the input port of the second operator use the
record schema.

The last condition is the most important. If the two ports do not have the same record sc
Orchestrate must perform the export and the import operations in order to convert the outpu
first operator to the record format required by the UNIX command of the second. For exam
the first operator specifies an ASCII text mode representation of the imported data, but the
of the second operator specifies a binary representation, Orchestrate must perform both the
and the export.

UNIX operator

UNIX operator

May be bypassed

import

export

Visual Orchestrate User’s Guide13 – 38 How Orchestrate Optimizes Command Operators
Using Files as Inputs to UNIX Command Operators

Orchestrate lets you specify a UNIX file instead of a data set, as an input to any operator.
Orchestrate automatically performs an import to convert the input file to an Orchestrate data set.
Shown below is an example of this import operation:

The left side of this figure shows the step as defined by the user. The right side shows the step as
executed by Orchestrate, as it automatically performs the import required to read the UNIX data
files.

However, when the operator is a UNIX command operator, the first action of the operator on input
is to export the input data set to convert it to the file format required by the UNIX command, as
shown below:

In the case shown above, Orchestrate can bypass the import and export, to connect the input file
directly to the UNIX command.

copy

Step

user.dat

copy

Step

import

Step as written Step as executed by Orchestrate

user.dat

UNIX operator

Step

user.dat Step

import

Step as executed by Orchestrate, by defaultStep as written

export

UNIX operator

export

May be bypassed

user.dat

Creating UNIX Operators 13 – 39Visual Orchestrate User’s Guide

t, or
, not
ntain a
 fileset

 the

dreds.
sorting
xport
your
If an input file has the same record schema as the operator input interface, then the UNIX command
operator directly reads the file. If the operator executes in parallel on an SMP, each instance of the
operator directly reads the file, in parallel.

Using FileSets as Command Operator Inputs and Outputs

The previous section described how Orchestrate optimizes a UNIX command operator when you
specify a file as the operator’s input or output. You can also specify a fileset as an operator’s input
or output. A fileset is an ASCII text file that contains either a list of UNIX source files for inpu
a list of destination files for output. The files referenced by a fileset are UNIX data files
Orchestrate data sets. The fileset must contain one file name per line and can optionally co
record schema defining the layout of the data in the data files. All data files referenced by the
must have the same layout.

You can use the Orchestrate operator export to create a fileset, as described in the chapter on
export operator in the Orchestrate User’s Guide: Operators. Or if you wish, you can create a
fileset using a text editor outside the Orchestrate environment.

Orchestrate optimizes the data access of filesets by parallel UNIX command operators in much the
same way that it optimizes for individual files. If, on input, the fileset has the same record schema
as the input port of the operator, Orchestrate bypasses the export operation and connects the fileset
directly to the UNIX command. If, on output, the fileset has the same record schema as defined for
the output port of the operator, Orchestrate bypasses the import and writes the data directly to the
fileset.

Using Partial Record Schemas

When importing data using an Orchestrate partial record schema, you define only the fields of
interest in your data. Your records may contain many individual fields — perhaps even hun
However, to process the records, your application may access only a few fields to use as
keys, partitioning keys, or input fields to Orchestrate operators. You can simplify the import/e
procedure by providing only enough schema information to identify the fields required by
application. See the chapters on the import and export operators in the Orchestrate User’s
Guide: Operators for a complete description of partial record schemas.

Shown below is a sample record schema with field information for only two fields:

The following record schema defines the two fields of this record:

record { intact=rName, record_length=82, record_delim_string=’\r\n’ }
(name: string[20] { position=12, delim=none };

Record after import, as stored in a data set

name:string[20] income:dfloat

Visual Orchestrate User’s Guide13 – 40 How Orchestrate Optimizes Command Operators
income:dfloat { position=40, delim=’,’, text };
)

One advantage of using a partial record schema is that the import operator does not perform a
conversion on the data. Therefore, the intact portion of the record contains data in its original
format.

Shown below is an example application containing an import operator followed by a UNIX
command operator:

If the data set created by the import operator contains a partial record schema, Orchestrate can omit
the export of the UNIX command operator, because the input data set contains data in the original
format. The following figure shows the application, in this case:

Step

import

UNIX operator

export

May be bypassed

UNIX operator

Step

I – 1
Visual Orchestrate User’s Guide

Index
A
accessors 4-17
aggregate data types

subrecord 3-6
tagged 3-6

aggregate fields
in input data sets 5-7

applications
components of 1-4
creating 2-1
deploying 2-2, 2-6
display-intensive 6-8
multiple-step 6-4
performance

effect of output display 6-8
running 2-7
single-step 6-3
steps in 6-4
validating 2-6

APT_Collector class 9-3
APT_CONFIG_FILE 1-14
APT_Date class 12-21
APT_Decimal class 12-23
APT_ERROR_CONFIGURATION 11-4
APT_Partitioner class 8-4
APT_RawField class 12-25
APT_StringField class 12-24
APT_Time class 12-21
APT_TimeStamp class 12-21
APT_WRITE_DS_VERSION 4-33
arcs

performance monitor display of 7-4

B
branching

in steps 6-3

C
cluster/MPP systems

See MPP systems

collecting 9-1
defined 9-2
method 9-1

any 9-3
ordered 9-3
other 9-3
round robin 9-3
sorted merge 9-3

operators and 9-2
preserve-partitioning flag and 9-2

collection method 9-1
any 9-3

example of use 9-5
ordered 9-3
other 9-3
round robin 9-3
sorted merge 9-3

example of use 9-6
collectors

defined 9-1
See also collecting

components of Orchestrate application 1-4
configuration file

disk pools and 10-4
node allocation and 1-3, 10-2
node definitions and 10-5
node pools and 10-2

Constraint Editor dialog box 10-6, 10-8
constraints

applying 1-10, 10-1
combining node and resource 10-8
data sets and 10-9
logical nodes and 10-2, 10-4, 10-5
MPP systems 10-2
node definitions and 10-5
node maps and 10-1
node pools and 10-1
operators and 10-1
Orchestrate configuration file and 10-5
resource pools and 10-1

Visual Orchestrate User’s Guide
I – 2

Index
SMP systems 10-4
creating operators 12-1
Custom Operator dialog box 12-5, 13-10
custom operators

action of 12-3
arguments to 12-2
C++ compiler for 12-4
characteristics 12-2
coding

data types and 12-20
examples 12-32, 12-34
for multiple inputs 12-32

creating 12-7
date fields and 12-21
decimal fields and

example 12-23
defined 12-1
example 12-15, 12-16, 12-17, 12-21
execution mode 12-2
execution of 12-8, 12-31
flow-control macros 12-27
functions

[index] 12-26
_clearnull() 12-26
_null() 12-26
_setnull() 12-26
fieldname_clearnull() 12-26
fieldname_null() 12-26
fieldname_setnull() 12-26
setVectorLength() 12-26
vectorLength() 12-26

I/O macros 12-28
examples 12-28

included header files 12-4
informational macros 12-27
input and output interfaces

defining 12-9
input data sets and 12-4
input interface 12-6
input interface schema 12-8
input ports

indexing 12-9
naming 12-9

inputs
auto read 12-9, 12-32, 12-34
noauto read 12-34

interface schema and 12-10, 12-13
input 12-10, 12-13

nullable fields 12-25
output 12-10, 12-13
vector fields 12-26

interface schemas
null fields in 12-25

introduction to 1-10
macros 12-27

discardRecord() 12-28
discardTransfer() 12-28
doTransfer() 12-29
doTransfersFrom() 12-29
doTransfersTo() 12-29
endLoop() 12-27
failStep() 12-27
holdRecord() 12-28
inputDone() 12-28
inputs() 12-27
nextLoop() 12-27
outputs() 12-27
readRecord() 12-28
transferAndWriteRecord() 12-29
transfers() 12-27
writeRecord() 12-28

nullable fields and 12-25
numeric fields and 12-21
option definition 12-7
options for 12-17

data types of 12-19
defining 12-20

Orchestrate server administrator and 12-4
output data sets and 12-4
output interface 12-6
output interface schema 12-8
output ports

indexing 12-9
naming 12-9

outputs
auto write 12-9

partitioning method 12-2
Per-record code 12-6
Post-loop code 12-7
Pre-loop code 12-7
processing loop 12-3
raw fields and

example 12-25
reject output

example 12-30
saving 12-7

Index
I – 3

Visual Orchestrate User’s Guide
See also native operators
string fields and

example 12-24
time fields and 12-21
timestamp fields and 12-21
transfer macros 12-29

examples 12-30
transfers and 12-2, 12-16
user options for

data types of 12-19
user-settable options for 12-18
using 12-1
vector fields and 12-26

D
data flow 1-5

See data-flow models
data flows

performance monitor display of 7-4
Data Set Properties dialog box 4-8
Data Set Viewer 4-14

data sets and 4-14
using 4-14

data sets
as input to operators 5-10
as output from operators 5-10
configuring 4-8
constraints and 10-9

syntax 10-9
using 10-9

creating
orchadmin and 4-35

Data Set Properties dialog box 4-8
Data Set Viewer and 4-14
dialog box 4-8
disk pools and 10-9
export and 4-7
file naming 4-37
flat files 1-8
import and 4-7
introduction to 1-5
Link Properties dialog box and 4-11
multiple inputs and 4-4
multiple outputs and 4-4
operators and 4-3

data type compatibility 3-8, 5-17
Orchestrate version and 4-33
output

record schema 5-8
parallel representation 4-32

data files 4-32
descriptor file 4-32
segments 4-32

partitioning 1-2, 1-9, 4-7
disk pools and 10-10

performance monitor and 7-4
persistent

examples 4-6
record count 4-16
viewing 4-14

record fields
default value 4-27

record schema 1-6
representation of 4-32
segments and 4-32
storage format 4-33
structure of 4-1, 4-32
viewing 4-14
virtual

examples 4-5
data type conversions

data set fields and 3-8, 5-17
default 3-9

examples 3-10
modify and 3-9

examples 3-10
operators and 3-8, 5-17
record schemas and 3-8

data types
compatibility 5-17
conversion

errors 5-17
string and decimal fields 5-20
warnings 5-17

conversions 5-17
date 3-2
decimal 3-4
floating-point 3-5
integer 3-6
introduction to 3-1
nulls 3-2
raw 3-6
string 3-6
subrecord 3-6
tagged 3-6
time 3-6

Visual Orchestrate User’s Guide
I – 4

Index
timestamp 3-7
data-flow diagrams

See data-flow models
data-flow models

and steps 6-2
definition of 1-5
directed acyclic graph 6-2
partitioning and 8-5
UNIX command operators and 13-7

date 3-2
range 3-2

date data type
See data types

date
date fields 4-20

data type 4-20
schema definition of 4-20

DB2
DB2 partitioner 8-4
partitioning and 8-4

decimal 3-4
assignment to

strings and 3-5
precision

range 3-4
range 3-5
representation size 3-4
scale

range 3-4
sign nibble 3-4

values 3-4
strings and 3-5
valid representation 3-4
zero representation 3-4

decimal data type
See data types

decimal
decimal fields 4-21

data type 4-21
precision limit 4-21
range limit 4-21
schema definition of 4-21

default value
record fields 4-27

development environment 2-1
dialog box

Constraint Editor 10-6, 10-8
Custom Operator 12-5

UNIX Command 13-10
Data Set Properties 4-8
Data Set Viewer 4-14
Input Interface Editor 12-9
Link Properties 4-11, 8-14
Operator Properties 5-4, 6-14, 10-6
Option Editor 5-5
Output Interface Editor 12-9
Program Editor 10-6
Program Properties 2-4
Step Properties 6-6

directed acyclic graph
defined 6-2

disk pools 10-1, 10-4
assigning data sets to 10-9
constraining operators to 10-10
data set partitions and 10-10
data sets and 10-4

disks
allocating 10-5
constraints and 10-5
node definitions and 10-5

E
enumerated fields 5-13
environment variables

APT_CONFIG_FILE 1-14
APT_PARTITION_NUMBER 13-24
APT_WRITE_DS_VERSION 4-33
setting 6-10

error handling 5-18
error log 11-1
error messages

default components 11-4
display control

APT_ERROR_CONFIGURATION
and 11-4

default display 11-4
keywords 11-4

example 11-4
keywords

errorIndex 11-2
ipaddr 11-3
jobid 11-2
lengthprefix 11-3
message 11-3
moduleId 11-2
nodename 11-3

Index
I – 5

Visual Orchestrate User’s Guide
nodeplayer 11-3
opid 11-3
severity 11-2
timestamp 11-2
vseverity 11-2

subprocesses and
default display 11-3

errors
error log 11-1
reporting 11-1

Excel
performance monitor spreadsheet and 7-8

execution mode
See operators

execution mode
Execution Window

message headers and 2-10
text wrap and 2-10

export 4-7

F
field accessors 4-17
field adapters

schema variables and 5-13
fields

and schema variables 5-13
enumerated 5-13
fixed-length 4-1
See record fields
variable-length 4-1

fixed-length field 4-1
fixed-length records 4-1
flat files 1-8
floating-point data type

See data types
floating-point

floating-point fields
schema definition 4-21

G
get_orchserver_variable 6-13
grids

performance monitor display 7-7
group operator

and partitioning 8-7

H
hash partitioner

characteristics 8-9
key field distribution 8-10
using 8-9

hash partitioning 8-9
header files

for custom operators 12-4
here-document idiom

UNIX command operators and 13-23

I
import 4-7
import/export utility 4-7
Input Interface Editor dialog box 12-9
integer data type

See data types
integer

integer fields
record schema 4-21

J
job-manager 2-7

examples 2-7, 2-8
syntax 2-7

abandon 2-8
errors 2-9
kill 2-8, 2-9
run 2-8

L
link numbers

enabling 2-9
Link Properties

Adapters tab 4-10
Advanced tab 4-10
dialog box 4-10
Schema tab 4-10

Link Properties dialog box 4-11, 8-14
links 4-10

configuring 4-10
persistent data sets and 4-10

Lock Manager 2-15
locking objects 2-15
locks

clearing 2-15
in Visual Orchestrate 2-15

logical nodes 10-2, 10-4
configuring 10-5

Visual Orchestrate User’s Guide
I – 6

Index
M
massively parallel processing 1-3
memory

setting in Visual Orchestrate 6-9
messages

error 11-1
error log 11-1
Orchestrate format 11-2
warning 5-18, 11-1

modify operator
conversions with 5-18
data type conversions and 3-10
preventing errors with 5-18
suppressing warning messages with 5-18

movie files
performance monitor and 7-10

MPP systems
constraints and 10-2
performance and 1-3
UNIX command operators and 13-24

N
naming

fields 4-19
native operators

defined 12-1
See also custom operators

node definitions 10-5
node maps 10-1, 10-8

constraining operators to 10-8
default 10-8
example 10-8
operators and 10-1
using 10-8

node names 10-5
node pool constraints 10-6

data sets and 10-6
operators and 10-6
syntax 10-6
using 10-6

node pools 10-1, 10-2, 10-5
default operator usage 10-1

normalized table
data sets and 4-2

nullability 4-3
introduction to 3-2
See nulls
Vectors and 4-24

nullable fields
introduction to 3-2

nulls 3-2, 4-3
data types and 3-2
default value of 4-27
defined 4-19
handling 4-19
representation of 4-19
vectors and 4-19

O
operator interface schema 5-6

data set compatibility 3-8, 5-7, 5-17
aggregate fields 5-21
date fields 5-20
decimal fields 5-19
nulls and 5-21
string and numeric fields 5-18
time fields 5-20
timestamp fields 5-20
vector fields 5-21

data type conversion 3-8
matching to input data sets 3-8, 5-17
output data sets and 5-8
schema variables 5-11

Operator Properties dialog box 6-14, 10-6
operators

and output data sets 5-8
collecting and 9-1
configuring 5-3

Operator Properties dialog box and 5-4
Option Editor 5-5

constraining 10-1
constraints

node maps and 10-8
node pools and 10-6

creating 13-1
custom operators and 12-1
See custom operators

creating steps from 6-2
data sets with 4-3, 5-2
data type conversions 3-8
disk pools

constraining to 4-36, 10-6, 10-7
dynamic interface schema

example 5-15
input schema 5-15
output schema 5-15

Index
I – 7

Visual Orchestrate User’s Guide
setting interface schema 5-15
using 5-15

errors and 11-1
execution mode 1-10

controlling 5-2
parallel 5-2
sequential 5-2

input data sets with 5-7
inputs 5-1
interface schema 5-6

defined 5-6
introduction to 1-10
multiple inputs and outputs 5-1
node maps 10-1

constraining to 10-8
node pools 10-1

constraining to 4-36, 10-6
default usage of 10-1

nulls fields and 5-21
Operator Properties dialog box 5-4
Option Editor 5-5
output data sets and 5-8
outputs 5-1
parallel execution of 1-9
partitioning

preserve-partitioning flag and 8-11
partitioning and 8-1
performance monitor and 1-13
prebuilt 1-10
preserve-partitioning flag and 8-11
resource pools

constraining to 4-36, 10-6, 10-7
resources

constraining to 4-36, 10-6, 10-7
schema variables and 5-11
UNIX command operators 13-1

creating 13-1
vector fields and 5-21

Option Editor 5-5
Orchestrate

configuration file
default 2-12
validating 2-14

data types 3-1
date 3-2
decimal 3-4
floating-point 3-5
integer 3-6

raw 3-6
string 3-6
subrecord 3-6
tagged 3-6
time 3-6
timestamp 3-7

development environment 2-1
disk pools and 10-4

Orchestrate Analytics Library (optional)
and partitioning 8-8

Orchestrate application development
parallel execution mode 1-14
sequential execution mode 1-14

Orchestrate applications
creating 2-1
See also applications

Orchestrate classes
APT_Collector 9-3
APT_Date 12-21
APT_Decimal 12-23
APT_Partitioner 8-4
APT_RawField 12-25
APT_StringField 12-24
APT_Time 12-21
APT_TimeStamp 12-21

Orchestrate Installation and Administration
Manual 1-14

Orchestrate server administrator 2-2
orchview

invoking 7-4
See also performance monitor

osh
constraints and

combined node and resource 10-8
Visual Orchestrate and 2-15

Output Interface Editor dialog box 12-9

P
parallelism

partition 1-2
pipeline 1-2

partial record schema 4-18
partial record schemas

UNIX command operators and 13-39
partial schema definition 4-18
partition parallelism 1-2
partitioners

See partitioning

Visual Orchestrate User’s Guide
I – 8

Index
partitioning
data sets 1-2, 1-9, 4-7
fan-in 8-6
fan-out 8-6
method 8-1

DB2 8-4
entire 8-4, 8-5
examples 8-5
hash 8-4
modulus 8-4
other 8-4
random 8-4, 8-8
range 8-4
round robin 8-4, 8-7
same 8-4, 8-5
selecting 8-8

operators
keyed 8-9
keyless 8-9
selecting 8-8

operators and 8-1
parallel operators and 8-6
preserve-partitioning flag and 8-11
sequential operators and 8-6

partitioning method 8-1, 8-3
any 8-4
DB2 8-4
default 8-4
entire 8-4, 8-5
hash 8-4
modulus 8-4
other 8-4
random 8-4, 8-8
range 8-4
round robin 8-4
same 8-4, 8-5

partitioning operators
See partitioning

partitions
number of 8-8
See also partitioning
similar-size 8-3
size of 8-3, 8-8

performance
parallelization and 1-3

performance monitor 7-1
controls

display 7-7

data sets 7-4
display 7-4
grid size 7-4
persistent 7-4
virtual 7-4

display 7-7
controls 7-7
data sets in 7-7
grids in 7-7
operators in 7-6

display window 7-1
Edit menu 7-8
invoking 7-4
movie files and 7-10
operators

display 1-13
Options dialog box 7-5, 7-7
records

rate of transfer 7-8
volume of transfer 7-8

rotate 7-1, 7-5
sampling interval 7-4
spreadsheets and 7-8
statistics

data sets 7-7
operators 7-6
spreadsheet 7-8

using 7-1
zoom 7-1, 7-5

persistent data sets
collecting and 9-5
configuration file and 4-34
creating

orchadmin and 4-35
data files 4-34
descriptor file 4-34
dialog box 4-8
examples 4-6
file naming 4-37
introduction to 1-7
Link Properties dialog box and 4-11
operators and 5-2
representation of 4-32

pipe safety 13-4
pipeline parallelism 1-2
post scripts 6-12
pre scripts 6-12
prebuilt operators 1-10

Index
I – 9

Visual Orchestrate User’s Guide
preferences
setting 2-9

preserve-partitioning flag 8-11
collecting and 9-2
examples of use 8-11, 8-14
sequential operators and 8-13
setting and clearing 8-14
usage rules 8-13

Program Editor dialog box 10-6
Program Editor window 6-5
Program Properties

dialog box 2-4
Parameters tab 2-15
Server tab 2-5

psort operator
and partitioning 8-7

R
range partitioner 8-10

key field distribution 8-10
using 8-10

raw data type
See data types

raw
raw fields

aligned 4-21
schema definition 4-21

record count 4-16
record fields 1-6

date fields
schema definition 4-20

decimal fields
schema definition 4-21

default values 4-27
floating-point fields

schema definition 4-21
integer fields

schema definition 4-21
naming 4-19
raw fields

schema definition 4-21
string fields

schema definition 4-22
subrecord fields

schema definition 4-25
tagged aggregate fields

schema definition 4-26
time fields

schema definition 4-23
timestamp fields

schema definition 4-23
record schema 1-6

automatic creation of 4-17
date fields 4-20
decimal fields 4-21
defined 4-2
example 4-16
field identifier 4-3
floating-point fields 4-21
import of 4-17
importing 4-32
inheritance of 4-17
integer fields 4-21
matching with operators 3-8, 5-17
nullability 4-3
partial 4-18
raw fields 4-21
Schema Editor and 4-27

aggregate fields 4-30
creating 4-29
importing 4-32

schema variables and 5-11
string fields 4-3, 4-22

fixed length 4-22
length 4-3
variable length 4-22

subrecord fields 4-25
syntax 4-16
tagged aggregate fields 4-26
time fields 4-23
timestamp fields 4-23

record schema editing
Schema Editor and 4-30

record transfers 5-14
and schema variables 5-11

records 1-6
fixed-length 4-1
variable-length 4-1

resource pools 10-1, 10-5
resources 10-1
roundrobin operator 8-7
running an application 2-6
run-time errors 11-1

See also error messages
See also warning messages

Visual Orchestrate User’s Guide
I – 10

Index
S
sampling interval

performance monitor 7-4
scalability 1-3
schema definition

complete 4-18
partial

when to use 4-18
schema definition files 4-17
Schema Editor 4-27

aggregate fields and 4-30
creating schema with 4-29
dialog box 4-28
editing schema with 4-30
importing schema 4-32
new schema from existing schema 4-30
using 4-27

schema variables 5-11
field adapters and 5-13
output

record schema of 5-13
record schema of 5-12
transfer mechanism and 5-14

scratch disks 10-5
script generation 2-15
scripts

pre and post 6-12
sequential execution mode 1-14

virtual data sets and 6-11
server

automatic connection 2-12
connecting to 2-3
default 2-11
introduction to 2-2
variables 6-12

server variables 6-12
set_orchserver_variable 6-12
shared-nothing systems 1-3
shell scripts

steps and 6-12
SMP systems

constraints and 10-4
disk I/O and 1-3
performance and 1-3
scaling and 1-3
UNIX command operators and 13-24

sortmerge operator
example of use 9-6

spreadsheets
performance monitor 7-8

Step Properties dialog box 6-6
env properties 6-10
execution mode properties 6-10
paths properties

compiler path 2-13
conductor host 2-13
sort dir 2-13

post properties 6-12
pre properties 6-12
server properties 6-8

config 6-8
database 6-8

steps
branching in 6-3
check flag and 6-7
checking 6-7
configuring 6-6

Step Properties dialog box 6-6
creating 6-5
data-flow models of 6-2
defined 5-1
designing 6-1
errors and 11-1
executing 6-7
get_orchserver_variable and 6-13
introduction to 1-11
multiple-step applications 6-4
performance monitor and 7-1
running 6-7
set_orchserver_variable and 6-12
shell scripts and 6-12
single-step applications 6-3
Step Properties dialog box and 6-6

server properties 6-8
using operators to create 6-2
virtual data sets in 6-3

string data type
See data types

string
string fields

schema definition 4-22
subrecord data type

See data types
subrecord

subrecord fields
nested 4-25

Index
I – 11

Visual Orchestrate User’s Guide
referencing 4-25
schema definition 4-25

T
tagged aggregate fields

nullability of 4-27
referencing 4-26
schema definition 4-26

tagged data type
See data types

tagged
temporary file usage 2-13
time data type

See data types
time

time fields 4-23
data type 4-23
schema definition of 4-23

timestamp data type
See data types

timestamp
timestamp fields 4-23

data type 4-23
schema definition of 4-23

transfer mechanism 5-14
transfers 5-11

See record transfers

U
UNIX command operators 13-1

advantages of 13-1
argument order 13-11
characteristics of 13-2
checkpointing and 13-13
constraints and 13-13
creating 13-1

example 13-9, 13-10, 13-13, 13-28
data sets and

input 13-8
output 13-8
record schemas 13-8

environment variables and 13-26
example 13-26
using 13-26

example 13-9, 13-13, 13-28
execution mode 13-2, 13-5
execution model 13-5
exit codes and 13-11, 13-35

example 13-11
export and 13-5

controlling 13-6
default 13-6

filesets and 13-38
import and 13-5

controlling 13-6
default 13-6

input files and 13-13
example 13-13
MPP 13-25
SMP 13-25

inputs and 13-6, 13-7
data sets 13-8
default record schema 13-9

intact schemas and 13-39
optimizations of 13-36
options and 13-28

data types of 13-30
defining 13-28

output files and 13-13
APT_PARTITION_NUMBER 13-24
example 13-13
MPP 13-24
SMP 13-24
using 13-24

outputs and 13-6, 13-7
data sets 13-8
default record schema 13-9

parameter files and 13-6
partial record schemas and 13-39
pipe safety 13-4
record schemas and 13-6, 13-8

default 13-8
defining 13-8
example 13-19

scripts in 13-22
shell scripts and 13-22, 13-24

environment variables 13-24
example 13-24
here-document idiom 13-23
using 13-22

stdin
example 13-10
using 13-10

stdout
example 13-10
using 13-10

Visual Orchestrate User’s Guide
I – 12

Index
SyncSort
example 13-13

UNIX commands and 13-3
requirements for 13-4

UNIX shell commands
defined 13-3

user options and 13-28
data types of 13-30
defining 13-28
example 13-28

UNIX commands
characteristics of 13-3
UNIX command operators and 13-3

requirements for 13-4

V
variable-length field 4-1
variable-length records 4-1
vector fields

defining 4-24
in input data sets 5-7
operators and 5-21

vectors
data types and 4-24
introduction to 3-2
nullability of elements 4-24
nulls and 4-19
numbering elements 4-24
of subrecords 4-25
referencing elements 4-24

vendor icons
enabling 2-10

virtual data sets
examples 4-5
introduction to 1-7
Link Properties dialog box and 4-11
operators and 5-2
representation of 4-32
sequential execution mode and 6-11
steps and 6-3

Visual Orchestrate 2-2
automatic connection 2-12
configuration validation 2-14
configuring 2-4
connecting 2-3
connection timeout 2-12
creating applications 2-2
Data Set Viewer 4-14

data sets
dialog box 4-8

default configuration 2-12
default directory 2-12, 2-13
default library 2-12
default server 2-11
deploying applications 2-2
development environment 2-1
enabling

link numbers 2-9
vendor icons 2-10

introduction to 2-1
locking objects in 2-15
main window 2-2
osh and 2-15
osh script generation 2-15
preferences 2-9
program parameters 2-15
program properties 2-4
RDBMS configuration and 2-4
running an application 2-6
scripts 6-12
steps 6-4
text wrap and 2-10
user preferences and 2-9
validating applications 2-6

W
warning messages

default components 11-4
display control

APT_ERROR_CONFIGURATION
and 11-4

default display 11-4
keywords 11-4

example 11-4
keywords

errorIndex 11-2
ipaddr 11-3
jobid 11-2
lengthprefix 11-3
message 11-3
moduleId 11-2
nodename 11-3
nodeplayer 11-3
opid 11-3
severity 11-2
timestamp 11-2

Index
I – 13

Visual Orchestrate User’s Guide
vseverity 11-2
subprocesses and

default display 11-3
warnings

log 5-18
Orchestrate handling 5-18

X
X Windows

performance monitor and 7-1

	Table of Contents
	1: Introduction to Orchestrate
	Parallelism and Orchestrate Applications
	Introduction to Parallelism
	Pipeline Parallelism
	Partition Parallelism
	Parallel-Processing Environments: SMP and Cluster/MPP
	The Orchestrate Configuration File

	Orchestrate Application Components
	Data-Flow Modeling

	Orchestrate Data Sets
	The Orchestrate Schema
	Virtual and Persistent Data Sets
	Partitioning Data Sets

	Orchestrate Operators
	Operator Execution
	Prebuilt and Custom Operators

	Orchestrate Steps
	The Orchestrate Performance Monitor

	Creating Orchestrate Applications
	Orchestrate Installation and Administration

	2: Creating Applications with Visual Orchestrate
	The Orchestrate Development Environment
	Creating an Orchestrate Application
	Deploying the Application on Your UNIX System
	Deploying Your Application with job-manager
	Summary of Deployment Commands

	Setting User Preferences
	Setting Program Directory Paths
	Visual Orchestrate Utilities
	Checking an Orchestrate Configuration
	Using the Orchestrate Shell
	Generating an osh Script to Configure and Run a Program
	Using the Lock Manager

	3: Orchestrate Data Types
	Introduction to Orchestrate Data Types
	Vectors
	Support for Nullable Fields

	Orchestrate Data Types in Detail
	Date
	Decimal
	Floating-Point
	Integers
	Raw
	String
	Subrecord
	Tagged
	Time
	Timestamp

	Performing Data Type Conversions
	Rules for Orchestrate Data Type Conversions
	Summary of Orchestrate Data Type Conversions
	Example of Default Type Conversion
	Example of Type Conversion with modify
	Data Type Conversion Errors

	4: Orchestrate Data Sets
	Orchestrate Data Sets
	Data Set Structure
	Record Schemas
	Using Data Sets with Operators
	Using Virtual Data Sets
	Using Persistent Data Sets
	Importing Data into a Data Set
	Partitioning a Data Set
	Copying and Deleting Persistent Data Sets

	Using Visual Orchestrate with Data Sets
	Working with Persistent Data Sets
	Working with Virtual Data Sets
	Using the Data Set Viewer
	Obtaining the Record Count from a Persistent Data Set

	Defining a Record Schema
	Schema Definition Files
	Field Accessors
	How a Data Set Acquires Its Record Schema
	Using Complete or Partial Schema Definitions
	Naming Record Fields
	Defining Field Nullability
	Using Value Data Types in Schema Definitions
	Vectors and Aggregates in Schema Definitions
	Default Values for Fields in Output Data Sets
	Using the Visual Orchestrate Schema Editor

	Representation of Disk Data Sets
	Setting the Data Set Version Format
	Data Set Files

	5: Orchestrate Operators
	Operator Overview
	Operator Execution Modes
	Persistent Data Sets and Steps

	Using Visual Orchestrate with Operators
	Operator Interface Schemas
	Example of Input and Output Interface Schema
	Input Data Sets and Operators
	Output Data Sets and Operators
	Operator Interface Schema Summary
	Record Transfers and Schema Variables
	Flexibly Defined Interface Fields
	Using Operators with Data Sets That Have Partial Schemas

	Data Set and Operator Data Type Compatibility
	Data Type Conversion Errors and Warnings
	String and Numeric Data Type Compatibility
	Decimal Compatibility
	Date, Time, and Timestamp Compatibility
	Vector Data Type Compatibility
	Aggregate Field Compatibility
	Null Compatibility

	6: Orchestrate Steps
	Using Steps in Your Application
	The Flow of Data in a Step
	Designing a Single-Step Application
	Designing a Multiple-Step Application

	Working with Steps in Visual Orchestrate
	Creating Steps
	Executing a Step
	Setting Server Properties for a Step
	Setting Environment Variables
	Setting Step Execution Modes
	Using Pre and Post Scripts

	7: The Performance Monitor
	The Performance Monitor Window
	How the Performance Monitor Represents Your Program Steps
	Configuring the Performance Monitor

	Controlling the Performance Monitor Display
	General Display Control
	Operator Display Control
	Data Set Display Control
	Generating a Results Spreadsheet
	Creating Movie Files

	8: Partitioning in Orchestrate
	Partitioning Data Sets
	Partitioning and a Single-Input Operator
	Partitioning and a Multiple-Input Operator

	Partitioning Methods
	The Benefit of Similar-Size Partitions
	Partitioning Method Overview
	Partitioning Method Examples

	Using the Partitioning Operators
	Choosing a Partitioning Operator

	The Preserve-Partitioning Flag
	Example of the Preserve-Partitioning Flag’s Effect
	Preserve-Partitioning Flag with Sequential Operators
	Manipulating the Preserve-Partitioning Flag
	Example: Using the Preserve-Partitioning Flag

	9: Collectors in Orchestrate
	Sequential Operators and Collectors
	Sequential Operators and the Preserve-Partitioning Flag
	Collection Methods

	Choosing a Collection Method
	Setting a Collection Method
	Collection Operator and Sequential Operator with Any Method
	Collection Operator before Write to Persistent Data Set

	10: Constraints
	Using Constraints
	Controlling Where Your Code Executes on a Parallel System
	Controlling Where Your Data Is Stored

	Using Constraints with Operators and Steps
	Configuring Orchestrate Logical Nodes
	Using Node Pool Constraints
	Using Resource Constraints
	Combining Node and Resource Constraints
	Using Node Maps

	Data Set Constraints

	11: Run-Time Error and Warning Messages
	How Orchestrate Detects and Reports Errors
	Error and Warning Message Format
	Messages from Subprocesses

	Controlling the Format of Message Display

	12: Creating Custom Operators
	Custom Orchestrate Operators
	Kinds of Operators You Can Create
	How a Generated Operator Processes Data
	Configuring Orchestrate For Creating Operators

	Using Visual Orchestrate to Create an Operator
	How Your Code Is Executed

	Specifying Operator Input and Output Interfaces
	Adding and Editing Definitions of Input and Output Ports
	Reordering the Input Ports or Output Ports
	Deleting an Input or Output Port
	Specifying the Interface Schema
	Defining Transfers
	Referencing Operator Interface Fields in Operator Code

	Examples of Custom Operators
	Convention for Property Settings in Examples
	Example: Sum Operator
	Example: Sum Operator Using a Transfer
	Example: Operator That Recodes a Field
	Example: Adding a User-Settable Option to the Recoding Operator

	Using Orchestrate Data Types in Your Operator
	Using Numeric Fields
	Using Date, Time, and Timestamp Fields
	Using Decimal Fields
	Using String Fields
	Using Raw Fields
	Using Nullable Fields
	Using Vector Fields

	Using the Custom Operator Macros
	Informational Macros
	Flow-Control Macros
	Input and Output Macros
	Transfer Macros

	How Visual Orchestrate Executes Generated Code
	Designing Operators with Multiple Inputs
	Requirements for Coding for Multiple Inputs
	Strategies for Using Multiple Inputs and Outputs

	13: Creating UNIX Operators
	Introduction to UNIX Command Operators
	Characteristics of a UNIX Command Operator
	UNIX Shell Commands
	Execution of a UNIX Command Operator

	Handling Operator Inputs and Outputs
	Using Data Sets for Inputs and Outputs
	Example: Operator Using Standard Input and Output
	Example: Operator Using Files for Input and Output
	Example: Specifying Input and Output Record Schemas

	Passing Arguments to and Configuring UNIX Commands
	Using a Shell Script to Call the UNIX Command
	Handling Message and Information Output Files
	Handling Configuration and Parameter Input Files
	Using Environment Variables to Configure UNIX Commands
	Example: Passing File Names Using Environment Variables
	Example: Defining an Environment Variable for a UNIX Command
	Example: Defining User-Settable Options for a UNIX Command

	Handling Command Exit Codes
	How Orchestrate Optimizes Command Operators
	Cascading UNIX Command Operators
	Using Files as Inputs to UNIX Command Operators
	Using FileSets as Command Operator Inputs and Outputs
	Using Partial Record Schemas

