ORCHESTRATE

VISUAL ORCHESTRATE

USER'S GUIDE
FOR ORCHESTRATE VERSION 4.5

TORRENT SYSTEMS, INC.

ORCHESTRATE

VISUAL ORCHESTRATE

USER’S GUIDE
FOR ORCHESTRATE VERSION 4.5

This document, and the software described or referenced in it, are confidential and proprietary to
Torrent Systems, Inc. They are provided under, and are subject to, the terms and conditions of a
written license agreement between Torrent Systems and the licensee, and may not be transferred,
disclosed, or otherwise provided to third parties, unless otherwise permitted by that agreement.

No portion of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of Torrent Systems, Inc.

The specifications and other information contained in this document for some purposes may not be
complete, current, or correct, and are subject to change without notice. The reader should consult
Torrent Systems for more detailed and current information.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOC-
UMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY,
PERFORMANCE, OR SUITABILITY FOR USE OF PRODUCTS OR SOFTWARE
DESCRIBED HEREIN, SHALL BE DEEMED TO BE A WARRANTY BY TORRENT SYS
TEMS FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF TORRENT SYSTEMS
WHATSOEVER. TORRENT SYSTEMS MAKES NO WARRANTY OF ANY KIND OR WITH
REGARD TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF
TORRENT SYSTEMSHAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Torrent is aregistered trademark of Torrent Systems, Inc. Orchestrate and Orchestrate Hybrid Neu-
ral Network are trademarks of Torrent Systems, Inc.

AlX, DB2, SP2, Scalable POWERparallel Systems, and IBM are trademarks of IBM Corporation.
BYNET isaregistered trademark of Teradata Corporation.

INFORMIX isatrademark of Informix Software, Inc.

Linux is aregistered trademark of Linus Torvalds.

Oracle is aregistered trademark of Oracle Corporation.

Sun and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc.

Teradata is aregistered trademark of Teradata Corporation.

UNIX isaregistered trademark of the Open Group.

Windows and Windows NT are U.S. registered trademarks of Microsoft Corporation.

The"X" device is atrademark of X/Open Company Ltd. in the UK and other countries.

All other product and brand names are trademarks or registered trademarks of their respective com-
panies or organizations.

Copyright [0 2000 Torrent Systems, Inc. All rights reserved. All patents pending.

Torrent Systems, Inc.
Five Cambridge Center
Cambridge, MA 02142
617 354-8484

617 354-6767 FAX

For technical support, send e-mail to: tech-support@torrent.com. visorchug.4.511.00

Visual Orchestrate User’s Guide

Table of Contents

1. Introduction to Orchestrate

Parallelism and Orchestrate Applicationscooiiiiiiiiienneereeeneneenans 1-1
Introductionto Parallelismcoiiiiiiiiiiiiiiiiiiiiiieiiiinnnnnes 1-1
PipelineParallelismciiiiiiiiiiiieeeeteeerrssnsnsssssnsoscennncnns 1-2
PartitionParallelismciiuiiiiiiiiiiiiiiiiiiiiiiiiiiiecnninnnnnes 1-2
Parallel-Processing Environments: SMP and Cluster/MPP 1-3
The Orchestrate ConfigurationFileccoiiiiiiiiiiiiiiiiiiiinnns, 1-3

Orchestrate Application Componentscccevveeteressnsssssssscsscscnns 1-4
Data-FlowModelingcoviiiiiiireeieeeseeeececeneeerasessssssassssnnes 1-5

Orchestrate DataSetscciiiitiiieiiieneeeeecenesescsecccssenssssccanns 1-5
The OrchestrateSchemaciiiiiiiiiiiiiiiiiiieeiiiiineeetenennnss 1-6
Virtual and Persistent DataSetsccoviiiienenriiinneneneeencnnnnnss 1-7
PartitioningDataSetscceietiiiiiiinenerrterenennnssetcsenennnsnes 1-9

Orchestrate OPerators.cceeiieeeteressssssssssssessscsssssssssssscssans 1-9
Operator EXeCUtioncoieieeereeeriererrossssssssssssssssscessnsnnes 1-10
Prebuilt and Custom Operatorsccoeeeeieeertrrrrssssssssssnnsonnns 1-10

Orchestrate StePS v ovvviiieiieeeeeeteeereoeertossssssssssssssssssssssssssnns 1-11
The Orchestrate Performance Monitor............ccciiiiiiiiiiiennn. 1-13

Creating Orchestrate Applications..........ccotiiiiiiieiiiiiiinienennreeenns 1-14
Orchestrate Installation and Administrationccoiiiiiinnenes 1-14

2. Creating Applications with Visual Orchestrate

The Orchestrate Development Environmentcooeiiiieiiioessoscscsscacans 2-1
Creating an Orchestrate Application...........ccoiiiiiiiiiiiiiiiinnennneeenss 2-3
Deploying the Application on Your UNIX Systemceeiiiteiinneennneenns 2-6
Deploying Your Application withj ob- managercciviivviinennn. 2-7
Summary of DeploymentCommandscieieiiiiiiiineneeeccnennnss 2-8

Setting User Preferences.ocviiiirtriereetosssssssesessscesssssssssssssns 2-9

Visual Orchestrate User’s Guide Table of Contents

Setting Program DirectoryPathsccoiiiiiiiiiiiiiiiiiiiiinnnnenns 2-13
Visual Orchestrate Utilities.ccoiiiiiiiiiiiiiiiiiiiineiiieiennnnnnnes 2-14
Checking an Orchestrate Configurationcciiiiiiiiiiiinnnnnns 2-14
Using the OrchestrateShellccoeiiiiiiiiiiiiiiiiiieneennnnnns 2-15
Generating an osh Script to Configureand RunaProgram................ 2-15
Usingthe LockManageroooeveeeeeececeeeeereressssssssssssssncnnns 2-15

3. Orchestrate Data Types

Introduction to Orchestrate Data Types.cccviiieeerreiernnenenrsecnnnnns 3-1
=T] 3-2
Support for Nullable Fieldscciitetiiiiiiiiiiiirnneerneecnnnnenes 3-2

Orchestrate Data TypesinDetailccoiiiiiiiiiiiiiiierenrencessncnnnns 3-2
D - 3-2
Decimaliiiniiiiiiiiiiiietiiietetenesrtesssesnnsssscsssesnsssanns 34
Floating-Pointciiiiiiiiiiiiiiiieneerreresesenessscsssesnnassans 3-5
INtEGErS . .ieertuieeeesoneesesoneeoasssosssssssssssssansssasssnsssssssns 3-6
5 3-6
13 €T T 3-6
11T 0 =Y o T« 3-6
L T T =T 3-6
11 = 3-6
TimMeStamP ..oiiiiiiiieerrororossscsnssssssoseessssssssssssssssssssssas 3-7

Performing Data Type CONVersioNS.ccoeeeeeeieieneseeeccsesenssccacanenns 3-8
Rules for Orchestrate Data Type Conversionscccceeeeineeeeensn 3-8
Summary of Orchestrate Data Type COnversionsc.ccceeeeieeeennness 3-9
Example of Default Type Conversionccvviiieeereicnenennnnnes 3-10
Example of Type Conversionwithmodi fyccvviiiiiiiiiiiiieeinannn. 3-10
Data Type Conversion Errorsccoviiiiiiiiiiiieiiiiieeeeecenennnnens 3-11

4. Orchestrate Data Sets

Orchestrate Data Setscvvuieiieerereeeeeeeceeecococsocsocacaasscsacannns 4-1
DataSet StructUre....ccoviiiiiiieeecececesecesocosososssosososssosacasnns 4-1
Record Schemasccevieieeeeeeeeeeeeseocscasscosscasscasscasccsnces 4-2

Using Data Sets with Operatorscccoeveeeieeeeecerereeerrosnsssnnns 4-3

Table of Contents Visual Orchestrate User’s Guide

Using Virtual DataSetsccieettiiiiiiienererecnnennnsseecssnennnss 4-4
Using Persistent DataSetsccoiiiieieiiiiiniennrrecesenensseccnns 4-6
ImportingDataintoaDataSetcoeetiiiiiinenrreienenennsrecnnnns 4-7
PartitioningaDataSetcccviiiiiiiieeerirerrssssssssssssoscensncnns 4-7
Copying and Deleting PersistentDataSets.......ccoeverireeereececcncncens 4-7
Using Visual Orchestrate with Data Setsccvvveeiieieceiecererenenreennnss 4-7
Working with PersistentDataSetscciiiieeriiiiiinennnrecnnnnnes 4-8
Working with Virtual DataSetscoetiiiiiiiieerrieeeneeennsencnns 4-12
Usingthe DataSetViewercccoviiiiiiieeriiennnennserescnsnnnnnes 4-14
Obtaining the Record Count from a Persistent DataSet 4-16
Defininga Record Schema ...coiviiiiiiiieresseeeeeereserrssssssssssnnnnnnns 4-16
Schema Definition Files........coiiiiiiiiiiiiiiiiiiiiieiiiiinierecennnss 4-17
Field ACCESSOKS .o viiiirttieiiiiieieeeeeennnneneeesecssnsnssssccsennnns 4-17
How a Data Set AcquiresItsRecordSchemacciiiiiinnnnnnns 4-17
Using Complete or Partial Schema Definitionsccoievvinaenn. 4-18
Naming RecordFieldsccoiiiiiiiiniiiiiiiiiineiireeennnnnnnnnes 4-19
Defining Field Nullabilitycccoiiiiiiiiiiieiirrnnnsnncececnncnnns 4-19
Using Value Data Types in Schema Definitionscccviieeiinnennes 4-20
Vectors and Aggregates in Schema Definitionsccooeiieeiieeenss 4-24
Default Values for Fields in Output DataSetscccvvveiiiinnnnnns 4-27
Using the Visual Orchestrate Schema Editorcccoviveninnnnn. 4-27
Representation of DiskDataSets.......cceeviiiiiiiienereecsseeneeerocanenens 4-32
Setting the Data Set VersionFormatccoivvitnnnnnnnncennnnnnns 4-33
DataSetFilescoiiiiiiiiiiiiiiiiiiiiiiiiiiiieteeiiiennecetccnannnes 4-34

5. Orchestrate Operators

OPErator OVEIVIEW . ..o vt iiiiieenerrreessennnssesssssesnnsssssssssnnnsssssnns 5-1
Operator Execution Modesccoivvvetnnesnneecscesscesssssssssssns 5-2
Persistent DataSetsand Stepsccviiiiiririrerirrrrrrsssssssssssssnnns 5-2

Using Visual Orchestrate with Operators.ccoveviieieceiecceerenennreennes 5-3

Operator Interface Schemascciiiiiiiiiiiiiiiienerrerenenennsseenns 5-6
Example of Input and Output InterfaceSchemacceivvvennns 5-6
Input DataSets and Operatorscceeveeeeeeeseeessccscssssccscannns 5-7

Output Data Setsand Operatorsceeveeeeeeeecesssssssssscsssscans 5-8

iv

Visual Orchestrate User’s Guide Table of Contents
Operator Interface SchemaSummaryccceieiiiiiiieneerecenennnss 5-10
Record Transfers and Schema Variablesccciiiiiiiiannes 5-11
Flexibly Defined InterfaceFieldscccciiiiiiiiiiiiiiiiiiinnnnnnns 5-15
Using Operators with Data Sets That Have Partial Schemas 5-15

Data Set and Operator Data Type Compatibilityccoovieieiiieeeiieeenes 5-17
Data Type Conversion Errorsand Warningsccceveveenssscennncenes 5-17
String and Numeric Data Type Compatibilitycovaee.. 5-18
Decimal Compatibilityccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiennnnnes 5-19
Date, Time, and Timestamp Compatibilitycooiiiiaaies 5-20
Vector Data Type Compatibilityccooiiiiiiiiiiiiiiiiiieniinnnn. 5-21
Aggregate Field Compatibilitycccoviiiiiiiiiiiiiiiiiiiiiiee.. 5-21
Null Compatibilitycoooiiiiiiiiiiiiiiieeeieeeiiirisssssssssscsnnnens 5-21

6. Orchestrate Steps

Using Stepsin Your Application.........ccoiiiiiiiiinniiiiiiiieneneeeeennnes 6-1
TheFlowofDatainaStepcevieiiiiieeiiseeessossssssscssscessssanans 6-2
Designing a Single-Step Applicationcciiiieeiierrnrnnennnnnnnnns 6-3
Designing a Multiple-Step Applicationcciiiiiiieirirccccnnenens 6-4

Working with Steps in Visual Orchestrate...........cccviiiiiiiiiiiiiieinnnns, 6-4
Creating StePS ..vvvueetiiieteeieeeeieseeseseeseaceesassssssssssnsscsnnes 6-5
EXecutingaStepovieiiiiiiiiiitteiieeenineeennscesscccsnsccnnncans 6-7
Setting Server PropertiesforaStepcoiiiiiiiirnneeerrrencnnnncnns 6-8
Setting Environment Variablescciiiiiiiierrercrcncccsssncenns 6-10
Setting Step Execution Modesccveivveereneecesssssssssssssssans 6-10
Using Preand Post Scriptscciieeiiiiiiiieriiinreniecscinsecnnnees 6-12

7. The Performance Monitor

The Performance Monitor Windowcoiiiiiiiiiiiiiiiiieeeccennnnnnes 7-1
How the Performance Monitor Represents Your Program Steps 7-3
Configuring the Performance Monitorc.oeiviiiieiiineeiieneennnnss 7-4

Controlling the Performance Monitor Displayccoiieiiiiiteiiennnnnss 7-5
General Display Controlccoiiitiiiitiiienrriiececiesecsnnccnnnces 7-5
Operator DisplayControlcoiiiiiiiiiiiiiiiiiieeeiiinneeeeecennnes 7-6

Data Set DisplayControlcciiiiiiiiiiiiiiiieieiiieneneeecccennnnnes 7-7

Table of Contents Visual Orchestrate User’s Guide

Generating a Results Spreadsheetccciiiiiiiiiiiiiiiiiiinennnes 7-8
Creating MovieFilesccoiiiiiiiiiiiiiiiiiiieiiieienneeneeerecnnns 7-10

8. Partitioning in Orchestrate

Partitioning DataSetscoviiiiiiiiiiiirsssseseeceteeertssssasssssnssnnnnas 8-1
Partitioning and a Single-InputOperatorcccctiiiiiiiinnereennnnes 8-2
Partitioning and a Multiple-InputOperatorcooiviiienenrecnnnes 8-2

Partitioning Methods.ciiiiiiiiiiiiiiiiiiiiiiiiiieneneeeeesnnnnnnss 8-3
The Benefit of Similar-Size Partitionsccoiiiiiiiiiiiiiiinnne, 8-3
Partitioning Method Overviewccovveiiiieeeerrernrnsesnssscnnnnnnes 8-4
Partitioning Method Examplescccoiiiiiieerirrnrnrnsennscscnnnnnnns 8-5

Using the Partitioning Operators.......cccceeieieeeeerrernrsssssssscscsnnccnns 8-7
Choosing a PartitioningOperatorccetiiiiiinenrreecnnnnnnsnaes 8-8

The Preserve-PartitioningFlag..........ccoiiiiiiiiiiiiiiiiiiiiiiinennreennes 8-11
Example of the Preserve-Partitioning Flag's Effect 8-11
Preserve-Partitioning Flag with Sequential Operatorscccvvveee. 8-13
Manipulating the Preserve-PartitioningFlagcciviiiiieiinnennns 8-13
Example: Using the Preserve-PartitioningFlagcciivieiinnnnnns 8-14

9. Collectors in Orchestrate

Sequential Operatorsand Collectorscoevetrtrnrnnnnnernceccccnnncnns 9-1
Sequential Operators and the Preserve-PartitioningFlagcc00000ee 9-2
Collection Methodsciiiiiiiiiiiiiiiiiiiiiiieiiiinnneeeccnennnss 9-3

Choosing a CollectionMethodccviiiiiiiiiiiiiiiiiiiieiiineennness 9-3

Settinga CollectionMethodcciiiiiiiiiiiiiiiiiiiiiiiieneinnnennnns 9-4
Collection Operator and Sequential Operator with Any Method 9-5
Collection Operator before Write to Persistent DataSetc00vne. 9-5

10. Constraints

UsSiNg Constraintsccveiieeiiteeniaeessaeeesnsecsnscsssnscssnssssnnses 10-1
Controlling Where Your Code Executes on a Parallel System 10-2
Controlling Where YourDatalsStoredcciiiivnennnennncnnnnens 10-4

Using Constraints with Operatorsand Stepscccvvveiiiiererererrnrenenss 10-5
Configuring Orchestrate Logical Nodesccivvienneecetnccsnnnnnns 10-5

Using Node Pool Constraintsccviieeeerriinenenenerecescnenssnsns 10-6

vi

Visual Orchestrate User's Guide Table of Contents
Using Resource Constraintsc.ciiiiiieriiieineennrerccnnnnnnnens 10-7
Combining Node and Resource Constraintsccoeeeeerriinnnnnnnns 10-8
Using NodeMapscoiiiieeeriiineneeesrecessesnessrscesssnnsnssas 10-8

Data Set Constraints.ccvviereiieeeiiieresiereseneessaasesssssssnsocnnes 10-9

11. Run-Time Error and Warning Messages

How Orchestrate Detects and RepOrtS Errorsoovvvveeneeeeeeeenennnnnnenss 11-1
Error and Warning Message Formatciiiiieeriiiiinennnecrccnnnnns 11-2

Messages from SuUbProcessesccoiiieierriineienererecnnnnnnnnes 11-3
Controlling the Format of Message Displayccceiiiiiiiiiiiieeennnnns. 114

12. Creating Custom Operators

Custom Orchestrate OpPerators.....coveieeieeetereeestsssssssssssssscsssncns 12-1
Kinds of Operators YouCan Createcccvveeiiieeerrssssssssssssssnnns 12-2
How a Generated Operator ProcessesDataccvveeevenceccnnncenns 12-3
Configuring Orchestrate For Creating Operatorsceeeeeeeceencenns 12-4

Using Visual Orchestrate to Createan Operatorc.ccccveeeeeerrrrnransnnnss 12-5
How Your CodelsExecutedcoviiiieerriiinnnnennsereccssnnnnnss 12-8

Specifying Operator Input and Output Interfaces...........ccovvvveeriinnnnn. 12-8
Adding and Editing Definitions of Input and Output Ports 12-8
Reordering the Input Ports or Output Portsccoievvneennnennns 12-10
Deletingan Input or Output Portccooviieeiieerrnrnnnnnscennonnnns 12-10
Specifying the InterfaceSchemaccciiiiiiiiiiiiiiiiiinnnenes 12-10
Defining Transfersccoiiiiiiiiieiiieenieecineeesnscennsennns 12-13
Referencing Operator Interface Fields in OperatorCode 12-13

Examples of Custom Operators.oveeeerierenenessressssscnsssscsssnnss 12-14
Convention for Property Settingsin Examplesco0uaet. 12-14
Example: SUM Operatorccceeeeererrssssnsssssssescsssscssssssns 12-15
Example: Sum Operator UsingaTransferccceeeeeeeeeeeeernnnenss 12-16
Example: Operator That RecodesaFieldccoviiiiiiinnnnnnns 12-17
Example: Adding a User-Settable Option to the Recoding Operator 12-17

Using Orchestrate Data Typesin YourOperatorccovveeeeereccnnnes 12-20
Using NumericFieldsccviiiiiiiieeetieerrnrnrsnssesssencssscnnns 12-21

Using Date, Time, and Timestamp Fieldsccoiiveiiiiiniinnnnnnns 12-21

Table of Contents Visual Orchestrate User’s Guide
Using Decimal Fieldscoiiiiiiiiiiiiiiiiiiiiiennnetecennnnnss 12-23
Using String Fieldscoiiiiiiiiiiiiiiiiiiiiiiiiieiiieiennnennnss 12-24
UsingRaw Fieldscoiiiiiiiiiiiiiiiiiiiiiiiiiineiirecennnnnnnes 12-25
Using NullableFieldscciviiiiiiiiieieieneeeeereeerrosssssnnnans 12-25
Using VectorFieldscooiiiiiiriiiiierernseeenesescssssesssssnns 12-26

Using the Custom Operator MacroS.ooeeeveeeeeeeeceresessssasnssnnnns 12-27
Informational Macroscciiiiiiiineriiinineennneerecnnennnsens 12-27
Flow-Control Macroscoeeeeiiiiinennnereecensennnescessnnnnnss 12-27
Input and OULPUEMACKOS v.vviiiirerienseeeecceeecssssssssssssssssnnns 12-28
Transfer Macrosovvieieeereieieneneeerecesseennsssscesssnnnnsses 12-29

How Visual Orchestrate Executes Generated Code.............ceevvveennnn. 12-31

Designing Operators with MultipleInputscccoiiiiiiiiiieeeececanans 12-31
Requirements for Coding for Multiplelnputsccciiiiiiiiiiennnns 12-32
Strategies for Using Multiple Inputsand Outputsccceeveeen 12-32

13. Creating UNIX Operators

Introduction to UNIX Command Operators......ccceeeeeeerrerssssssssnsscnnns 13-1
Characteristics of a UNIX Command Operatorccoveeeneececnnncenns 13-2
UNIXShellCommandscoiitiiiiiienirriienesnenrecesssennnsses 13-3
Execution of a UNIXCommand Operator.........ccoveeeneeereccnnnnnnees 13-5

Handling Operator Inputs and Outputscoviienerriiieinennerrrecenenes 13-7
Using Data Sets for Inputs and Qutputsccooeviverrnnnnennncennnonnns 13-8
Example: Operator Using Standard Inputand Output 13-9
Example: Operator Using Files for InputandOutput 13-13
Example: Specifying Input and Output Record Schemas 13-19

Passing Arguments to and Configuring UNIXCommands 13-22
Using a Shell Script to Call the UNIXCommandccvvviinnnnnns 13-22
Handling Message and Information OutputFilesccevvevnen. 13-24
Handling Configuration and Parameter Input Files 13-25
Using Environment Variables to Configure UNIX Commands 13-26
Example: Passing File Names Using Environment Variables 13-26
Example: Defining an Environment Variable for a UNIX Command 13-27
Example: Defining User-Settable Options for a UNIX Command 13-28

Handling Command Exit Codes.ovverireiesesesssssssssscesscarassenss 13-35

vii

viii

Visual Orchestrate User’s Guide Table of Contents
How Orchestrate Optimizes Command Operatorscovveveeececcccans 13-36
Cascading UNIX Command Operatorscccoeeeveeeneeercccnnnes 13-37

Using Files as Inputs to UNIX Command Operatorsccoeeeeeens 13-38

Using FileSets as Command Operator Inputs and Outputs 13-39

Using Partial Record Schemasccvveiiieerrrrnrnrnsennnsecscnsnnens 13-39

Index

Visual Orchestrate User’s Guide

1: Introduction to Orchestrate

With the Orchestrate Development Environment, you create parallel applications without
becoming bogged down in the low-level issues usually associated with parallel programming.
Orchestrate allows you to develop parallel applications using standard sequential program-
ming models, while Orchestrate handles the underlying parallelism.

Orchestrateis designed to handlerecor d-based data, much likethe data stored in an RDBM S
such as DB2, INFORMIX, Teradata, or Oracle. In fact, Orchestrate can read data directly
from an RDBM S for parallel processing and then storeitsresultsin the RDBM S for further
analysis.

Orchestrate provides a graphical user interface, Visual Orchestrate, to enable you to create a
complete parallel application in a Microsoft Windows development environment.

This chapter introduces the fundamental capabilities of Orchestrate, in the following sec-
tions:

« “Parallelism and Orchestrate Applications” on page 1-1
e “Orchestrate Application Components” on page 1-4

e “Orchestrate Data Sets” on page 1-5

e “Orchestrate Operators” on page 1-9

e “Orchestrate Steps” on page 1-11

e “Creating Orchestrate Applications” on page 1-14

The next chapter describes in more depth how to use Visual Orchestrate to create parallel
applications. The rest of this book explains in detail how to use the three Orchestrate applica-
tion components: data sets, operators, and steps.

Parallelism and Orchestrate Applications

This section first describes the two basic kinds of parallelism that can be used in Orchestrate
applications. This section then describes the main categories of parallel-processing environmentsin
which Orchestrate applications can be run. The section concludes with a description of the
Orchestrate configuration file.

Introduction to Parallelism

There are two basic kinds of parallelism, both of which you can use in your Orchestrate applica-
tions:

Visual Orchestrate User's Guide Parallelism and Orchestrate Applications

* Pipeline parellelism
e Partition parellelism

Pipeline Parallelism

In pipeline parallelism, each operation runs when it has input data available to process, and all
processes are running simultaneously, except at the beginning of the job as the pipeline fills, and at
the end as it empties. In a sequential application, operations execute strictly in sequence. The
following figure depicts a sample application that imports data, then performs a clean operation on
the data (perhaps removing duplicate records), and then performs some kind of analysis:

| .
8 > i mport cl ean Pl anal yze 'l l

Use of Orchestrate lets an application concurrently run each operation in a separate operating-
system process, using shared memory to pass data among the processes. Each operation runs when
it has input data available to process.

A 4

The theoretical limit to the efficiency gain of the pipeline is a factor of the number of operations
that your application uses. This gain in efficiency is achievable independently of and in addition to
partition parallelism, described below.

Partition Parallelism

The more powerful kind of parallelism relies on data partitiBastition parallelism distributes an
operation over multiple processing nodes in the system, allowing multiple CPUs to work
simultaneously on one operation.

Partitioning divides a data set into multigdartitions on the processing nodes of your system.
Partitioning implements the “divide and conquer” aspect of parallel processing. Because each node
in the parallel system processes a partition of a data set rather than all of it, your system can
produce much higher throughput than with a single-processor system.

The following figure is a data-flow diagram for the same application, as executed in parallel on four
processing nodes.

—|I[. —
8 | i mport cl ean anal yze:\>
5" g

With enough processors, the model shown above can use both pipeline and partition parallelism,
further improving performance.

Introduction to Orchestrate Visual Orchestrate User’s Guide 1-3

Parallel-Processing Environments: SMP and Cluster/MPP

The environment in which you run your Orchestrate applications is defined by your system'’s archi-
tecture and hardware resources. All parallel-processing environments are categorized as one of the
following:

* SMP (symmetric multiprocessing), in which some hardware resources may be shared among
processors

« Cluster or MPP (massively parallel processing), also knovghassd-nothing, in which each
processor has exclusive access to hardware resources

SMP systems allow you to scale up the number of CPUs, which may improve application
performance. The performance improvement depends on whether your application is CPU-,
memory-, or I/O-limited. In CPU-limited applications, the memory, memory bus, and disk 1/O
spend a disproportionate amount of time waiting for the CPU to finish its work. Running a CPU-
limited application on more processing units can shorten the waiting time of other resources and
thereby speed up overall performance.

Some SMP systems allow scalability of disk /O, so that throughput improves as the number of
processors increases. A number of factors contribute to the 1/0O scalability of an SMP, including the
number of disk spindles, the presence or absence of RAID, and the number of I/O controllers

In a cluster or MPP environment, you can use the multiple CPUs and their associated memory and
disk resources in concert to tackle a single application. In this environment, each CPU has its own
dedicated memory, memory bus, disk, and disk access. In a shared-nothing environment, parallel-
ization of your application is likely to improve the performance of CPU-limited, memory-limited,

or disk I/O-limited applications.

The Orchestrate Configuration File

Every MPP or SMP environment has characteristics that define the system overall as well as the
individual processing nodes. These characteristics include node names, disk storage locations, and
other distinguishing attributes. For example, certain processing nodes might have a direct
connection to a mainframe for performing high-speed data transfers, while other nodes have access
to a tape drive, and still others are dedicated to running an RDBMS application.

To optimize Orchestrate for your system, you edit and modify the Orchesrdiguration file.

The configuration file describes every processing node that Orchestrate will use to run your
application. When you invoke an Orchestrate application, Orchestrate first reads the configuration
file to determine the available system resources.

When you modify your system by adding or removing processing nodes or by reconfiguring nodes,
you do not need to recode or even to recompile your Orchestrate application. Instead, you need
only edit the configuration file.

Visual Orchestrate User's Guide Orchestrate Application Components

Another benefit of the configuration file is the control it gives you over paralelization of your
application during the development cycle. For example, by editing the configuration file, you can
first execute your application on a single processing node, then on two nodes, then four, then eight,
and so forth. The configuration file lets you measure system performance and scalability without
modifying your application code.

For complete information on configuration files, see the Orchestrate Installation and
Administration Manual.

Orchestrate Application Components

You create Orchestrate applications with three basic components:

« Data sets: Sets of data processed by the Orchestrate application

« Operators: Basic functional units of an Orchestrate application

« Steps: Groups of Orchestrate operators that process the application’s data

The Visual Orchestrate graphical user interface lets you easily create and run an application. For
instructions on using Visual Orchestrate, see the chapter “Creating Applications with Visual
Orchestrate”.

The following figure shows a Visual Orchestrate Program window with a sample application,
demonstrating all three Orchestrate components—data sets, operators, and steps:

[1 step]

infile.data

Introduction to Orchestrate Visual Orchestrate User’s Guide

This sample application consists of one step. The step first uses the Orchestratei nport operator to
create an input data set from external datain filei nFi | e. dat a. It then pipes the imported data to
the t sort operator, which performs a sort. The application then compresses the data using the
pconpr ess operator. Note that the sort and compress operations are performed in parallel. After
data has been sorted and compressed, the application stores it to disk as an output data set named
out . ds. (Note that output data can also be exported to flat files.)

Data-Flow Modeling

A data-flow model can help you plan and analyze your Orchestrate application. The data-flow
model lets you conveniently represent 1/0O behavior and the operations performed on the data. The
following data-flow diagram models this sample application:

Input file /—\
@ Step ¥

i mport operator

Data set ¢

t sort operator

Data set t

pconpr ess operatd

‘ } 4 lOutput data set

The following sections describe data sets, operators, and steps in more detail.

=

Orchestrate Data Sets

Orchestrate applications process three basic kinds of data, all of which have a structured format:

» Data stored in flat files: A file can contain data stored as newline-delimited records,
fixed-length or variable-length records, binary streams, or a custom format. You use an
Orchestrateschema to describe the layout of imported data (described in the section “The

Orchestrate Schema” on page 1-6).

« RDBMS tables: Orchestrate supports direct access of Oracle, DB2, Teradata, and INFORMIX

tables for both reading and writing.
e Orchestrate data sets

Visual Orchestrate User’s Guide Orchestrate Data Sets

A data set isthe body of datathat isinput to or output from an Orchestrate application. Orchestrate
processes record-based data in parallel, so the data set that is input to an Orchestrate application

always has a record format. Orchestrate’s record-based processing is similar to the processing
performed by an RDBMS (relational database management system), such as DB2, Oracle,
Teradata, or INFORMIX.

Record-based data is structured as rows, each of which represents a record. Records are further
divided intofields, where a field is defined by a field identifier,r@me, and a fielddata type.

As an example, the following figure shows a record-based data set:

Columns represent fields

‘

<4— Rows represent records

A record

_—

int32 int32 int16 sfloat string[10]

—

Table of fixed-length records

In the figure above, a data set is represented by a table with multiple rows, representing records.
Each record has five data fields, represented by columns. All fields are of fixed length, so that the
records are all the same length.

A record format can also include one or more variable-length fields, so that the record is also of
variable length. A variable-length field indicates its length either by marking the end of the field
with a delimiter character or by including information indicating the length.

The Orchestrate Schema

In Orchestrate, the record structure of a data set is defined by an Orchestratechenmdwhich

is a form of metadata. Many data processing applications include metadata support. For example,
an RDBMS uses metadata to define the layout of a database table, including the name, data type,
and other attributes of every record field. Also, COBOL programs can contain an FD (File
Description) section to describe the layout of a COBOL data file. For details on Orchestrate schema
capabilities and usage, see the section “Defining a Record Schema” on page 4-16.

An Orchestrate record schema allows you to reference an individual field by its name, without
knowing the field’s exact location within the record. You use the Orchestrate data definition lan-
guage to define a schema for a data set only once. The following is a sample Orchestrate record
schema:

Introduction to Orchestrate Visual Orchestrate User’s Guide 1-7

record (
a:int32;

b:int32;

c:intl6;

d: sfl oat;

e:string[10])

An Orchestrate record definition consists of the keyword r ecor d, followed by a parenthesized list
of semicolon-separated field definitions. You can optionally include a terminating semicolon after
thelast field definition.

Each field definition consists of the field’s name, a colon, and the field’'s data type. For a variable-
length data type, such as a string, you can include an optional length specifier; in the example
above, string is specified to have the length 10.

A central feature of the Orchestrate record schema facilityeisility. With schemas, you can

create a range of record layouts as well as support existing database table standards. You can use
schemas to represent existing data formats for RDBMS data tables, COBOL data files, and UNIX
data files. Schema flexibility is also very advantageous when you read external data into an
Orchestrate applicatiomniport), or write Orchestrate data to an external forragidt).

Virtual and Persistent Data Sets

As a data is passed from one operator to another in a step, Orchestrate handlestiigdsiata

set, which exists only during the step’s processing. A data set input to or output from a step must be
persistent, or saved to disk. In data-flow diagrams, Orchestrate data sets are represented by the
following symbols.

i A virtual data set as a flow arc (or link) in a data-flow diagram

A persistent Orchestrate data set input to a step

@ A persistent Orchestrate data set output from a step

The virtual data set and data set output symbols are shown in the data-flow diagram example in the
preceding section.

Visual Orchestrate User’s Guide Orchestrate Data Sets

Data set icons can also show the physical storage of the data set, in files on multiple disks in your
system. In the following figure, to the right of the arrow an Orchestrate data set is shown as files
stored on four separate disks:

@4»

Required Naming Convention for Data Sets
For Orchestrate to correctly process persistent data sets, their file names must have the extension
. ds. For example, i nDat a. ds isavalid name for a persistent data set.

In some steps, such as those with branches (see the chapter “Orchestrate Steps”), it is necessary to
name virtual data sets. For Orchestrate to correctly process named virtual data sets, they must be
named with the extensiorv. For examplet enpDat a. v is a valid name for a virtual data set.

Data in Flat Files
Orchestrate can read and write data from a flat file (sometimes referred to as a UNIX file),
represented by the following symbol:

@ A flat file

In reading from and writing to flat files, Orchestrate performs implicit import and export
operations.

Data in RDBMS Tables

Orchestrate can also read and write an RDBMS table from DB2, Oracle, Teradata, or INFORMIX.
In an Orchestrate data-flow diagram, an RDBMS table is represented by the following symbol:

An RDBMS table

When it reads an RDBMS table, Orchestrate translates the table into an Orchestrate data set. When
it writes a data set to an RDBMS, Orchestrate translates the data set to the table format of the
destination RDBMS. See tl@rchestrate User’s Guide: Operatofsr information on reading and

writing tables.

Managing a data set distributed over an MPP that may contain hundreds of individual processing
nodes, disk drives, and data files is a complex task. However, Orchestrate handles all the
underlying communications necessary to route each record of a data set to the appropriate node for
processing, even if the data set represents an RDBMS table. When you design and create an
Orchestrate application, you do not need to be concerned with the location of individual data set
records or the means by which records will be transmitted to processing nodes.

Introduction to Orchestrate Visual Orchestrate User’s Guide 1-9

For more information about data sets, see the chapter “Orchestrate Data Sets”.

Partitioning Data Sets

The benefits of partitioning your data sets were introduced in the section “Partition Parallelism” on
page 1-2. Orchestrate allows you to control how your data is partitioned. For example, you may
want to partition your data in a particular way to perform an operation such as a sort. On the other
hand, you may have an application that partitions data solely to optimize the speed of your
application. See the chapter “Partitioning in Orchestrate” for more information.

Orchestrate Operators

Orchestrate operators, which process or analyze data, are the basic functional units of an
Orchestrate application. An operator can take data sets, RDBMS tables, or data files as input, and
can produce data sets, RDBMS tables, or data files as output. The following figure represents an
Orchestrate operator in a data-flow diagram:

Input data sets

Operator

Output data sets

The operators in your Orchestrate application pass data records from one operator to the next, in
pipeline fashion. For example, the operators in an application step might start with an import
operator, which reads data from a file and converts it to an Orchestrate data set. Subsequent
operators in the sequence could perform various processing and analysis tasks. In the section
“Data-Flow Modeling” on page 1-5, you saw a more detailed data-flow diagram of such an
Orchestrate application.

The processing power of Orchestrate derives largely from its ability to execute operators in parallel
on multiple processing nodes. You will likely use parallel operators for most processing in your
Orchestra applications. Orchestrate also supports sequential operators, which execute on a single
processing node. Orchestrate provide libraries of general-purpose operators, and it also lets you
create custom operators (see the section “Prebuilt and Custom Operators” on page 1-10).

1-10

Visual Orchestrate User's Guide Orchestrate Operators

Operator Execution

By default, Orchestrate operators execute on all processing nodes in your system. Orchestrate
dynamically scales your application up or down in response to system configuration changes,

without requiring you to modify your application. This capability means that if you develop parallel
applications for a small system and later increase your system’s processing power, Orchestrate will
automatically scale up those applications to take advantage of your new system configuration.

The following figure shows two Orchestrate operators connected by a single data set:

Operator 1 Processing nodes
T
Data set i Record data flow
EE——
Operator 2
Data-Flow Model Orchestrate Execution

The left side of this figure shows the operators in an Orchestrate data-flow model. The right side of
the figure shows the operators as executed by Orchestrate. Records from any node that executes
Operator 1 may be processed by any node that executes Operator 2. Orchestrate coordinates the
multiple nodes that execute one operator, and Orchestrate also manages the data flow among nodes
executing different operators.

Orchestrate allows you to limit, @onstrain, execution of an operator to particular nodes on your
system. For example, an operator may use system resources, such as a tape drive, not available to
all nodes. Another case is a memory-intensive operation, which you want to run only on nodes with
ample memory.

Prebuilt and Custom Operators

Orchestrate supplies libraries of operators that perform general-purpose tasks in parallel, including
the following:

« Import and export data

e Copy, merge, sort, and split data sets

e Summarize, encode, and calculate statistics on a data set

e Perform data mining operations using the Orchestrate analytic tools

See theOrchestrate User’s Guide: Operator$or information on these prebuilt operators.

Introduction to Orchestrate Visual Orchestrate User's Guide 1-11

In addition to the Orchestrate operators, your application may require other operators for specific
data-processing tasks. Orchestrate allows you to develop custom operators and execute them in
parallel or sequentialy, as you execute the prebuilt operators. For example, the step shown below
first processes the data with two Orchestrate operators, import and sample. Then, it passes the data
to a custom operator that you have created:

i mport operator

!

sanpl e operator

!

Your custom operator

You can create custom operators in the following three ways:

« Create an operator from UNIX commands or utilities, sudr ap orawk. Visual Orchestrate
lets you conveniently create UNIX operators with the UNIX command Custom Operator
(UNIX Command) feature; see the chapter “Creating UNIX Operators” for details.

e Create an operator from a few lines of your C or C++ code with the Custom Operator (Native)
feature. For details on using this feature to conveniently implement logic specific to your
application, see the chapter “Creating Custom Operators”.

You can also use thebui | dop command utility to create operators from your own C func-
tions; see the chapter “Building Operators in C” in@rehestrate Shell User’s Guide.

« Derive an operator from the Orchestrate C++ class library. The operator can execute in parallel
or sequentially. See thl@rchestrate/APT Developer’s Guiflar more information.

Orchestrate Steps

An Orchestrate application consists of at least one step, in which one or more Orchestrate operators

process the application’s data. A step is a data flow, with its input consisting of data files, RDBMS
data, or persistent data sets. As output, a step produces data files, RDBMS data, or persistent data
sets. Steps act as structural units for Orchestrate application development, because each step exe-
cutes as a discrete unit. Often, the operators in a step execute simultaneously, but a step cannot
begin execution until the preceding step is complete.

Within a step, data is passed from one operator to next in virtual data sets. Steps pass data to other
steps via Orchestrate persistent data sets, RDBMS tables, or disk files. Virtual and persistent data
sets are described in the section “Virtual and Persistent Data Sets” on page 1-7.

1-12 Visual Orchestrate User's Guide Orchestrate Steps

In the figure below, the final operator in Step 1 writes its resulting data to two persistent data sets.
Operatorsin Step 2 read these data sets as input.

Step 1

Operator
Virtual
data set

Operator

¥

Operator Operator

Step 2

A step is also the unit of error handling in an Orchestrate application. All operators within a step
succeed or fail as a unit, allowing you to conditionalize application execution based on the results
of a step. In the event of a failure during step execution, the Orchestrate framework performs all
necessary clean up of your system. This includes deleting any files used for temporary storage and
the freeing of any system resources used by the step.

For more information about steps, see the chapter “Orchestrate.Steps”

Introduction to Orchestrate Visual Orchestrate User’s Guide 1-13

The Orchestrate Performance Monitor

You can direct information about an executing step to the Performance Monitor, Orchestrate’s
dynamic performance visualization tool. The figure below shows the Performance Monitor
window, in which a rectangular grid corresponds to an Orchestrate operator in a data-flow diagram
and lines connecting the grids correspond to records flowing between operators.

X Orchview

File ©Options Data Help

11
-3
Displaying Current Step Topology and DataRates.
Zoom V Rotate H Rotate Cp Width
9 -25 27 1.06 Auto View
0 100 -90 0 90 O 180360 0.001.002.00

The Performance Monitor produces a graphical, 3-D representation of an Orchestrate application
step as it executes. The Performance Monitor allows you to track the progress of an application step
and to display and save statistical information about it, both during and after completion of
execution.

See the chapter “The Performance Monitor” for more information.

1-14

Visual Orchestrate User's Guide Creating Orchestrate Applications

Creating Orchestrate Applications

Thefollowing is ageneral procedure for developing an Orchestrate application:

1. Create adata-flow model of your application. Data-flow models are introduced in the section
“Data-Flow Modeling” on page 1-5.

2. Create any custom operators required by your application. Custom operators are introduced in
the section “Prebuilt and Custom Operators” on page 1-10 and described in detail in the chap-
ter “Orchestrate Operators”.

3. Develop your application using Visual Orchestrate (see the chapter “Creating Applications
with Visual Orchestrate”).

4. Create a test data set. As many Orchestrate applications process huge amounts of data, to sim-
plify and speed debugging you will probably want to test your application first on a subset of
your data.

5. Create or edit your configuration file(s). You might want to create different configuration files,
for use at different stages of application development. For example, one configuration file
could define a single node, a second could define a few nodes, and a third could define all
nodes in your system. Then, as testing progressed, you could increase the number of nodes by
changing the environment variable APT_CONFIG_FILE to point to the appropriate configura-
tion file. TheOrchestrate Installation and Administration Manual describes configuration files
and environment variables in detail.

6. Run and debug your application in sequential execution mode. Sequential mode executes your
application on a single processing node; the configuration file is used only to determine the
number of partitions into which data sets are divided for parallel operators. You can start by
using only a single partition, while you concentrate on testing and debugging your main pro-
gram and operators. Later, you can use a different configuration file (or edit your original con-
figuration file) to increase the number of partitions and, if applicable, to test your custom
partitioning. Partitioning is described in the chapter “Partitioning in Orchestrate”, and the
debugging process is described in the section “Setting Step Execution Modes” on page 6-10.

7. Run and debug your application in parallel execution mode. Parallel execution mode enables
the full functionality of Orchestrate. You can start by running in parallel on a single node, then
on a few nodes, and complete testing by running on the full parallel system.

Orchestrate Installation and Administration

The Orchestrate Installation and Administration Manual thoroughly describes installation and
administration tasks, such as setting environment variables and maintaining a configuration file.

Visual Orchestrate User’s Guide

2: Creating Applications with Visual
Orchestrate

The Orchestrate graphical user interface, Visual Orchestrate, lets you create Orchestrate
applications from data-flow components (oper ator s, data sets, and steps) in a Microsoft Win-
dows development environment. After you have created the data-flow diagram, you can
deploy the application on your UNIX system.

This chapter describes how to use Visual Orchestrate to create and deploy an Orchestrate
application, in the following sections:

e “The Orchestrate Development Environment” on page 2-1

e “Creating an Orchestrate Application” on page 2-3

« “Deploying the Application on Your UNIX System” on page 2-6
e “Setting User Preferences” on page 2-9

e “Setting Program Directory Paths” on page 2-13

e *“Visual Orchestrate Utilities” on page 2-14

The Orchestrate Development Environment

At the most general level, developing an application for Orchestrate has two phases:
1. Developing and testing the application on PC running Microsoft Windows.
2. Deploying the application on atarget UNIX machine.

Orchestrate uses a client-server development environment, in which you develop applications on a
PC running Microsoft Windows (95, 98, or NT). The PC is then connected over a network to the
target UNIX machine. This development environment alows you to use Visual Orchestrate,

2-1

Orchestrate’s graphical user interface, to develop your application, and then run and debug the

application on the target machine.

2-2 Visual Orchestrate User's Guide The Orchestrate Development Environment

The following figure shows the Orchestrate development environment:

Network
Orchestrate client Orchestrate client
(Microsoft Windows) (Microsoft Windows) Orchestrate server

(UNIX)

The Orchestrate server performs three basic tasks:

1. Storesyour application.

2. Stores configuration information about the UNIX target system.

3. Controls and coordinates the execution of Orchestrate applications.

For Orchestration application development to take place, the Orchestrate server must be running on
the target machine. You must designate an Orchestrate server administrator. The Orchestrate
server administrator could be your system administrator or another person responsible for
managing your target UNIX system. The Orchestrate server administrator is responsible for
configuring and managing the Orchestrate server. For detailed information on Orchestrate server
administration, see the Orchestrate Installation and Administration Manual.

The Orchestrate client, Visual Orchestrate, is a graphical development tool that you use on a PC to
create Orchestrate applications. Shown below is the main window of Visual Orchestrate:

Vizual Orchestrate - Server "test_metheny™ as “stephen”
File Edit “iew Customn Toolz Program ‘windows Help

O| D|@|e|8| im0y -||ee(e] Z|EE] v]x[¢] 2]

= @ Server - test_metheny
; 5‘-1 Programs
Operators

B Program Editor - stephen:Untitled [modified]

IS Schemas

[313 Configurations

Ready

Creating Applications with Visual Orchestrate Visual Orchestrate User’s Guide

You develop your Orchestrate application by creating and configuring Orchestrate data sets,
operators, and steps. Using Visual Orchestrate, you can also execute and debug your application on
the target UNIX system.

When your application is complete and ready for deployment, you run the deployed application
through either Visual Orchestrate or the Orchestrate UNIX-based deployment tools. These tools
allow you to incorporate your Orchestrate application into alarger application that may run as part
of an overnight batch job or run under a UNIX job control application.

Creating an Orchestrate Application

This section describes the basic procedure that you follow to create an Orchestrate application
using Visual Orchestrate.

1. Start Visua Orchestrate by clicking on the Windows Start button, then choosing Programs ->
Visual Orchestrate -> Visual Orchestrate.

2. Connect to an Orchestrate server, either by clicking on the Torrent logo button on the toolbar or
by using the Visual Orchestrate menu command File -> Connect. Either action opens the fol-
lowing dialog box:

. Connect to Orchestrate Server M= E3
Connect To Server
Server Mame: Imethen_l,l_smg ﬂ
Usemame: Iuser'l—
Pazaward: [ssssss |
™ Save Password InWindows Fegisty
ak, I Cancel | Help |

3. Choose the Server Name from the drop-down list in the dialog box. You may have a choice of
Orchestrate servers if your UNIX system has multiple Orchestrate installations or your net-
work has multiple UNIX target systems.

Note: The Orchestrate server administrator must define and configure the server on each Orches-
trate client PC. In addition, the Orchestrate server administrator must start your Orchestrate server
before you can connect to it. These tasks are described in the chapter on client-server environment
installation in the Orchestrate Installation and Administration Manual.

4. Enter your UNIX Username on the UNIX machine hosting the Orchestrate server. The UNIX
account for Username must have the correct configuration settings to run Orchestrate, as
described in the Orchestrate Installation and Administration Manual.

5. Enter the Password for Username.

By default, Visual Orchestrate does not save the Password. Check Save Password in Win-
dows Registry if you want Visual Orchestrate to save the Passwor d.

2-4 Visual Orchestrate User's Guide Creating an Orchestrate Application

6.

If you are creating a new program, choose File -> New from the Visual Orchestrate menu. This
opens an empty Program Editor window. You develop a complete application (containing
data sets, operators, and steps) in asingle Program Editor window.

If you are editing an existing program, choose File -> Open and select the program from the
list of stored programs.

Use the Program Properties dialog box to configure your program.
The Program -> Properties menu entry opens the Program Properties dialog box:

. Program Properties [Program ‘Untitled']

General Iﬁewer I Paths I Enviranment | Execution Mode I Orchview I Notesl Palametersl

— General Propertie

Frogram Name: || titled

Library: IUser

Owner: |user‘|

Access ToRe! [P biic Wiite =l

Ok I Lpply | Cancel | Help |

Specify the Program Name. Thisis the name you use to invoke the application when deploy-
ing it on your UNIX target machine.

Specify the Library. This defines the library name of the program under the Programs entry
in the display area of Visua Orchestrate.

Specify the Owner of the program. By default, the program owner is the same as the user
name of the person logged in to Visual Orchestrate.

Specify the Access Type of the program. Options are:
Public Write (default): Anyone can read, write, or execute the program.

Public Read: Anyone can read and execute the program; only the program owner can
modify it.

Private: Only the program owner can read, write, or execute the program.

Choose the configuration information for your application. This information usually includes
the processing nodes on the target machine that you want to use and, if applicable, the RDBMS
that you want to access.

You can specify the configuration information for the entire program, or you can separately
configure each step in the program. Use the Visual Orchestrate Program -> Properties menu
entry to set the global properties for the application. Later, you can configure each step, as nec-
essary.

Creating Applications with Visual Orchestrate Visual Orchestrate User’s Guide 2-5

In the Program Propertiesdialog box, choose the Server tab to open the following form:

. Program Propertiez [Program ‘Untitled’]

General Baths I Ervironment | Execution Mode I Orchview I Notes' Parameters'
— Orzhestrate Server Propertie:
— Configuration — Database
LB2 -
I[None] j . I[None] J
Imfiarmmix I[None] j
— Execution Option Oracle I[None] j
& Execute [Show Scoes
" Check Only [Show Schemas — Checkpainting
(" Dizabled [Show Enviranment [T Enable
Max Outstanding KB |2|:|43 Segments I
Temp Dir W Browse...l
Ok I Lpply | Cancel | Help |

Configuration: Select the Orchestrate configuration used to execute the application. The configu-
ration defines the processing nodes and disk drives available for use by your program. Often, the
server configuration is the only program property that you need to set.

The Orchestrate server administrator is required to set up at least a default configuration
before you can create an Orchestrate program. If no configuration is available, see the
Orchestrate server administrator.

You may have several different configurations available. For example, one configuration
may be for testing and another for production.

You can validate a configuration using the Tools->Check Config menu entry. See the sec-
tion “Checking an Orchestrate Configuration” on page 2-14 for more information.

Database: (Optional) Specify the database configuration used by the application. The database
configuration defines the database type (DB2, Informix, or Oracle), as well as the specific database
configuration to use.

If you are accessing a database, the Orchestrate server administrator must set up at least a
default database configuration before you can create an Orchestrate program. If no config-
uration is available, see the Orchestrate server administrator.

You may have several different configurations available, depending on the database and
database data that you want to access.

Execution Options: SelectCheck Only to validate the step but not to run it, daxkecute to exe-
cute the step.

Leave the remaining settings in their default state. See the chapter “Orchestrate Steps” for
more information.

Note: For information on th@aths settings, see the section “Setting Program Directory Paths” on
page 2-13. For information on tHenvironment and Execution Mode tabs, see the chapter
“Orchestrate Steps”. For information on tREchview tab, See the chapter “The Performance
Monitor”. For information on thé&arameters tab, see the section “Using the Program Properties
Dialog Box to Set Program Parameters” on page 2-15.

2-6 Visual Orchestrate User’s Guide Deploying the Application on Your UNIX System

9.

10.

11.

12.

Develop your application by creating a data-flow diagram containing data sets, operators, and
steps, as described in the chapter “Orchestrate Steps”.

Optionally, check for programming errors in your application without running it. (Note that
Orchestrate automatically checks your application for errors when you $alect as
described in the next step.) To check your application, click/ghielate button on the Visual
Orchestrate tool bar:

Validate button

Vizual Orchestrate - Server "test_metheny” asz "stephen”

File Edit Wiew Customn Tools Program Windows Help

9| o|=|8|s| =ls|o|y| =||z|s|e] =% »|e|s[x]s] 2

Orchestrate checks your application for programming errors, such as invalid links in data
flows. Orchestrate displays invalid data-flow elements in red, with an explanatory message.

After fixing any reported errors, you can run validate again and continue the process until you
have corrected all errors that Orchestrate detects.

Run your application, by clicking tfun button on the tool bar:
Run button

Vizual Orchestrate - Server "test_metheny” asz "stephen”

File Edit Wiew Customn Tools Program Windows Help

9| o|=|8|s| =ls|o|y| =||z|s|e] =% »|e|s[x]s] 2

If you have not already validated your application and corrected all reported errors, Orchestrate
now checks it. After successful validation, Visual Orchestrate runs your application.

During execution, arfxecution Window shows the output of your application. If any run-
time errors occur, Visual Orchestrate reports them ifegeeution Window. You can use this
information to correct the error in your application.

Optionally, deploy your application on the target UNIX system. The next section describes
how to deploy your application, using the Orchestrate deployment tools.

Deploying the Application on Your UNIX System

Once your application executes correctly under the control of Visual Orchestrate, you can
optionally deploy the application on your UNIX target system. A deployed application executes
under the control of Orchestrate’s UNIX deployment tools, not under Visual Orchestrate. The
Orchestrate deployment tools are UNIX commands that you use to invoke and monitor the
execution of your application.

You do not have to deploy your application on the same Orchestrate server that you used to develop
it. In fact, it is common to have two or more Orchestrate servers installed. This allows you to use
one server for application development and testing and another for application deployment.

Creating Applications with Visual Orchestrate Visual Orchestrate User’s Guide 2-7

Before deploying your application, you can use the File menu command (File -> Copy To) to copy
aprogram, Orchestrate configuration, custom operator, or schema from the server to which you are
currently connected, to another server.

Deploying Your Application with j ob- nanager

To deploy and manage your application on your target UNIX system, you use the Orchestrate util-
ity j ob-nmanager. The j ob- manager utility is located in install_dir/ apt/bin, where
i nstal | _dir isthe path to the Orchestrate installation. You must either include this directory in
your UNIX PATH or provide the complete path name to the utility.

You run j ob- manager with the following command:
$ j ob- manager conmand

where conmand is the command option to j ob- manager. The command options are;
e run jobname
e abandon jobinstance
e restart jobinstance
e kill jobinstance

e errors jobinstance

Note: Before you run your application wittob- nanager, you must execute it at least once using
Visual Orchestrate.

Running your Application

To invoke an Orchestrate application developed using Visual Orchestrate, you use tien-
mand withj ob- manager. This command takes the name of the Orchestrate application to invoke.
An Orchestrate application name has the form:

| i bnane: pr ognane

To find thel i bname andpr ognane, see thdrogram Properties dialog box,General tab, fields
Library andProgram Name.

The application executes using the current server configuration. You can examine and, if necessary,
modify this server configuration using theet-server-paraneters command. See the
Orchestrate I nstallation and Administration Manual for information on using this command.

The following is an example of thein command:

$ j ob- manager run User: nmyApp > j oblnstance.txt

Visual Orchestrate User’s Guide Deploying the Application on Your UNIX System

Checking the Job Instance Number and Exit Status

In the example above, j ob- manager executes the application named User: nyApp. If the
application completes successfully, j ob- manager writes the job instance number to the file
j obi nstance. t xt. The Orchestrate server assigns an instance number to each run of your
application. Therefore, if you invoke multiple instances of User : myApp, you can identify each
instance by its job instance number. All j ob- manager commands (other than r un), take as an
argument ajob instance number.

As your application executes, the Orchestrate server also writes error messages to j obi n-
st ance. t xt . Itisrecommended that immediately after your application run completes, you do the
following:

1. Check the exit status of the job-manager command that you used to run the application, as you
check the exit status of any other UNIX shell command.

2. Execute the following command to display any run-time error messages:

$ j ob-manager errors ’'cat joblnstance.txt’

Terminating an Application Run

To terminate an Orchestrate application, you must first terminate thej ob- manager command. If
you used the keyboard to invoke the j ob- manager command, terminate it by pressing<Cirl - C.

If the job-manager command was invoked from a script, you must first halt the script. Then, termi-
nate the Orchestrate application by using the following command:

$ j ob-manager kill ’cat joblnstance.txt’

Summary of Deployment Commands

The following table lists the commands, and command options, to j ob- manager :

Command Use

run run jobnanme
Executes the application identified by j obnane, which has the form:

| i bnane: prognane

The Library and Program Name entries in the General tab are of the Pro-
gram Properties dialog box define this information.
abandon abandon j obi nst ance

If your application terminates during arestartable step, this command deletes all
data added to any output persistent data sets by all iterations of the abandoned
step. Specifying this option means you cannot resume the application.

j obi nst ance specifiesthe Orchestrate job number as returned by ther un
command.

Creating Applications with Visual Orchestrate Visual Orchestrate User’s Guide 2-9

Command Use

kill kill jobinstance
Terminates an executing application.

j obi nst ance specifies the Orchestrate job number as returned by ther un
command.

errors errors jobinstance
Displays on the screen any error messages generated by an application.

j obi nst ance specifiesthe Orchestrate job number as returned by ther un
command.

Refer to the Orchestrate Installation and Administration Manual for a further discussion of
deployment.

Setting User Preferences

You set preferences for Visual Orchestrate through the Tools menu. Select Tools->Optionsto open
the following dialog box:

i, Options

e | Server I Data Selsl

— General Preferences

— Program Editor
[+ Show Link Mumbers [¥ Create initial step for new program
[~ Show Yendor lcons [Simplify graphics when dragaing

— Execution Output *Window

¥ *Wrap Long Output Lines W Show Message Headers

QK I Cancel Help

From the Gener al tab:

e Click Show Link Numbersto configure Visual Orchestrate to show the number of the opera-
tor output and operator input for each end of a link between two operators. By default, this box

2-10 Visual Orchestrate User’s Guide Setting User Preferences

is unchecked. Checking it enables link numbers, as shown below:

e Click Show Vendor Iconsto cause the vendor hame to appear in the operator iconPndhe
gram Editor window. By default, this option is unchecked.

» Click Createinitial step for new program to cause Visual Orchestrate to create an empty step
when you create a new program. This is the default action of Visual Orchestrate.

« Click Wrap Long Output Linesto configure Visual Orchestrate to wrap long text lines in the
Execution Window. Otherwise, you must scroll the window to view the entire line.

e Click Show Message Headers to enable the message headers in the Execution Window. By
default, message headers are suppressed. Your setting of this option takes effect the next time
you run your application.

Shown below is an exampkxecution Window display from an application run, with mes-
sage headers disabled:

2% Execution Window - GUITests:sort - Job 1D 38

ORCHESTRATE Application Framework W4.0.3 i(debuy) Warning: lower-than-normal performance
Copyright (C) 1995, 1996, 1937, 19983 Torrent Systems, Inc.
L1l Rights Peserwved

APT configuration file: ODEBC:DefaultConfig
a:? bIl02 c:zZ032

a:l b:10l c:Z01

azl b:1l0l c:z2Z0L

a:l b:10l c:Z01

arZ bol0z c:zZ0E

a:Z b:1l0Z c:Z02

arZ bol0z c:zZ0E

a:3 b:103 c:Z03

a:? bIl02 c:zZ032

a4 b:1l04 c:Z04

azd bol04 c:z204

a4 b:1l04 c:Z04

Step execution finished with status = 0K.
Startup Time 0:-13

Production Iun Time 0:01

Job finished. status = OK. /27498 A0214PM 2

Creating Applications with Visual Orchestrate

Visual Orchestrate User’s Guide

Shown below is the output from a run of the same application, after you have enabled display

of messages headers:

Execution Window - GUITests:sort - Job ID 39

Copyright (C) 192&,
(211 Bight=s Reserwed

07727728 1E:-E57:32 0
ODEC:DefaultcConfig
07727798 1E:-E57:48
07727798 15:57:48
07727798 1E:-E57:48
07727798 15:57:48
07727798 1E:-E57:48
07727798 15:57:48
07727798 1E:-E57:48
07727798 15:57:48
07727798 1E:-E57:48
07727798 15:57:48
07727798 1E:-E57:48
07727798 15:57:48
07727798 1E-E7:E0
status = 0H.
07727728 1E:-E7:50 1
Production Pun Time

OMEBEMNMEOMRPBONREODO

199¢,

TF:C

TOFE
TOPE
TOFE
TOPE
TOFE
TOPE
TOFE
TOPE
TOFE
TOPE
TOFE
TOPE
TF:C

Tosv
0:01

1397,

ooooono

ooooo0d
000004
ooooo0d
000004
ooooo0d
000004
ooooo0d
000004
ooooo0d
000004
ooooo0d
000004
oooool

oozolz

“Main Program®> Inform : APT configuration file:

“peek, 3=
“peek,0x
“peek, 0=
“peek,0x
“peek,l=
“peek, 1=
“peek,l=
“peek,Ex
“peek, =
“peek,Ex
“peek, 3=
“peek, 3

“Main Program> Inform : Step execution finished with

“Main Program> Inform : Startup Time 0:1z

Q727792 LE:ET7:25 0 TFCN 000000 <Main Program> Inform :
ORCHESTERATE Application Framework Wd.0.3 (debug) Warning: lower-than-normal performance

1938 Torrent Systems, Inc.

Inform :
Inform :
Inform :
Inform :
Inform :
Inform :
Inform :
Inform :
Inform :
Inform :
Inform :
Inform :

a4 bilo4d c:Z04
a:l b:10l c:Z01
a:l b:lOl c:Z01
a:l b:10l c:Z01
a:Z bil0OZ c:Ziz
a:Z b:10E c:E02
a:Z bil0OZ c:Ziz
a:3 b:103 c:E03
a:d bilO2 c:Z02
a:3 b:103 c:E03
a4 bilo4d c:Z04
a:d b:1l04 c:Z04

|Job finished, status = QK.

| 727 | 40245PM

From the Server tab, you set the server characteristics:

Server I Data Setsl

Gereral

— Server Preference:

Diefault Server:

Default Dirzctary
Drefault Library M ame:

Default Configuration:

Quemy Timeout:

[T Connect dutomatically at Startup

Connect Timeout [sec): ISD

300

=

j I.-"tDl[Bnl.-"aDt.-"

Browse... |

: Iuser'l

=

1] 4 I Cancel | Help |

e Set theDefault Server used by Visual Orchestrate.

2-11

Visual Orchestrate User’s Guide Setting User Preferences

Set Connect Timeout to number of seconds that Visual Orchestrate will wait before sig-
nalling a server-not-present error.

e Click Connect Automatically at Sartup to cause Visual Orchestrate to connect to the
Default Server whenever you start Visual Orchestrate.

« UseDefault Directory to set the server working directory for your applications, as well as set-
ting the default path for the file browser and shell tool (see “Using the Orchestrate Shell” on
page 2-15).

» UseDefault Library to set the default library name for all programs, operators, and schemas
that you create.

« Set the default Orchestrate configuration for all programs created in Visual Orchestrate using
the Default Configuration pull-down list.

You can override the default configuration for a program (usindPtiogram -> Properties
menu command) or for a step (by double clicking on the step to opðeroperties dia-
log box).

From theData Sets tab, choose the data set overwrite characteristics:

General | Server Data Setsl

r D'ata Set Ovenwrite Characteristics

— If data zet already exists...
= Signal an emar =0 i Append to it
—When ovenwriting data sef, ovenarite. ..
* Evenything " Records anly " Records and schema

0Ok I Cancel | Help |

* In the panelf data set already exists, select the action that your application will take if an
overwrite is attempted:

e Signal an error to cause the step to fail with a message.
* Overwriteit to allow the overwrite to occur.

« Append toit to append the data while keeping the current data, schema, and partitioning
information.

« Ifin the first panel you selecteg@verwriteit, select the extent of the overwrite:
< Everything to overwrite the records, schema, and patrtitioning information.
e Recordsonly to overwrite only the records.

* Recordsand schema to overwrite the records and schema, but not the partitioning infor-
mation.

Creating Applications with Visual Orchestrate Visual Orchestrate User's Guide 2-13

For information on data sets and record schemas, see the chapter “Orchestrate Data Sets”. For
information on partitioning, see the chapter “Partitioning in Orchestrate”.

Setting Program Directory Paths

To optionally change the directory paths used by your program, you udeatthetab in the
Program Properties dialog box, shown below:

. Program Properties [Program ‘Step Ex 1°]

General | Server i |£nvir0nment | Execution Mode | Orchview I Notesl Parametersl

— Path:

Working Directary |£torrentx’apt£ Browse... |
TempDir |£usu’tmp Browse... |

Sync Sort Directary |Jusr£tmp Browse... |
Compiler Path I.-"bin.u"cc: Browse... I

Conductor Host I

aK I Apply Cancel Help

The Pathstab lets you set any of the following properties:

Use Working Directory to set the working directory for the step. This setting overrides the
Default Directory setting in thelools -> Options dialog box.

TempDir: By default, Orchestrate uses the directaryp for some temporary file storage. If you
do not want to use this directory, you can set the paraetgrDir to a path name to a different
directory.

SortDirectory: Optionally sets the location of SyncSort on your processing nodes. Usually, Sync-
Sort will be installed in the same location on every node. The Orchgstrate operator can use
SyncSort to sort a data set. If ba@&brtDirectory and the Orchestrate server param&¢gNC-
SORTDIR are undefined, thesort operator uses UNIX sort.

SortDirectory overrides the Orchestrate server paranf@Y®CSORTDIR.

Compiler Path: Sets the path to the C++ compiler used by Orchestrate when you create native
operators. See the section “Configuring Orchestrate For Creating Operators” on page 12-4 for more
information.

Conductor Host: The network name of the processing node from which you invoke an Orchestrate
application should be included in the configuration file using eithde orf ast nane. If the net-

work name of the node is not included in the configuration file, Orchestrate users mustest by
ductor Host to the fastname of the node invoking the Orchestrate application.

Visual Orchestrate User’s Guide Visual Orchestrate Utilities

Note: The maximum length of any path name that you enter in Visual Orchestrate is 254 charac-
ters.

Visual Orchestrate Utilities

This section describes Visual Orchestrate built-in utilities, for performing the following tasks:
e “Checking an Orchestrate Configuration” on page 2-14

e “Using the Orchestrate Shell” on page 2-15

e “Generating an osh Script to Configure and Run a Program” on page 2-15

e “Using the Lock Manager” on page 2-15

Checking an Orchestrate Configuration

An Orchestrate configuration describes the processing nodes on the target machine for your
application. TheTools -> Check Config feature lets you to test the validity of an Orchestrate
configuration that the Orchestrate server administrator has made available on your server. To check
a configuration:

1. SelecfTools -> Check Config to open theCheck Config dialog box, which displays a list of
all available Orchestrate configurations. The following san@ieck Config dialog box
shows two available configurations:

. Check Config Ed

Select a canfig ta check:

D efaultConfig
TwaModes

] Cancel Help

2. Select a configuration name from the dialog box, and then ©kck
An execution window opens containing the results of the test.

Refer to theOrchestrate Installation and Administration Manual for a detailed discussion of
configuring your Orchestrate system.

Creating Applications with Visual Orchestrate Visual Orchestrate User's Guide 2 -15

Using the Orchestrate Shell

You can issue commands from the Orchestrate shell (osh) by means of the Orchestrate shell toal.
To access the shell tool, on the tool bar click the shell icon:

&)

&% Shell Command

The following dialog box is displayed:

Type a command ta run on the server:

| =

Bun Cancel | Help |

You can now issue osh commands from the default directory that is defined in Tools —> Options
... —> Server —> Default Directory

Generating an osh Script to Configure and Run a Program

In addition to Visual Orchestrate, Orchestrate has a command interface, called the Orchestrate shell
or osh. When using osh, you build your Orchestrate application from UNIX command lines. You
can invoke simple Orchestrate applications using a single osh command line, and you can create
shell scripts containing multiple osh commands.

The Tools menu (Tools -> Generate Script and the Program menu (Program -> Generate
Script) let you generate afile containing an osh script from aVisual Orchestrate program. You can
then run the generated script (which you may need to edit) from the UNIX command line. The
script will create the necessary configuration file, set environment parameters necessary to run the
application, and run the application. For information on creating osh commands and scripts, see
the chapter on creating applications in the Orchestrate Shell User’s Guide

Using the Program Properties Dialog Box to Set Program Parameters

You aso have the option of setting initial (or default) values for parameters used by your
application, by using the Par ameter s tab of the Program Properties dialog box. This tab lists the
names of al variables used in your program. You can also set values of parametersin pre and post
scripts, as described in the section “Using Pre and Post Scripts” on page 6-12.

Using the Lock Manager

When a Visual Orchestrate user opens a program, schema definition, or custom operator, the
Orchestrate server placesoak on the object. This lock prevents a user from opening and writing
to an object after another user has already opened the object.

Visual Orchestrate User’s Guide Visual Orchestrate Utilities

A user can open alocked object for reading only. If the user wants to modify the locked object, the
user must first save the object with a different name.

You may occasionally need to explicitly clear alock. For example, an object may remain locked as
aresult of a system problem, such as a crash of the PC running Visual Orchestrate. To explicitly
clear a lock, use the Lock Manager menu command, Tools -> Lock Manager. This menu
command opens the following dialog box:

. Lock Manager =] E3
— Override Lock On Object

Wi RMING: Do not overide another uzer's lock on an object if pou
are hot certain it is the right thing to do. Changes made to the object
[either pourz or theirg] may be lost,

& Program Select Mame:
" Schema C
" Custom Operator

0k I Cancel Help

1. Choose the object type whose lock you want to clear: Program, Schema, or Custom Oper a-
tor.

2. Use Select Name to choose the name of the object.

Warning: Do not use the Lock Manager to reset alock in order to gain write accessto alocked
object. Doing so would give write access both to you and to the user who originally opened the
object, and you would overwrite each other’s work.

Visual Orchestrate User’s Guide

3: Orchestrate Data Types

This chapter covers fundamental information about the Orchestrate data types, through the
following topics:

e ‘“Introduction to Orchestrate Data Types” on page 3-1
e “Orchestrate Data Types in Detail” on page 3-2
- “Performing Data Type Conversions” on page 3-8

Introduction to Orchestrate Data Types

Orchestrate supports all value (scalar) data types and two aggregate data types. Orchestrate data
types are listed in the table below.

Orchestrate

Data Type Size Description

date 4 bytes Date, with month, day, and year.

deci mal (Roundup(p)+1)/2 Packed decimal, compatible with IBM packed decimal format.
sf | oat 4 bytes IEEE single-precision (32-bit) floating-point value.

df | oat 8 bytes | EEE double-precision (64 bits) floating-point value.

int8 1 byte Signed or unsigned integer of 8 bits.

uint 8

int16 2 bytes Signed or unsigned integer of 16 bits.

ui nt 16

i nt 32 4 bytes Signed or unsigned integer of 32 bits.

ui nt 32

i nt 64 8 bytes Signed or unsigned integer of 64 bits.

ui nt 64

raw 1 byte per character ~ Untyped collection, consisting of afixed or variable number of

contiguous bytes and an optional alignment value.
string 1 byte per character ASCII character string of fixed or variable length.

3-2 Visual Orchestrate User’s Guide Orchestrate Data Types in Detalil

Orchestrate

Data Type Size Description

subrec Sum of lengths of Aggregate consisting of nested fields.
aggregate fields

t agged Sum of lengths of Aggregate consisting of tagged fields, of which one can be ref-
aggregate fields erenced per record.

time 5 bytes Time of day, with resolution in seconds or microseconds.

timestanmp 9 bytes Single field containing both a date and atime value.

Vectors

Orchestrate supports vectors, which are one-dimensional arrays of any type except tagged. For
details on vectors, see the section “Vector Fields” on page 4-24.

Support for Nullable Fields

If a field isnullable, it can contain a valid representation of null. When an application detects a null
value in a nullable field, it can take an action such as omitting the null field from a calculation or
signaling an error condition. You can specify nullability for an Orchestrate record field of any
Orchestrate value data type. For fields of aggregate data types, you can specify nullability for each
element in the aggregate. For details on field nullability, see the section “Defining Field
Nullability” on page 4-19.

Orchestrate Data Types in Detail

This section describes the characteristics of each Orchestrate data type listed in the section
“Introduction to Orchestrate Data Types” on page 3-1. For applicable data types, the descriptions
include data conversion details, such as the data conversion format string for values passed to
certain operators, such iasport andexport . For information on conversion between types, see

the section “Performing Data Type Conversions” on page 3-8.

Date

The Orchestratdat e data type is compatible with the RDBMS representations of date supported
by DB2, INFORMIX, Oracle, and Teradata.

An Orchestrate date contains the following information:
e year: between 1 and 9999, inclusive
» month: between 1 and 12, inclusive

Orchestrate Data Types Visual Orchestrate User's Guide 3-3

e day of month: between 1 and 31, inclusive

You can also specify a date using two forms of the Julian representation:

« Juliandate uses two components to define a date: a year and the day of the year in the range 1
to 366, inclusive.

e Julianday contains a single component specifying the date as the number of days from 4713
BCE January 1, 12:00 hours (noon) GMT. For example, January 1, 1998 is Julian day count
2,450,815.

Data Conversion Format for a Date

By default, an Orchestrate operator interprets a string containing a dategyauem dd. If the

date argument does not include a day, the operator sets it to the first of the month in the destination
field. If the date does not include either the month or the day, they default to January 1. Note that if
the date includes a day of the monthmisst also include a month.

If you wish to specify a non-default format, you can pass the operator an oftlona string
describing the format of the date argument. In a format string for a source string converted to a
date, you must zero-pad the date components (date, month, and year) to the component length you
specify. For a destination string that receives a date, Orchestrate zero-pads the date components to
the specified length.

The following list describes the components that you can use in the format string. In addition to the
required portions of theat e components described below, you can also include non-numeric
characters is as separators or delimiters.

e %ld: A two-digit day of the month (range of 1 - 31).

* 9%ddd: Day of year in three-digit form (range of 1 - 366).

e %m A two-digit month (range of 1 - 12).

* OUxyear _cut of f >yy: A two-digit year derived fromy and a four-digit year cutoff.

<year _cut of f > specifies the starting year of the century in which the spegifiddlls. You

can specify any four-digit year agear _cut of f >. Then,yy is interpreted as the low-order

two digits of the year that is the same as or greater than the year cutoff. For example, to indi-
cate that the year passed&srepresents 1931, you could specify theear _cut of f > of

1930. If you pass a format string with gear _cut of f > of 1930 and the corresponding year

in the date string argument 29, Orchestrate interprets that year as 2029, which is the next
year ending in 29 that is after thgear _cut of f >.

* %yy: A two-digit year derived from a default year cutoff of 1900. For example, using the
format for a year of 42 results in its interpretation as 1942.

* %yyyy: A four-digit year.

Note: Each component of thiat e format string must start with the percent sympegl (

Following are examples of complete date format strings using one or more of the possible compo-
nents:

Visual Orchestrate User’s Guide Orchestrate Data Types in Detalil

* %m %d/ %yyyy for dates in the form 03/24/1995 (interpreted as March 24, 1995)

e %m %ld- 94800yy for dates in the form 03-24-95 where 1800 is the year cutoff (interpreted
as March 24, 1895)

e %ddd- %yy for dates in the form 056-1998 (interpreted as February 25, 1998)

e 9dd/ % %y for dates in the form 25/12/96 where 1900 is the default year cutoff (interpreted
as December 25, 1996).

Decimal

Orchestrate provides theeci mal data type for representing decimal data. The Orchestrate
deci mal format is compatible with the IBM packed decimal data format and with the DB2,
Informix, Oracle, and Teradabi&Cl MAL data types.

The Orchestratdeci mal format is characterized by two components: precision (P) and scale (S).
Precision is the total number of digits in the decimal. Precision must be at least 1, and the maximum
precision possible is 255. Scale is the number of digits to the right of the decimal point, comprising
the fractional part of theéeci mal . The ranges of permissible values for precision and scale are the
following:

1 <= P<=255 0<=S<=P

A deci mal with a scale of 0 represents integer values (no fractional part).

Deci mal values are always signed. Ttheci nmal 's sign nibble represents the sign by one of six
numeric values, shown below:

Sign NibbleValue Sign Notes

OxA +

0xB -

0oxC + (Preferred) Always generated when Orchestrate writes to a decimal
with a positive value.

0xD - (Preferred) Always generated when Orchestrate writes to a decimal
with anegative value.

OxE +

OxF +

The number of bytes occupied byeci mal value is (P/2)+1. This packed decimal representation
uses one nibble for each decimal digit, plus a sign nibble. If the number of decimal digits (that is,
the precision) is even, Orchestrate prepends a zero-valued leading nibble in order to make the total
number of nibbles even.

By default, adeci mal with zero in all its nibbles is invalid. Many operations performed on a
deci mal detect this condition and either fail or return a flag signifying an indalid mal value.
You can, however, specify that an operation treatea mal containing all zeros as a valid

Orchestrate Data Types Visual Orchestrate User’s Guide 3-5

representation of the value 0. In that case, Orchestrate treats the deci mal asvalid and performsthe
operation.

A deci mal 'savailable range, or its maximum and minimum possible values, is based on its preci-
sion and scale. The equation for determining adeci mal ’s upper and lower bounds is the following:

range = +10P =9

Note that this is an exclusive range, so thatithe mal will always be less than the maximum and
greater than the minimum. Thus, if P =4 and S = 2, the range is - 992 kmal <= 99.99 (itis
not -100.00 <=deci mal <= 100.00).

String Assignment and Conversion for Decimals

Orchestrate lets you assigrsiri ng to adeci mal and adeci nal to astring. The two most

likely situations for such assignments are performing an import or export and using a data set as an
input to an operator.

When ast ri ng is assigned to@eci mal , thest ri ng is interpreted aséeci mal value.Strings
assigned taeci mal s must be in the form:

[+/-]ddd[. ddd]

where items in brackets are optional.

By default, Orchestrate treats #te i ng as null-terminated However, you can also specify a string
length. Orchestrate ignores leading or trailing white space in the string. Range checking is
performed during the assignment, and a requirement failure occurs if the assigned value does not fit
within the decimal's available range.

You can also assigndeci mal to astring. The destination string represents the decimal in the
following format:

[+/-]ddd. [ddd]

A leading space or minus sign is written, followed by the decimal digits and a decimal point.
Leading and trailing zeros are not suppressed. A fixed-length string is padded with spaces to the
full length of the string. A fixed-length string must be precision + 2 bytes long (one byte for the
leading sign indicator and one byte for the decimal point). A range failure occurs if a fixed-length
string field is not large enough to hold the decimal.

Floating-Point

Orchestrate defines single- and double-precision floating-point data types. All standard arithmetic
and conditional operations are supported for these floating-point data types.

Visual Orchestrate User’s Guide Orchestrate Data Types in Detalil

Integers

Orchestrate defines signed and unsigned, 8-, 16-, 32-, and 64-bit integer data types. All standard
arithmetic and conditional operations are supported by these data types.

Raw

The Orchestrate r aw data type is a collection of untyped bytes, similar to the voi d datatypein the
C programming language. A raw in Orchestrate always contains a length, rather than a null
terminator.

String

An Orchestrate st ri ng field always specifies alength and does not include a null terminator.

Subrecord

You define nested field definitions, or subrecords, with the aggregate data type subrec. A
subrecord itself does not define any storage; instead, the fields of the subrecord define storage. The
fields in a subrecord can be of any data type, including t agged.

Tagged

You define tagged aggregate fields (similar to C unions) with the aggregate data type t agged.
Defining a record with a tagged aggregate allows each record of a data set to have a different data
type for the tagged field. When your application writes to a field in a tagged aggregate field,
Orchestrate updates the tag, which identifies it as having type of the field that is referenced.

The data type of atagged aggregate subfields can be of any Orchestrate data type except t agged or
subrec.

Time

The ti me data type uses a 24-hour representation, with either a one-second resolution or a
microsecond resolution. The Orchestrate ti me data type is compatible with most RDBMS
representations of time.

Valid times are in the range 00:00:00.000000 to 23:59:59.999999. Incrementing a time value of
23:59:59.999999 wraps the time around to 00:00:00.000000.

Orchestrate Data Types Visual Orchestrate User’s Guide 3-7

The ti me data type contains no information regarding time zone. In Orchestrate operations, all
time values are treated as if they are in the same time zone.

Data Conversion Format for a Time Value

By default, an Orchestrate operator interprets a string containing atime value as hh: nn: ss, where
hh isthe hour, nn is the minute (so indicated to avoid confusion with the month value in the dat e
format), and ssis the second.

If you wish to specify a non-default format, you can pass the operator an optional format string
describing the format of the time argument. In a format string for a source string converted to a
time, the time components (hour, minutes, and seconds) must be zero-padded to the character
length specified by the format string. For a destination string that receives a time, Orchestrate
zero-pads the time components to the specified length.

The possible components of the format string are:
* 9%hh: A two-digit hours component.

* 9% n: A two-digit minute componentf represents minutes becauseis used for the month
of date).

* Uss: A two-digit seconds component.

* Uss. N: Atwo-digit seconds plus fractional part whéés the number of fractional digits with
a maximum value of 6. N is 0, no decimal point is printed as part of the seconds component.
Trailing zeros are not suppressed.

Note: Each component of theé me format string must start with the percent sympegl (

For example, you could specify a format stringh: %mn to specify that the string contains only
an hour and minutes component. You could also specify the formgthasn: ss. 4 to specify
that the string also contains the seconds to four decimal places.

Timestamp

A tinestanp includes both a date, as defined by the Orchededtte data type, and a time, as
defined by theti me data type. The Orchestraténest anp data type is compatible with most
RDBMS representations of a timestamp.

Data Conversion Format for a Timestamp Value
By default, an Orchestrate operator interprets a string containingeat anp value as the follow-
ing:

yyyy-mm dd hh: nn:ss

Note that the month is represented oy while minutes are represented iny. Also note the
required space between the date and time parts of thest anp.

Visual Orchestrate User’s Guide Performing Data Type Conversions

To specify a non-default conversion format for a ti mestanp, you use a format string that
combines the format strings for dat e (see the section “Data Conversion Format for a Date” on
page 3-3) andi e (see the section “Data Conversion Format for a Time Value” on page 3-7). The
conversion format you specify must be valid for both the date and the time segments, as described
in the applicable sections.

Performing Data Type Conversions

This section describes the following topics:

« “Rules for Orchestrate Data Type Conversions” on page 3-8

* “Summary of Orchestrate Data Type Conversions” on page 3-9
- “Example of Default Type Conversion” on page 3-10

e “Example of Type Conversion with modify” on page 3-10

« “Data Type Conversion Errors” on page 3-11

Rules for Orchestrate Data Type Conversions

For a data set to be used as input to or output from an Orchestrate operator, its record schema must
be compatible with the interface for that operator, as follows:

* The names of the data set’s fields must be identical to the names of the corresponding fields in
the operator interface.

e The data type of each field in the data set must be compatible with that of the corresponding
field in the operator interface. Data types are compatible if Orchestrate can perform a default
data type conversion, translating a value in a source field to the data type of a destination field.

If there are any discrepancies in field names, you must usetthé y operator to change the field
names for your data set. If your data set has any fields with incompatible data types, you must use
thenodi f y operator to convert those types so they are compatible.

Note: For all built-in Orchestrate operators (except import/export of flat files), the internal, physi-
cal representation of Orchestrate data types is handled transparently by Orchestrate. For details on
using the nport andexport operators, see thlarchestrate User’'s Guide: Operators

Orchestrate Data Types Visual Orchestrate User’s Guide 3-9

Summary of Orchestrate Data Type Conversions

Orchestrate performs default type conversions on Orchestrate built-in numeric types (integer and

floating point), as defined in the book C: A Reference Manual (Third Edition), by Harbison and

Steele. Orchestrate also performs default data conversions involving deci nal , dat e, ti ne, and

ti mest anp fields. In addition, you can perform a number of data type conversions with the

modi fy operator, as described in the Orchestrate User’s Guide: OperatoiniSata type conversions

are described in more detail in the section “Data Set and Operator Data Type Compatibility” on
page 5-17.

The table below shows the default data type conversions performed by Orchestrate and the conver-
sions that you can perform with thedi f y operator, as follows:

« d indicates that Orchestrate performs a default type conversion from source field type to desti-
nation field type.

* mindicates that you can use a conversion specificationmmidihf y to convert from source
field to destination field.

e Ablank cell indicates that Orchestrate does not provide any conversion.

Destination Field
o
Source = g
Fed 1o 2 g £ 3 E 3 % EE § E ;g o2 §
£ S £ 5 £ 5 < E 7 S o @ S o = =
intg | dm | d d d d d d d d dm | d dm m m m
uintg | d d d d d d d d d d d
intte | dm | d d d d d d d d d d,m
uintzte | d d d d d d d d d d d
int32 | dm | d d d d d d d d d d,m m m
uintz2 | d d d d d d d d d d m m
inte4 | dm | d d d d d d d d d d
uinte4 | d d d d d d d d d d d
sfloat | dm | d | d d | d d d d d d
dfloat | dm | d d d d d d d dm | dm | dm m m
decimal dm d d d dm d dm dm d dm dm dm
sting | 4m | d | dm | d | d dm | d d d dm | dm | dm m m m
raw | M m d
date | M m m m m m m
time | M m m m d dm
timestamp | M m m m m m d

Visual Orchestrate User’s Guide Performing Data Type Conversions

Example of Default Type Conversion

The following figure shows an input data set schema in which the data types of fieldsfi el d1 and
fi el d3 do not match, but as shown in the conversion table above, they are compatible with the
types of the operator’s corresponding fields:

Input data set schema

fieldl:int8;
field2:intl6;
field3:intl6;

Default conversioni

fieldl:int32; field2:int16; field3:sfloat;

fieldl:int32; field2:int16; field3:sfloat;

Output data set i

As shown, Orchestra performs the following two default conversions:
e The data type dfi el d1 is converted fronint 8 toi nt 32.
e The data type dfi el d3 is converted fromnt 16 tosf | oat .

Example of Type Conversion with nodi f y

The table in the section “Summary of Orchestrate Data Type Conversions” on page 3-9 shows that
you can usewodi fy to convert a field of typei ne to typei nt 32. For example, to convert fietd
from typet i ne to typei nt 32, perform the following steps:

1. Right-click thenodi fy operator to open it®perator Properties dialog box. Presadd, to
open theDption Editor dialog box.

2. IntheOption Editor dialog box, pressEdit to open theM odify Adapter Editor dialog box.

In theRename/Convert area of theModify Adapter Editor dialog box, presé&dd to open
the Rename/Conver sion dialog box.

4. IntheRename/Conversion dialog box, do the following:
* Enter theSource Field Name, t .
* Enter theDest(ination) Field Name, t (or another name of your choice).
e CheckSet Dest Type To, and select the data type of the destination field32.

* CheckConvert Source Type. Select theSource Type, ti me. Select theConversion to
perform, i nt 32_f r om dat e. Click OK to perform the conversion.

Orchestrate Data Types Visual Orchestrate User's Guide 3 -11

As shown in the conversion table above, there is no default conversion from time to ui nt 64. How-
ever, there is a default conversion fromi nt 32 to ui nt 64, and there is an explicit (with nodi f y)
conversion from i nt 32 to ui nt 64. Therefore, you can effect a default conversion to convert field
t fromtypeti me totypeui nt 64. To do so, use the Rename/Conver sion dialog box, described in
Step 4. above. Enter the Source Field Name, t . Enter the Dest Field Name of your choice. In the
Set Dest Type Tofield, enter ui nt 64. Do not check Convert Source Type. Press OK. Orchestrate
convertsthetypefromti ne toi nt 32, and then fromi nt 32 to ui nt 64.

Data Type Conversion Errors

A error results when any Orchestrate operator is unable to perform a default data type conversion.
See “Data Type Conversion Errors and Warnings” on page 5-17 for details on data type conversion
errors and warnings and on how to prevent them.

3-12 Visual Orchestrate User’s Guide Performing Data Type Conversions

Visual Orchestrate User’s Guide

4: Orchestrate Data Sets

Orchestrate data sets contain the data processed by an Orchestrate application. Orchestrate
operators take data sets as input, process all records of the input data set(s), and write their
resultsto output data sets.

This chapter introduces data sets by defining their structure and the two types of data sets
used by Orchestrate. It also explains how to use data setswith operators.

This chapter containsthe following sections:

e “Orchestrate Data Sets” on page 4-1

e “Using Visual Orchestrate with Data Sets” on page 4-7
- “Defining a Record Schema” on page 4-16

« “Representation of Disk Data Sets” on page 4-32

Note: To manage Orchestrate persistent data sets, use the Orchestrate administration utility
or chadmni n, which is described in the Orchestrate I nstallation and Administration Manual.

Orchestrate Data Sets

This section covers data set structure, record schemas, field data types, use of data sets with
operators, and the different types of data sets.

Data Set Structure

A data set consists of a one-dimensiona array (vector) of records. The fundamentals of record-

based data are described in the section “Orchestrate Data Sets” on page 1-5. As described in that

chapter, fields of some types, suchias 8, are of fixed length. Fields of other types, such as

string, can be of variable length. A record that defines one or more variable-length fields is a

variable-length record.

4-2 Visual Orchestrate User’s Guide Orchestrate Data Sets

The following figure shows a sample data set and the format of its variable-length record definition,
which contains two variable-length fields of type st ri ng:

Data set

Record Record Record L Record

string string int32

Variable-length record

An example of an appropriate use of this variable-length record format isamailing list. In that case,

each record in the data set would hold the data for one person. One variable-length string field

could contain the person’s name, and the second field the address. A 32-bit integer field could
contain a key for sorting the records.

Another kind of data set has a fixed-length record layout, similar to a normalized table in a
Relational Database Management System (RDBMS). Normalized tables have a regular row and
column layout. In the figure below, each row of the table corresponds to a single record, and each
column corresponds to the same fixed-length field in every record:

Columns represent fields

v

<4— Rows represent records

Data set of fixed-length records

Record Schemas

This section describes the data set schema, introduced in the section “The Orchestrate Schema” on
page 1-6. See the chapter “Orchestrate Data Types” for fundamental information on Orchestrate
data types.

A schema describes the prototypical record in a data set or operator interface. A schema consists or
a record-level property list and a description of each field in the record. Specific record-level prop-
erties are described in the chapter on import/export properties i@rtestrateUser’s Guide:
Operators

Orchestrate Data Sets Visual Orchestrate User’s Guide 4-3

The schema describes each field with the following information:

* Anidentifier (field name)

e A data type (for some types, parameterized)

« For string and raw fields, an optional length specification
« For a vector field, an optional length

« Field-level properties, such as the nullability specification (see the section “Defining Field
Nullability” on page 4-19)

A fundamental use of a record schema is to describe the data for import into an Orchestrate data set.
Orchestrate’s record schema can describe the data layout of any RDBMS table, and it supports most
COBOL records formats, including repeating substructures. See the chapter on the import/export
utility in the Orchestrate User’s Guide: Operatorfor more information on import and export.

In the following figure, a data set’s record schema is shown in a fragment of a data-flow diagram:

Operator 1
Input data set schema
a:int32; i
b[10] :i nt 32;
c:nullable inti16; Operator 2
d: sfloat;

e:string i

In this figure, the record schema for the input data set consists of five fields:
e a: A 32-bit integer

e b: A 10-element vector of 32-bit integers

e c: A nullable 16-bit integer

e d: A single-precision floating point value

e e: Avariable-length string

See the section “Defining a Record Schema” on page 4-16 for more information on defining
schemas.

Using Data Sets with Operators

Orchestrate operators, introduced in the section “Orchestrate Operators” on page 1-9, can take data
sets or data files as input, and can produce data sets or data files as output. Some operators can also
use RDBMS tables as input or output. For extensive information on using Orchestrate operators,
see the chapter “Orchestrate Operators”.

Visual Orchestrate User’s Guide Orchestrate Data Sets

Some operators can take multiple input and output data sets (n-input, m-output operators), as shown
in the left-hand data-flow diagram below. Other operators are limited in the number of input and/or
output data sets they handle; the right-hand diagram below shows a one-input, one-output operator:

Input data sets Input data set
n-input, m-output one-input, one-output
operator operator

Output data sets Output data set

Note: Within a single step, you cannot use a single data set (either virtual or persistent) as both
input and output for the same operator.

For the number of input and output data sets allowed for each Orchestrate operator, see the
appropriate chapter in the Orchestrate User’s Guide: Operators

Using Virtual Data Sets

Orchestrate uses virtual data sets to temporarily store datathat is output by an operator and input by
another operator. Virtual data sets exist only within a step, to connect the output of one operator to
the input of another operator in the step. You cannot use virtual data sets to connect operators in
different steps. A virtual data set does not permanently buffer or store to the data to disk. Virtua
data sets are created and processed by one step and then destroyed when that step terminates.

Orchestrate Data Sets Visual Orchestrate User's Guide 4-5

The following data-flow model shows a step that uses two virtual data sets to connect three
operators:

Step 1 \

Operator 1

inFile.data

Operator 2

Virtual
data set 2
Operator 3

AN

_/V@ outFile.data

Visual Orchestrate User’s Guide Orchestrate Data Sets

Using Persistent Data Sets

Persistent data sets are stored to adisk file, so that the data processed by a step is preserved after the
step terminates. You can use persistent data sets to share data between two or more steps, as shown
below:

Step 1 \
inFile.data Operator 1 Step2 A
’ Operator 4
Virtual data ¢
setl
ivirtual
Operator 2 data set 4
) Operator 5
Virtual data
set 2
ivirtual
copy operator data set 5
) Operator 6
Virtual data |
set 3
Operator 3 Persistent data set 2
copyDS.ds @
] Persistent data set 3
Persistent data set 1 out6DS.ds
out3DS.ds

Step 1 saves the data set output from Operator 2 and uses it as the input to Step 2. These two steps
could be part of asingle executable file, or each could be part of a separate executablefile.

The example above uses the Orchestrate copy operator to create two copies of the data set output
of Operator 2: a virtual data set passed to Operator 3 and a persistent data set used as input to
Operator 4. The copy operator takes a single data set as input and produces any number of copies
of the input data set as output.

Note: A persistent data set cannot serve as both an input and an output in asingle step. The reason
for thisrestriction is that afile cannot be open simultaneoudly for reading and for writing.

Orchestrate Data Sets Visual Orchestrate User's Guide 4-7

Importing Data into a Data Set

In many Orchestrate applications, the first operation is to read data from a disk file and to convert
the data to an Orchestrate data set. Then, Orchestrate can begin processing the data in parallel,
including partitioning the data set. When processing is complete, your application can export the
data set to adisk filein the same format as the input file for the application.

The Orchestrate import/export utility lets you import a data file into Orchestrate as a data set and
export adata set to afile. Seethe chaptersonthei nport and export operatorsin the Orchestrate
User’s Guide: Operatorfor more information.

Partitioning a Data Set

Partitioning divides a data set into multiple pieces, or partitions Each processing node in your
system then performs an operation in parallel on an individual partition of the data set rather than
on the entire data set, resulting in much higher throughput than a using a single-processor system.

To implement partitioning, Orchestrate divides a data set by records. See the chapter “Partitioning
in Orchestrate” for more information on how Orchestrate partitions data sets.

Copying and Deleting Persistent Data Sets

Orchestrate represents a single data set as multiple files on multiple processing nodes. Therefore,
you cannot use the standard UNIX commanddo delete otp to copy a persistent data set. See

the section “Representation of Disk Data Sets” on page 4-32 for more information on date set
representation.

Orchestrate provides thw chadni n utility to manipulate data sets. This utility recognizes the
layout of a persistent data set and accesses all data files to copy or delete the persistent data set. See
the Orchestrate Installation and Administration Manual for a detailed discussion of chadni n.

Using Visual Orchestrate with Data Sets

This section describes how to use Visual Orchestrate to manipulate both persistent and virtual data
sets. Included below are the following sections:

* “Working with Persistent Data Sets” on page 4-8
e “Working with Virtual Data Sets” on page 4-12

Visual Orchestrate User’s Guide

Working with Persistent Data Sets

Using Visual Orchestrate with Data Sets

To create a persistent data set in the Program Editor, you can either:

e ChooseProgram -> Add Data Set from the menu.
* Click the data set icon in the tool bar.

e With the cursor in @rogram Editor window, click the right mouse button and selacid

Data Set from the popup menu.

The data set icon appears in Bregram Editor window, as shown below:

VYizual Drchestrate - Server "test_metheny™ as "stephen™

File Edit “iew Cusztorn Toolz Program Windows Help

[[0 x]

o| p|=(a|s| =lo|o|w| =|e|s|e] =%

= @ Server - test_metheny
[2% Programs
Operators

i Datasets

(5 Schemas

B 313 Configurations

B Program Editor - stephen:Untitle... [I=] B3

| Ready

4

Double click the data set icon to open Beta Set Properties dialog box, as shown below:

. Data 5et Properties
General | Notesl
— General Propertie
Label: [data ds [~ Copy From Path
Path: |a’t0rrent£apta’data.ds Browse... I
Library: |Usel
Stored As:
% Orchestrate Data Set i File Set i Flat File
" Parallel 545 Data Set " Sequential SAS Data Set
O, I Lpply Cancel Help

Use this dialog box to specify the following:

Orchestrate Data Sets Visual Orchestrate User’s Guide 4-9

The Label of the data set in the Program Editor window.

The Pathname of the data set’s descriptor file. The descriptor file contains a list of all the indi-
vidual data files, stored across your parallel machine, that contain the data set records.

See the section “Representation of Disk Data Sets” on page 4-32 for more information on
data set layout.

TheLibrary name for the data set. The library corresponds to the entry \fighvd/Vindow,
underData Set, containing the data set name.

Sored As. Choose the representation of the data set as eith@rerestrate Data Set
(default), aFile Set, aFlat File, or either of the two SAS representations. See the section on
thei nport andexport operators in th®rchestrate User's Guide: Operatorfor more infor-
mation on representations of data sets.

After you create the data set, you create a link to connect the data set to an operator as either an
input or output data set. This procedure is described in the following two sections:

e “Connecting a Persistent Data Set as Input” on page 4-9
e “Connecting a Persistent Data Set as Output” on page 4-11

Connecting a Persistent Data Set as Input

To connect a persistent data set as an input to an operator, create a link and attach one end of the
link to the data set and the other end of the link to the input of an operator. To create a link, you can
do any one of the following:

e ChooseProgram -> AddLink from the menu.
e Click the link icon in the tool bar.

* With the cursor in @rogram Editor window, click the right mouse button and selacd
Link from the popup menu.

The following figure shows a data set connected to an operator by a link:

E) Program Editor - stephen:Untitle._. [B[=] B3

!
1

4-10 Visual Orchestrate User’s Guide Using Visual Orchestrate with Data Sets

Double click on the link to perform any optional configuration for the link. The Link Properties
dialog box for an input data set is shown below:

. Link Properties

I Schema | Advanced I Notesl

—Adapter Properties
Yiew Adapter:
KN _'l_I
Edit I
Transfer Adapter:
KN _'l_I
Edit I

0k I Apply | Cancel | Help |

Use this dialog box to specify the following:

Adapters alows you to specify a view adapter or transfer adapter on the data set. See the
chapter on the nodi f y operator in the Orchestrate User’s Guide: Operatorfor more informa-
tion.

Schema allows you to define the record schema when the input data set represents a Flat File.
See the chapter on the import/export utility in the Orchestrate User’s Guide: Operatofer
more information on data representation.

Advanced allows you to enter options for buffering. See the Orchestrate Installation and
Administration Manuafor more information on these options.

Notes allows you to enter optional text that describes the link. The text is saved with the link.
This tab provides standard text editing functions, such as selection, cutting, and pasting; right-
click to display acontext menu of these functions.

Orchestrate Data Sets Visual Orchestrate User's Guide 4 -11

Connecting a Persistent Data Set as Output

To connect the data set as an output, create alink and attach one end of the link to the data set and
the other end of the link to the output from an operator.

B Program Editor - stephen:Untitled [... =] E3

Operator

Double click on the link to perform any optional configuration for the link. The Link Properties
dialog box for an output data set is shown below:

w. Link Properties E

Dvenarite I Schema I Constraints | Advanced I Notesl

— Ovenante Propertie

— If data set already exists...
€ Signal an eror " Append to it
—when ovenwiiting dataset, ovenwrite. .
& Everpthing = Records only = Records and schema

0k I Apply Cancel Help

This dialog box contains the following tabs:

Overwrite tab to control Orchestrate’s action when the output data set already exists. By
default, Orchestrate signals an error and aborts your application when writing to an existing
data set. This prevents you from accidentally overwriting data.

You can accept the default Signal an error, choose t@verwrite it, or choose t@\ppend
data to it. See the next section for more information on append.

Schema tab to explicitly define the record schema for the output data set.

Constraints tab to control where the data set is written on your system. See the chapter “Con-
straints” for more information.

4-12 Visual Orchestrate User’s Guide Using Visual Orchestrate with Data Sets

Advanced tab for setting preserve-partitioning flag and buffering options. See the section “The
Preserve-Partitioning Flag” on page 8-11 for more information on the preserve-partitioning
flag.

Notes tab for entering optional text that describes the link. The text is saved with the link. This
tab provides standard text editing functions, such as selection, cutting, and pasting; right-click
to display a context menu of these functions.

Appending Data to an Existing Data Set

Orchestrate allows you to append data to an existing data set. The appending operator must execute
in a separate step from the operator performing the write that first created the data set. In addition,
records appended to an existing data set must have an identical record schemas as the existing data
set.

When a persistent data set is created and first written to disk, the number of partitions it contains is
equal to the number of instances of the operator that creates it. When you later append data to the
data set, the number of processing nodes on which the appending operator executes may be
different from the number of partitions in the existing data set. Also, the data files containing the
appended records can reside on disk drives other than those holding the original data.

For example, if a data set was originally created with eight partitions, and is appended to by an
operator executing on four processing nodes, Orchestrate repartitions the appending data to store it
as eight partitions.

The state of a data set’s repartitioning flag is saved to disk along with the records of the data set. To
prevent Orchestrate from repartitioning the data set, you can set the repartitioningpfiesgrie

Then, when you append data to that data set, Orchestrate creates one instance of the appending
operator for each partition of the data set.

Working with Virtual Data Sets

Virtual data sets connect the output of one operator to the input of another operator. In Visual
Orchestrate, you use a link to implement a virtual data set.

To create a link, you can either:
e ChooseProgram -> Add Link from the menu.
* Click the link icon in the tool bar.

* With the cursor in @&rogram Editor window, click the right mouse button and selacd
Link from the popup menu.

Orchestrate Data Sets Visual Orchestrate User's Guide 4-13

Thelink icon for the virtual data set appears in the Program Editor window, as shown below:

2% Program Editor - Untitled [_ (O] %] |

Before you configure the link, connect it to the output of one operator and to the input of another
operator. You can then perform optional configuration on the link.

Double click on the link icon to open the Link Properties dialog box. This dialog box is shown
below:

w. Link Properties E

I Advanced | Notesl

—Adapter Properties
View Adapter:
KN _'l_I
Edit |
Transfer Adapter:
KN _'l_I
Edit I

0k I Apply | Cancel | Help |

This dialog box contains the following tabs:

Adapterstab for specifying aview adapter or transfer adapter on the data set. See the chapter
on the nodi f y operator in the Orchestrate User’s Guide: Operatorfor more information.

Advanced tab for setting preserve-partitioning flag and buffering options. See the section “The
Preserve-Partitioning Flag” on page 8-11 for more information on the preserve-partitioning
flag.

Notes tab for entering optional text that describes the link. The text is saved with the link. This
tab provides standard text editing functions, such as selection, cutting, and pasting; right-click
to display a context menu of these functions.

Visual Orchestrate User’s Guide Using Visual Orchestrate with Data Sets

Using the Data Set Viewer

The Visual Orchestrate Data Set Viewer lets you display information about an Orchestrate

persistent data set. You access the utility by choosing the menu command Tools -> Data Set
Viewer.

1. Choose Tools-> Data Set Viewer from the Visua Orchestrate menu. This opensthe following
dialog box that you use to select a persistent data set you want information on:

. View Data Set E

Select a data set:

GUITeste data ds [Proaram impart]
GUITests data.dz (Program sort’)
GUITests:data? ds [Program 'sort)
GUITests data ds [Program test')

[I Cancel | Help |

2. Choose the data set and click OK to open the following dialog box displaying information
about the data set:

=% Data Set Viewer M=l E3

— Data Set Propertie:
Marne: GUIT ests: data.dz [Program ‘sort’) Total Records: 112
Pathi: fhome/traveler/guidtests/data. ds Total Blocks: 4
Wergion: ORCHESTRATE W3.0 [Alpha) DM Block Format 5. Total Bytes: 1.3KB .
Created: 7/27/98 2.57:35 PM j ew data
Schenma: Detail.. | ViewDats |4

— Partitionz [4) — Segments [1]

Mode 3

0 | borodin 28 1 33k B 0 |7/27/98 26735 FM
1 | borodind 28 1 33k B
2 | borodinZ 28 1 33k B
3 | borodind 28 1 33k B
4| | 3 4 3

— Segment Files (0]

Pathname

Er—— ST Help

Orchestrate Data Sets Visual Orchestrate User's Guide 4 -15

3. You can dump data set records by clicking on the View Data button. This opens the following
dialog box:

=k Data Viewer

—Data To Dizplay:
Paititions: &+ Al " Partition #: ID

FRecords: ¢ Al o He?to_rds per I'ID— I~ Show every | th recard
parttion;
™ Skip first | recards

Fields: i Al = Specific: |
[Show field names in data view Add Delee |
— Data Wiew:

Cloze | Help

Specify the records you want to display, and then click the View button.

4-16 Visual Orchestrate User’s Guide Defining a Record Schema

Obtaining the Record Count from a Persistent Data Set

inDS.ds
Step ¢
opl
Virtual data set 0 Virtual data set 1
tempDS.vds
op2 op3

out2DS.ds @ @ out3DS.ds

You may on occasion need to determine the count of the number of records in a persistent data set.
Orchestrate provides the UNIX command-line utility dsr ecor ds that returns this count.

You execute dsr ecor ds from the UNIX command line using the Visual Orchestrate Shell Com-
mand. Shown below is the syntax for dsr ecor ds:

dsrecords ds_nane

where ds_nane specifies the pathname of a persistent data set.

This output of dsr ecor ds appearsin the Execution Window is shown below:

Job started.
4/9/98 6:14:36 PM 0O TUSV 001013 Inform: 24 records

Job finished, status = K

Defining a Record Schema

An Orchestrate record schema definition is an ASCII string beginning with the key word r ecor d
and consisting of a sequence of field definition statements enclosed in parentheses and separated by
semicolons. For example:

record (aField:int32; bField:sfloat; cField:string[];)

This record schema defines three-record fields:
e afield:A32-bitinteger field

Orchestrate Data Sets Visual Orchestrate User's Guide 4 -17

e DbFi el d: A single-precision (32-bit) floating-point field
e cFi el d: A variable-length character string

Schema Definition Files

For use with the import, export, and generator operators, you can create a file containing your
schema definition. See the chapters for those operators@r¢hestrate User’s Guide: Operators

You can include comments in schema definition files. The starting delimiter for a comment is a
double slash //, and the ending delimiter is a new-line. Note, however, that you cannot use
commentsin schema definitions that you specify on the command line.

Field Accessors

You can retrieve information about afield, such aswhether it is nullable, by calling functions on its
field accessor. For information on declaring and using field accessors, see the Orchestrate/APT
Developer’s Guiddor information.

How a Data Set Acquires Its Record Schema

A data set acquires its record schemain one of the following three ways:

1. Import of the data set from an external representation. Often, the first action of an Orchestrate
application is to import data and convert it to a data set. You define the record schema of the
resultant data set at the time of the import. See the chapter on i mport in the Orchestrate
User’s Guide: Operatorfor more information.

2. A writeto the data set by an Orchestrate operator. A data set with no schemainherits the output
interface schema of the operator that writes to it. This is the most common way for an output
data set to obtain a schema. See the section “Output Data Sets and Operators” on page 5-8 for
more information.

3. Aread from an RDBMS table by an RDBMS operator. On a read operation, Orchestrate con-
verts the table into an Orchestrate data set by reading both the data and the record layout of the
table. Orchestrate automatically creates a record schema for the new data set, based on the
information from the RDBMS table.

Note that on a write operation to an RDBMS table, Orchestrate converts the record schema of a
data set to the table layout of an RDBMS data set. Se@rtestrate User’s Guide: Opera-
tors for specific information on how your RDBM S works with Orchestrate.

The following sections describe how to create record schemas, name record fields, specify
nullability, and set record schema properties for each Orchestrate data type.

Visual Orchestrate User’s Guide Defining a Record Schema

Using Complete or Partial Schema Definitions

When you define the record schema of a data set, you do either of the following:

« Define complete record schemas: You describe every field in the record, including the field's
name and data type.

e Partial record schemas: You describe only the components of the record schema needed for
processing.

The following figure shows both options:

Record Record Record Record Record Record
Record i nt 32 intl6 df | oat string int32
Complete schema definition
Record int32 df | oat

Partial schema definition

For a complete schema definition, you define all fields in the record, including the field’s name,
data type, and nullability. You must define the complete schema if your application needs to access
all the fields in the record, wheaecess includes the following:

e Reading a field value

e Writing a field value

» Dropping a field and its associated data storage from the record
* Modifying a field’s name, data type, or other characteristics

You can use partial schemas if your application will access only some of the data in a record. For
example, the partial schema definition in the figure above defines only two fields (the first and
third) of a five-field record. An Orchestrate application would be able to access only those defined
fields, whereaccess includes the following:

* Reading a field value
« Dropping a field definition (but not its associated data storage) from the record
* Modifying the field’s name, data type, or other characteristics

Note that a partial schema definition allows you to drop access to a defined field, bubtdoes
remove its data storage.

The main advantage of a complete record schema is the flexibility to manipulate the records during
processing. However, to define a complete schema you must define all record fields in your data,
regardless of whether you application will reference all the fields.

Orchestrate Data Sets Visual Orchestrate User's Guide 4-19

Partial schemas allow you to define only the fields that you are interested in processing and to
ignore al other data in the records. However, Orchestrate cannot perform some types of
manipulations on partial schema definitions, such as dropping unused fields from the record.

See the chapter on the import/export utility in the Orchestrate User's Guide: Operatorgor more
information.

Naming Record Fields

In your Orchestrate record schema definition, all field names must conform to the following con-
ventions:

e The name must start with a letter or underscore (_) character.
e The name can contain only alphanumeric and underscore characters.
e The name is case insensitive.

Field names can be any length.

Defining Field Nullability

If a field isnullable, it can holdnull, which indicates that the field contains no data. In processing a
record, an operator can detect a null value and take the appropriate action, such as omitting the null
field from a calculation or signalling an error condition.

This section describes two different methods for representing nulls, and how to specify nullability
in an Orchestrate record schema.

Orchestrate Null Representation

Orchestrate uses a single-bit flag to mark a field as null. If the field is a vector, Orchestrate uses a
single bit for each element of the vector, so that a nullable vector can contain both valid data
elements and null elements. This type of null support is call@wianated null representation.

Some other software packages implement null support witindoand representation, which
designates as null a specific value, such a numeric field's most negative value. The disadvantage of
in-band null representation is that requires the user to treat an in-range value as a null. However,
Orchestrate does allow you to process data that uses in-band null representation, by means of the
modi fy operator (see th@rchestrate User's Guide: Operatods

Defining Nullability in a Record Schema

In creating a record schema, you mark a field as nullable by inserting the keyword nul | abl e
immediately before the field’s data type. Any field defined withoutntlid abl e keyword is by
defaultnot nullable. The following sample record schema defines a nuilabl@2 and a nullable
df | oat vector:

Visual Orchestrate User’s Guide Defining a Record Schema

record (n:nullable int32; s[10]:nullable dfloat;)

Even though a field is by default non-nullable, you can use the not _nul | abl e keyword to be
explicit, as shown below:

record (n:not_nullable int32;)

To make every field in a record schema nullable, you can specify nul | abl e at the record level,
with the following syntax:

record nullable (n:int32; mintl6; f:dfloat;)

Specifying nullability at the record level affects top-level fields only and does not affect nested
fields.

Nullability can be overridden for any field in the record by explicit use of not _nul | abl e, as
shown below:

record nullable (n:int32; mnot_nullable intl1l6; f:dfloat;)

Nullability of Vectors and Aggregates
Vectors are nullable, and you can check for anull in each element of a nullable vector.

An aggregate (tagged or subrecord) is not itself nullable. However, you can specify nullability for
the fields of an aggregate that have types that are nullable. Nullability and aggregate is further
discussed in the section “Vectors and Aggregates in Schema Definitions” on page 4-24.

Checking Null and Nullability

To determine whether a field is nullable, you must check its nullability property. To check whether
a field is nullable, or whether a nullable field currently contains null, you must first declare an
accessor for the field; see t@echestrate/APT Developer’s Guifier information. Field accessors

can also provide other information, such as the length of a variable-length vector.

Using Value Data Types in Schema Definitions

This section describes how to use the Orchestrate value data types in record schema definitions,
with a section for each data type. Each section includes examples of field definitions, and some
sections describe required and optional properties for fields of the data type. Vectors are further
described in the section “Vectors and Aggregates in Schema Definitions” on page 4-24.

Date Fields
You can includelat e fields, in a record schema, as shown in the following examples:

record (dateFiel dl:date;) /1 single date
record (dateFiel d2[10]:date;) /1 10-el enent date vector

Orchestrate Data Sets Visual Orchestrate User's Guide 4 —21

record (dateField3[]:date;) /1 variable-length date vector
record (dateField4:nullable date;) // nullable date

Decimal Fields

You can include deci mal fieldsin arecord schema. To define arecord field with datatypedeci -
mal , you must specify the field’s precision, and you may optionally specify its scale, as follows:

fi el dnane: deci mal [preci si on, scal e];

where:
e 1<=precision(no maximum)

e 0O<=scale recision
If the scale is not specified, it defaults to zero, indicating an integer value.

Examples ofieci mal field definitions:

record (dFiel dl:decimal[12];) /1 12-digit integer
record (dFiel d2[10]:decimal[15,3];)// 10-el enent deci nal vector
record (dField3:nullable decinmal[15,3];) // nullable decinal

Floating-Point Fields

You can include floating-point fields in a record schema. To define floating-point fields, you use
thesf | oat (single-precision) odf | oat (double-precision) data type, as in the following exam-
ples:

record (aSingle:sfloat; aDouble:dfloat;) // float definitions
record (aSingle: nullable sfloat;) // nullable sfloat

record (doubl es[5]:dfloat;) /1 fixed-length vector of dfloats
record (singles[]:sfloat;) /1 variable-length vector sfloats

Integer Fields

You can include integer fields in a record schema. To define integer fields, you use an 8-, 16-, 32-,
or 64-bit integer data type (signed or unsigned), as shown in the following examples:

record (n:int32;) /1 32-bit signed integer

record (n:nullable int64;) // nullable, 64-bit signed integer

record (n[10]:int16;) // fixed-length vector of 16-bit signed integer
record (n[]:uint8;) // variable-length vector of 8-bit unsigned int

Raw Fields

You can define a record field that is a collection of untyped bytes, of fixed or variable length. You
give the field data typeaw You can also specify a byte alignment value oawafield, to satisfy
requirements of your system architecture or to optimize the speed of data access.

The definition for a awfield is similar to that of a string field, as shown in the following examples:

4-22 Visual Orchestrate User’s Guide Defining a Record Schema

record (varl:raw];) /1 variable-length raw field

record (var2:raw,) /1 variable-length raw field; sane as raw]
record (var3:raw 40];) /1 fixed-length raw field

record (var4[5]:rawf40];)// fixed-length vector of raw fields

/1 variable-length raw aligned on 8-byte boundary:

record (var5:rawfalign = 8];)

/1 vector of fixed-length raw fields aligned on 4-byte boundary:
record (var6[5]:rawfalign = 4, length = 20];)

Variable-Length Raw Fields

When an Orchestrate operator writes to a variable-length r aw field, it determines the field length
and updates the field’s length prefix. When an operator reads from a variablerlewdtbld, it
first reads the length prefix to determine the field’s length.

You can specify the maximum number of bytes allowed in the raw field with the optional property
max, as shown in the example below:

record (var7:raw nax=80] ;)

If an application attempts to write more thax bytes to a raw field, Orchestrate writes only the
first max bytes.

Fixed-Length Raw Fields
The length of a fixed-lengthaw field must be at least 1.

String Fields

You can define string fields of fixed or variable length. For variable-length strings, the string length
is stored as part of the string as a hidden integer. The storage used to hold the string length is not
included in the length of the string.

In a data set with a variable-length string field, each record of the data set can contain a different
length string. When an operator writes to the field, Orchestrate determines the string length and
updates the field’s hidden length integer. When an operator reads from a variable-length field,
Orchestrate first reads the length integer to determine the field’s length.

The following examples showt ri ng field definitions:

record (varl:string[];) // variable-length string

record (var2:string;) // variable-length string; same as string[]
record (var3:string[80];) // fixed-length string of 80 bytes
record (var4:nullable string[80];) // nullable string

record (var5[10]:string;) // fixed-length vector of strings

record (var6[]:string[80];) // variable-length vector of strings

Variable-Length String Fields
For variable-length string fields, you can include the paramateto specify the maximum length
of the field in bytes. Shown below is an example using this parameter:

record (var7:string[mx=80];)

Orchestrate Data Sets Visual Orchestrate User’s Guide

When arecord containing a string field with a specified maximum length is created, the length of
the string is zero, as it is for normal variable-length strings. Writing data to the string field with
fewer bytes than the maximum sets the length of the string to the number of bytes written. Writing
astring longer than the maximum length truncates the string to the maximum Iength.

Fixed-Length String Fields
The length of afixed-length st ri ng field must be at least 1.

You can use the optional property padchar to specify the character for unassigned elements in
fixed-length string fields. The padchar property has the following syntax:

padchar = jint_val | ASC|_char | null

where:

e int_val is aninteger in the range 0 - 255, that is the ASCII value of the pad character.
e ASClI_char is the pad character as a single ASCII character.

* null (default) specifies a value of 0 as the pad character (same as spgzifidhgr = 0).

The following example shows usepmddchar in a field definition:
record (var8:string[80, padchar ="' '];) // ASCI| space padchar (0x20)

If an application wrote fewer than 80 characters tovthe8 field defined in this example,ar 8
will be padded with the space character to the full length of the string.

Note that the Orchestraéeport operator uses the specifipddchar to pad a fixed-length string
that is exported. See the section on the import/export utility i@tteestrate User’s Guide: Oper-
atorsfor more information.

Time Fields

You canincludet i me fieldsin arecord schema. By default, the smallest unit of measure for atime
valueis seconds, but you can instead use microsecondswith the[mi cr oseconds] option. Thefol-
lowing are examples of t i me field definitions:

record (tFieldl:tine;) /1 single tine field in seconds
record (tField2:tine[mcroseconds];)// time field in mcroseconds
record (tField3[]:time;) /1 variable-length time vector

record (tField4:nullable time;) // nullable time

Timestamp Fields

Timestamp fields contain both time and date information. In the time portion, you can use seconds
(the default) or microseconds for the smallest unit of measure. For example:

record (tsFieldl:tinmestanp;)// single tinestanp field in seconds
record (tsField2:timestanp[mcroseconds];)// tinestanp in m croseconds
record (tsField3[15]:timestanp;)// fixed-length tinestanp vector
record (tsField4:nullable tinmestanp;)// nullable tinestanp

Visual Orchestrate User’s Guide Defining a Record Schema

Vectors and Aggregates in Schema Definitions

This section describes how to use the Orchestrate vectors and the two aggregate data types,
subrecords and tagged aggregates, in record schema definitions. It also describes how to reference
vector elements and fields in aggregates.

Vector Fields

Orchestrate records can contain one-dimensional arrays, or vectors, of fixed or variable length. You
define avector field by following the field name with brackets|[] . For avariable-length vector, you
leave the brackets empty, and for afixed-length vector you put the number of vector elementsin the
brackets. For example, to define avariable-length vector of i nt 32, you would use afield definition
such asthe following:

i ntVec[]:int32;
To define afixed-length vector of 10 elements of type sf | oat , you would use a definition such as:

sfl oat Vec[]: sfl oat;

Data Types for Vectors

You can define a vector of any Orchestrate value datatype, including st ri ng and r aw. You cannot

define a vector of a vector or tagged aggregate type. You can, however, define a vector of type

subrecord, and you can define that subrecord to include a tagged aggregate field or a vector. For

more information on defining subrecords, see the section “Subrecord Fields” on page 4-25.

Numbering of Elements
Orchestrate numbers vector elements from 0. For example, the third element of a vector has the
index number 2. This numbering scheme applies to variable-length and fixed-length vectors.

Referencing Vector Elements

To reference an element of a vector field of fixed or variable length, you use indexed addressing of
the formvFi el d[el eNunj . Remember that element numbering starts with 0. For example, sup-
pose that you have defined the following a vector field:

vint[10]:int32;
To reference the third element of that field, youwise [2] .

Nullability of Vectors
You can make vector elements nullable, as shown in the following record definition:

record (vint[]:nullable int32;
vDat e[6] : nul | abl e date;)

In the example above, every element of the variable-length weictor will be nullable, as will
every element of fixed-length vectobat e.

To test whether a vector of nullable elements contains no data, you must check each element for
null.

Orchestrate Data Sets Visual Orchestrate User’s Guide

Subrecord Fields

Record schemas let you define nested field definitions, or subrecords, by specifying the type
subr ec. A subrecord itself does not define any storage; instead, the fields of the subrecord define
storage. Thefieldsin a subrecord can be of any datatype, includingt agged.

The following example defines a record that contains a subrecord:

record (intField:intl6;
aSubrec: subrec (
aFi el d:int 16;
bFi el d: sfloat;);
)

In this example, the record contains a 16-bit integer field, i nt Fi el d, and a subrecord field,
aSubr ec. The subrecord includes two fields: a 16-bit integer and a single-precision float.

Referencing Subrecord Fields

To reference fields of a subrecord, you use dot addressing, following the subrecord name with a
period (.) and the subrecord field name. For example to refer to the first field of the aSubrec
example shown above, you use aSubr ec. aFi el d.

Nullability of Subrecords
Subrecord fields of value data types (including st ri ng and r aw) can be nullable, and subrecord
fields of aggregate types can have nullable elements or fields. A subrecord itself cannot be nullable.

Vectors of Subrecords
You can define vectors (fixed-length or variable-length) of subrecords. The following example
shows a definition of afixed-length vector of subrecords:

record (aSubrec[10]:subrec (
aFi el d:int 16;
bFi el d: sfloat;);
)

Nested Subrecords

You can also nest subrecords and vectors of subrecords, to any depth of nesting. The following
example defines a fixed-length vector of subrecords, aSubr ec, that contains a nested variable-
length vector of subrecords, cSubr ec:

record (aSubrec[10]:subrec (
aFi el d: i nt 16;
bFi el d: sfl oat ;
cSubrec[]:subrec (
cAFi el d: ui nt 8;
cBFiel d:dfl oat;);

)

To reference afield of a nested subrecord or vector of subrecords, you use the dot-addressing syn-
tax <subr ec>. <nSubr ec>. <sr Fi el d>. To reference cAFi el d in the sample subrecord defini-
tion above, you would use aSubr ec. cSubr ec. cAFi el d.

4-26 Visual Orchestrate User’s Guide Defining a Record Schema

Subrecords Containing Tagged Aggregates
Subrecords can include tagged aggregate fields, as shown in the following sample definition:

record (aSubrec:subrec (
aFi el d: string;
bFi el d: i nt 32;
cFi el d: tagged (

dFi el d:i nt 16;

eFi el d: sfl oat;

)

)
)

In this example, aSubr ec hasastri ng field, an i nt 32 field, and a tagged aggregate field. The
tagged aggregate field cFi el d can have either of two datatypes, i nt 16 or sf | oat .

To reference afield of atagged aggregate field of a subrecord, you use the dot-addressing syntax
<subrec>. <t agged>. <t fi el d>. ToreferencedFi el d inthe sample subrecord definition above,
you would use aSubr ec. cFi el d. dFi el d.

Tagged Aggregate Fields

You can use schemas to define tagged aggregate fields (similar to C unions), with the data type
t agged. Defining a record with a tagged aggregate alows each record of a data set to have a
different data type for the tagged field. When your application writes to a field in a tagged
aggregate field, Orchestrate updates the tag, which identifies it as having type of the field that is
referenced.

The data type of atagged aggregate subfields can be of any Orchestrate data type except t agged or
subr ec. For example, the following record defines atagged aggregate field:

record (tagFiel d:tagged (
aFi el d: string;
bFi el d: i nt 32;
cFi el d: sfl oat;
)
)

In the example above, the data type of t agFi el d can be one of following: a variable-length
string,anint32,0r ansfl oat.

Referencing Subfields in Tagged Aggregates

In referring to subfields of a tagged aggregate, you use the dot-addressing syntax,
<t agged>. <t agFi el d>. For example to refer to the first field of the t agFi el d example shown
above, you uset agFi el d. aFi el d.

Internally, Orchestrate assigns integer values to the aggregate fields, starting with 0. In the example
above, the tag value of aFi el d isO; bFi el d, 1; and cFi el d, 2.

Orchestrate Data Sets Visual Orchestrate User's Guide 4 —27

Nullability of Tagged Aggregates

Tagged aggregate fields of value data types (including string and raw) can be nullable, and
subrecord fields of aggregate types can have nullable elements or fields. A tagged aggregate field
itself cannot be nullable.

Default Values for Fields in Output Data Sets

Input data sets are read-only, and Orchestrate treats the record fields of an input data set as if they
contain valid information. Record fields in an output data set have read/write access, and
Orchestrate gives them default values upon creation.

If the field is nullable, Orchestrate sets it to null. Otherwise, Orchestrate assigns a default value
based on the field’s data type, as follows:

All integers =0

df l oat orsfloat =0

dat e = January 1, 0001

decimal =0

ti me = 00:00:00 (midnight)

ti mest anp = 00:00:00 (midnight) on January 1, 0001

Length of a variable-lengtét ri ng orr awfield = 0

Length of a variable-length vector = 0

Characters of a fixed-length string = null (0x00), or if specifiedptiiehar value
Bytes of a fixed-length raw = 0

Elements of a fixed length vector are assigned a default value in accordance with their nullabil-
ity and data type.

Tag on a tagged aggregate = 0, indicating the first field of the aggregate. The field is assigned a
default value in accordance with its nullability and data type.

Using the Visual Orchestrate Schema Editor

You create record schemas for importing or exporting data and for defining custom Orchestrate
operators. To create record schemas, you use the Orchestrate Schema Editor.

To access the Schema Editor, do any of the following:

ChooseTools->Schema Editor from the Visual Orchestrateenu.
Click the Schema Editor icon in the Visual Orchestrate tool bar.
From theCustom Operator dialog box, do either of the following:

e For a native operator, open the Schema Editor from iberfaces tab (see the section
“Example: Specifying Input and Output Record Schemas” on page 13-19).

Visual Orchestrate User’s Guide

Defining a Record Schema

e For a UNIX command operator, open the Schema Editor froningiet or Output tab
(see the section “Specifying the Interface Schema” on page 12-10).

Shown below is the Schema Editor dialog box as it appears when you open it ffboolthmenu
or from the tool bar. If you open it from ti@ustom Operator dialog box, theschema Sructure

area is instead labelédter face Structure.

. Schema Editor - View Mode

e R <]

Schema Stucture

Field List:
sdd el | [EeEEReEE]
[Telete | Hew | Impaort

=] B3
Access Control

Cwner; I
Tuype: I vI

Namel

Tupe | ﬂ

[Hulle6E
[¥estor

I Eiredlemgths I

Type Information

Properties for;
IImporh’EHpnrt Operators j

Properties »» |

| Edlif | Cancell Help |

This dialog box contains the following areas:

Name (at top): To view or edit an existing schema, select a schema name from this pull-down

list.

Access Control: Specify the schem@wner and the accesBype for other users. Options for

Type are the following:

Public Write (default): Anyone can read or write the schema.

Public Read: Anyone can read the schema; only the owner can modify it.

Private: Only the program owner can

Schema Sructure (or I nterface Sructure):

below in theField List window.

read or write the schema.

Shows the record level properties of the schema.
All aggregate fields (tagged and subrecord) are shown here as well. To access an aggregate
field, click it in the Schema Sructure window. The aggregate’s component fields appears

Orchestrate Data Sets Visual Orchestrate User's Guide 4 —29

Field List: Shows all fields defined for the record or aggregate selected in the Schema
Sructure window. The display includes the field's name, data type, and optional proper-
ties.

Name: Specify the name of a field.
Type: Select the field’s data type from the pull-down list.

Type Information: Set the parameters for the field’s type; the applicable parameters
appear below the type name. See the section “Defining a Record Schema” on page 4-16
for details on type parameters for schemas.

Properties: Selectimport/Export or Generator from theProperties for list, and click

the Properties>> button. This action opens an additional Schema Editor area, entitled
either External Data Layout Properties (for import/export) orGenerator Operator
Properties. To view or specify properties at the record level, dRekord in theSchema
Sructure area. To view or specify properties for a individual field, click the field in the
Field List. For more information on import/export and on tiemer at or operator, see

the Orchestrate User’s Guide: Operators

After opening the Schema Editor, you can create a new record schema or edit an existing one, as
described in the following sections:

e “Creating a New Record Schema” on page 4-29

e “Creating a New Record Schema from an Existing Schema” on page 4-30
« “Editing a Record Schema” on page 4-30

e “Creating an Aggregate Field” on page 4-30

Creating a New Record Schema
To create a new record schema:

1. Open the Schema Editor.
2. Click theNew button.

3. ChooséNamed or Unnamed. Unnamed (labeledocal) schemas are available only when you
use the Schema Editor to configure the interface schema for a custom operator. When you
invoke the Schema Editor from the Visual Orchestrate menu or toolbar, you can view and cre-
ate only named schemas.

A Named schema is accessible to anyone connected to the server. To access a named schema,
double-click its name in th®erver View Area of Visual Orchestrate.

An Unnamed schema is available only to the schema creator, for configuring a custom opera-
tor. If you want reference the schema by name and make it available to other users, you must
name the schema.

4. (Optional) Specify &ibrary name used to store the record schema. When you store a record
schema, it will be saved undg8chema -> /i br ary_nane. You can edit the schema by dou-
ble-clicking it in theServer View Area of Visual Orchestrate.

5. SelectRecord in theSchema Structure area of the dialog box, to specify record-level proper-
ties for the schema. You view and enter these properties Exteenal Data L ayout Proper -
ties or Generator Operator Properties area.

6. Clickin theField List area to add fields to the schema.

4-30 Visual Orchestrate User’s Guide Defining a Record Schema

7. Click Add Field to add a new field.

Add Field adds afield before the currently selected record field. If nofield is selected, the new
field is added to the end of the schema. By default, the data type of the field isi nt 32.

8. Definethefields of the record schema, including:
* Name (required)
« Vector (by default, vector is variable length) and optiofialed L ength
e Nullability
« Type
* Type Information
e Properties for import or export

9. Continue to add all fields
10. ClickSaveto save the record schema.

Creating a New Record Schema from an Existing Schema
To create a new schema from an existing one:

Open the Schema Editor.

Select an existing record schema fromNlaene drop down list.

PresdNew to create the new schema based on the selected schema from Step 2.
Edit the record schema.

a s D

Click Save to save the record schema.

Editing a Record Schema
To edit an existing record schema:

1. Open the Schema Editor.
2. Select an existing record schema fromNlaene drop down list.

3. Pres<Edit to edit the schema dtew to create a new schema based on the selected schema
from Step 2.

4. Edit the record schema.
5. Click Saveto save the record schema.

Creating an Aggregate Field
An aggregate field, either a subrecord or a tagged, contains nested field definitions. This section
describes how to create an aggregate field as part of a record schema.

Use the following procedure to create either a subrecord or tagged field:
1. Start the Schema Editor and define the name of the schema.
2. Click Add Field to add an aggregate field

Orchestrate Data Sets Visual Orchestrate User's Guide 4 — 31

3. Specify the Name and Type of the aggregate. The type of an aggregate is either Subrecord or
Tagged Subrecord.

Once you have defined the Name and Type, it appears in the Schema Structure window
under the word Recor d. Shown below is an example of a subrecord named sub0:

. Schema Editor - Creating Interface M=] E3
Name: W gcces-s Contral———————
WNEr W
Library: Iuser Type: W
& Mamed ¢ Unnamed
Interface Stucturs
=8 Fi:ecord e Isubﬂ—
fegubliaubrec..)
Type ISubrecord 'l
e EEE
Field List: ™ Yectar
subi:subrecl...): = Eired Lenath: I_
Sub Record

Thiz type haz ho parameters

Properties far:
IImportHEHport Operators j

AddField | | Delete Field(s) | Propetties > |

§ave| e | lmportl i | Eancell Help |

4. To add fields to the aggregate, select the aggregate in the Schema Structure window. The
Field List window lists all fields defined within the aggregate. Initially, the Field List window
is blank.

5. Add new fields to the subrecord as described above for adding fields to a record schema.
6. Click Saveto savethe record schema.

Visual Orchestrate User's Guide Representation of Disk Data Sets

Importing a Record Schema

Visual Orchestrate lets you create a schema by importing the schema definition from a text file or
from aCOBOL FD definition. To import a schema definition, perform following steps:

1. In the Schema Editor, click the Import button, or from the Tools menu, select Import
Schema, to open the following dialog box:

. Schema Import E2

— Target Schema

Library: IUSE, Name:l

— Sounce Type — Schema File Descrption

& Schema File Path

" Cobal FD Marrent/apt!

) Database Table
Browse. . |

) 545 Datazet

Status. Ready K, | Cancel | Help |

2. Specify the Library name (default is User) and schema Name.
3. Select the Source Type, meaning the format of the imported schema.
4. Enter the path of the file containing the imported schema.
For a Schema File, the file may contain only a single schema definition.

For a COBOL FD, the file may contain only a single FD description. This import is equiva
lent to running the Orchestrate r eadcobol utility with the - f option (specifying free format
COBOL files). See the chapter on COBOL Schema Conversion in the Orchestrate User’s
Guide: Operatorgor more information.

Representation of Disk Data Sets

To use Orchestrate well, you need to be familiar with Orchestrate’s representation of persistent data
sets in a UNIX file system. Remember that virtual data sets are not stored to disk; only persistent
data sets are saved.

Orchestrate Data Sets Visual Orchestrate User’s Guide

Persistent data sets are stored in multiple data files on multiple disks in your system. The following
figure shows the equivalent representation of an Orchestrate persistent data set represented as four
partitions:

Partition 1 Partition 2 Partition 3 Partition 4

e I O

e

Segment 3 % % % % One or more
% data files

Each partition of a data set is stored on a single processing hode. In this example, the data set has
four partitions stored on four processing nodes.

A data segment contains all the records written to a data set by a single Orchestrate step. For
example, if a step creates a data set and then writes its results to the data set, the data set will
contain a single data segment.

You can select one of several write modes when your step writes its output to a data set. The default
write mode is create, which means that Orchestrate creates the data set if it does not already exist.
After the step writing to the data set completes, the data set will contain asingle data segment. This
mode causes an error if the data set aready exists, in order to prevent you from accidentally
overwriting your data.

Replace mode allows you to replace the contents of an existing data set. In this case, al data
segments in the data set are deleted, and a single data segment is added to hold the new data
records. In this case, the data set also contains a single segment after the write.

You use append mode to add records to a data set that already contains data. In this case, a new
segment is added to the existing data set, and all records written to the data set are written to the
new segment. Append mode does not modify the records in any other data segment.

Setting the Data Set Version Format

By default, Orchestrate saves data sets in the Orchestrate Version 4.1 format. However, Orchestrate
lets you save data setsin formats compatible with previous versions of Orchestrate. For example, to
save data sets using the Version 3 format, set the APT_WRITE_DS VERSION environment vari-
able, as shown below:

export APT_WRI TE_DS VERSI ON=v3_0

Visual Orchestrate User's Guide Representation of Disk Data Sets

After this statement takes effect, all data sets written by Orchestrate are saved using the Version 3
format.

The Orchestrate Installation and Administration Manual discusses in detail how to set and use
environment variables.

Data Set Files

A persistent data set is physically represented on disk by:
e A singledescriptor file
¢ One or moralata files

The descriptor file contains the record schema of the data set, as well as the location of all the data
files. The descriptor file does not contain any data. To access a persistent data set from your
Orchestrate application, you reference the descriptor file path name. Orchestrate uses the
information in this file to open and access the data set.

For example, the followin®ata Set Properties dialog box is for an input persistent data set whose
descriptor file is nameflt orrent / apt /i nfil e. dat a:

. Data Set Properties E

General | Motes I

— General Propertie:
Labek irfile. data I"" Copy From Path
Fath: |.-"torrent.-"apt.-"infile.data Browse... |
Library: |User
Stored &g
= Orchestrate Data Set = File Set + Flat File
= Parallel SAS Data Set = Sequential SAS Data Set

QK I Apply Cancel | Help |

The data of a parallel data set is contained in one or more data files. The number of data files
depends on the number of segments in the data set and the size of each partition. See the section
“File Allocation for Persistent Data Sets” on page 4-35 for information on determining the number

of data files for a data set.

Descriptor File Contents
The data set descriptor file contains the following information about the data set:

« Data set header information identifying the file as a data set descriptor.
« Creation time and date of the data set.
+ Data set record schema.

Orchestrate Data Sets Visual Orchestrate User's Guide 4 — 35

* A copy of the Orchestrate configuration file at the time the data set was created. By storing the
configuration file within the data set, Orchestrate can access all data files of the data set even if
you change the Orchestrate configuration file.

For each segment, the descriptor file contains:
e The time and date the segment was added to the data set.
« Aflag marking the segment as valid or invalid.

« Statistical information such as number of records in the segment and the number of bytes. You
can access this information usimgchadmi n.

« Path names of all data files, on all processing nodes, containing the records of the segment.

As stated above, the descriptor file contains a flag marking each segment as valid or invalid. When
a new segment is added to a data set, the corresponding flag initially marks the segment as invalid.
The flag is not set to valid until the step writing the data to the segment successfully completes. If
the steps fails for any reason, all information about the segment is deleted from the descriptor file,
and all data in the segment is discarded.

In the case of a severe system failure, the data set may be stored with a flag marking the last
segment in the data set as invalid. If you then read the data set as input, the invalid segment is
ignored. Writing or appending data to the data set deletes the invalid segment.

You can also use thel eanup command withor chadni n to delete any invalid data segments
within a data set, as shown below:

orchadni n cl eanup nyDat aSet . ds

wherenyDat aSet . ds is the name of the data set descriptor file.

See theOrchestrate Installation and Administration Manual for a detailed discussion of
or chadmi n.

File Allocation for Persistent Data Sets

Persistent data sets are stored in multiple data files distributed throughout your system. This section
describes how Orchestrate determines the location of these data files.

You can create persistent data sets in two ways:

e Use theor chadni n utility to create empty data sets. This data set contains no data segments or
data files. See th®rchestrate Installation and Administration Manual for a detailed discus-
sion ofor chadmi n.

« Use an Orchestrate operator to write to an output persistent data set. This data set will contain a
single data segment and associated data files when it is first created. Each time you append
data to the data set, a new segment is created to hold the new records. This data set can be read
as input by another Orchestrate operator.

Orchestrate uses the configuration file to identify the processing nodes, and the disk drives
connected to those nodes, available for use by Orchestrate applications. Additionally, you can
define groups of nodes, called node pools, and groups of disk drives, called disk ool &m

Visual Orchestrate User's Guide Representation of Disk Data Sets

operations to those elements within the pool. See the section “Using Constraints with Operators and
Steps” on page 10-5 for more information.

Several factors influence the number and location of the data files used to hold a persistent data set:
« The number of processing nodes in the default node pool
« Any node constraints applied to the operator writing to an output data set

e The number of disk drives connected to each processing node included within the default disk
pool

* Any disk pool constraints applied to the output data set

Listed below are the rules Orchestrate uses to allocate data files for storing a persistent data set:

Rule 1. By default, Orchestrate executes an operator on all processing nodes defined in the default
node pool. When an operator writes to an output data set, Orchestrate creates one partition of the
data set on each processing node executing the operator.

Rule 2. If you impose a node constraint on the operator, Orchestrate creates a partition of the data
set only on those processing nodes executing the operator. See the section “Using Node Pool Con-
straints” on page 10-6 for information on specifying a hode pool constraint.

Rule 3. For each processing node storing a partition of a data set, Orchestrate creates data files on
all the disk drives included in the default disk pool connected to the processing node. See the sec-
tion “Using Resource Constraints” on page 10-7 for information on specifying a disk pool con-
straint.

Rule 4. If you impose a disk pool constraint, Orchestrate creates data files on only those disk
drives in the specified disk pool.

For example, suppose your application uses data set create mode to write 16 GB to a persistent data
set. Since the data set did not already exist, it will be created with a single data segment. For this
example, the data set’s descriptor file is nameshe/ user 1/ myDat aSet . ds.

This example executes on an eight-node system in which each processing node is connected to two
disk drives. The following figure shows the system for this example:

High-speed switch

node0_css||nodel_css||node2_css||node3_css |[node4_css|[node5_css||node6_css||node7_css

00| 80| 00|80 |60080|60|80

node0 nodel node2 node3 node4 node5 node6 node7

NN N N N N N N

Ethernet

In this example, all processing nodes are contained in the default node pool, and both disk drives
are contained in the default disk pool. The operator writing to the output data set executes on all
processing nodes.

Orchestrate Data Sets Visual Orchestrate User’s Guide

Since all eight processing nodes execute the writing operator, Orchestrate creates eight partitions
for the data set, one on each processing node. Orchestrate further divides each partition among the
two disksin the default disk pool connected to each node to create 16 datafiles. Because each node
receives approximately a 2-GB partition, the total amount of free space in all disks in the default
pool on each processing node must be at least 2 GB.

If the data set held 64 GB, each of the 16 disksin the system would be required to hold 4 GB. Since
many operating systems limit file sizeto 2 GB, each disk would hold two data files of 2 GB each.

Each data segment usesits own data files for storing the records of the segment. If you append data
to an existing data set, a new segment descriptor is created, and new data files are created to hold
the records in the new data segment.

In some circumstances, you may need your application to execute its operators on one set of
processing nodes and store its data on another. The default operation of Orchestrate is to store a
partition of a data set on each node executing the writing operator. When you want to store the data
somewhere else, you insert a copy operator at the end of your step and use node constraints to
execute the copy operator only on the processing nodes on which you want to store your data set.
See the chapter “Constraints” for more information on node pools.

File Naming for Persistent Data Sets

Orchestrate uses the following naming scheme for the data files that make up each partition of a

parallel data set:
di sk/ descri ptor. user. host.ssss. pppp. nnnn. pi d. ti ne. i ndex. random

where:

« di sk: Path for the disk resource storing the data file as defined in the Orchestrate configuration

file.
e descri ptor: Name of the data set descriptor file.
e user: Your user name.

* host: Hostname from which you invoked the Orchestrate application creating the data set.

e ssss: 4 digit segment identifier (0000-9999)
* pppp: 4 digit partition identifier (0000-9999)
* nnnn: 4 digit file identifier (0000-9999) within the partition

e pid: Process ID of the Orchestrate application on the host from which you invoked the

Orchestrate application that creates the data set.
e time: 8-digit hexadecimal time stamp in seconds.
e index: 4-digit number incremented for each file.
« random 8 hexadecimal digits containing a random number to insure unique file names.

For example, suppose that your configuration file contains the following node definitions:

{

node nodeO ({

4-38 Visual Orchestrate User's Guide Representation of Disk Data Sets

fast name "node0O_css"

pool "" "nodeO" "nodeO_css"
resource disk "/orch/s0" {}
resource scratchdi sk "/scratch" {}

node nodel {
fastname "nodel_css"
pool "" "nodel" "nodel css"
resource disk "/orch/s0" {}
resource scratchdi sk "/scratch" {}

}

For this example, your application creates a persistent data set with a descriptor file named / dat a/
nydat a. ds. Inthis case, Orchestrate creates two partitions for the data set: one on each processing
node defined in the configuration file. Because each processing node contains only a single disk
specification, each partition of nmydat a. ds would be stored in a single file on each processing
node. The datafile for partition 0 on the disk / or ch/ s0 on node0 is named:

/ orch/ s0/ nydat a. ds. user 1. host 1. 0000. 0000. 0000. 1f a98. b61345a4. 0000. 88dc5aef
and the datafile for partition 1 on nodel is named:

/ orch/ sO/ nydat a. ds. user 1. host 1. 0000. 0001. 0000. 1f a98. b61345a4. 0001. 8b3ch144

Visual Orchestrate User’s Guide

5: Orchestrate Operators

Orchestrate operators are the basic functional units of every Orchestrate application. An
operator takes in data sets, RDBMS tables, or data files, and produces data sets, RDBM S
tables, or data files. An Orchestrate step consists of one or more Orchestrate operators that
process the data, according to the data-flow modé for the step.

Orchestrate provideslibraries of predefined operatorsfor essential functions, such asimport/
export and sorting. For descriptions of operator interfaces and other details about individual
operatorsin the Orchestratelibraries, seethe Orchestrate User’s Guide: Operatars

Orchestrate also lets you create your own operators, with either of the following methods:

e Creating an operator from a UNIX command, script, or program, as described in the
chapter “Creating UNIX Operators”.

* Creating an operator from a few lines of your C or C++ code, as described in the chapter
“Creating Custom Operators”.

In addition, you can use operators that you obtain from third-party developers in your
Orchestrate application.

This chapter describes how to use predefined, user-defined, and third-party-developed opera-
tors in Orchestrate applications, through the following sections:

e “Operator Overview” on page 5-1

e “Using Visual Orchestrate with Operators” on page 5-3

e ‘“Operator Interface Schemas” on page 5-6

- ‘“Data Set and Operator Data Type Compatibility” on page 5-17

Operator Overview

In general, an Orchestrate operator takes zero or more data sets as input, performs an operation on
all records of the input data sets, and writes its results to zero or more output data sets. Data sets are
described in detail in the chapter “Orchestrate Data Sets”.

5-1

Some operators limit the number of input or output data sets they handle, while others can handle

any number of data sets-{nput, m-output).

Most Orchestrate steps include one or more of the following kinds of operators:

e A one-output operator is usually the first operator in a step, to import data from a disk file or

RDBMS and convert it into a data set.

« A one-input, one-output operator takes a single input data set, performs a processing operation

5-2 Visual Orchestrate User's Guide Operator Overview

on it, and creates a single output data set.

« A one-input operator is usually used to export a data set to a disk file or an RDBMS. This type
of operator is often the final operator in a step.

The following figure shows these three kinds of operators:

: ¢

one-input one-output
operator

: !

Operator Execution Modes

one-output operator one-input operator

Orchestrate operators execute in either parallel mode, on multiple processing nodes, or in
sequential mode, on a single processing node.

Every Orchestrate operator has a default execution mode, either parallel or sequential. Many
Orchestrate operators allow you to override the default execution mode. For example, the default
execution mode of theopy operator is parallel, but you can configure it to run sequentially.
Setting the operator execution mode is described in the section “Using Visual Orchestrate with
Operators” on page 5-3.

In some circumstances, you may want to run an operator in parallel but limit the processing nodes
that it uses. The reason might be that the operator requires system resources, such as a disk or a
large amount of memory, that is not available to all nodes. Orchestrate allows you to limit, or
constrain, an operator to a particular set of nodes to meet your application’s requirements. See the
section “Using Constraints with Operators and Steps” on page 10-5 for more information on
controlling the processing nodes used by an operator.

Persistent Data Sets and Steps

Orchestrate steps consist of one or more operators, connected by data sets, as discussed throughout
the preceding chapters. Creating and using steps to build Orchestrate applications is covered in
detail in the chapter “Orchestrate Steps”.

As mentioned in the section “Using Data Sets with Operators” on page 4-3, a data set file cannot be
both read from and written to in a single step.

If you want to write to a persistent data set and also use the data set as input in the same step, you
need to use the Orchestratepy operator to make a copy of the data set. For example, the
following data-flow diagram shows th@py operator outputting both a persistent data set saved to

Orchestrate Operators Visual Orchestrate User’s Guide

disk and a virtual data set that is input to the next operator in the step. See the Orchestrate User’s
Guide: Operatorgor more information on the copy operator.

Step 1 . .
Persistent input data set

Operator

i Virtual data set

copy operator

; —#

Persistent output data set

Operator

Using Visual Orchestrate with Operators

This section describes how to use Visual Orchestrate to configure operators.

1. Open an existing program, or create a new one.

2. To create an operator, do one of the following:

SelectProgram -> Add Operator from the menu.
Click the operator icon in the tool bar.

With the cursor in &rogram Editor window, click the right mouse button and sekedt
Operator from the popup menu.

Click the operator name in ti8erver View and drag it into th&rogram Editor.

5-3

5-4 Visual Orchestrate User’s Guide Using Visual Orchestrate with Operators

The operator icon appearsin the Program Editor window, as shown below:

¥izual Orchestrate - Server "grappelli” as “vschaefer”

File Edit “iew Custom Tools Program ‘Wwindows Help

o| n|2|r|8| J=s|n|s| &|=Fm|e EElE]]]x]#] 2]

= @ Server - grappelli

s’i Programs a Program Editor - vschaefer:Untitled[3] [modified] =1 B3
Operators =
£ Datasets —

IS Schemas [1 Initial Step

- 33 Configurations

| 7

3. Double click the operator icon to open the Operator Propertiesdialog box. Thisdialog box is
shown below:

. Dperator Properties E

Advanced I Notesl

— General Properties

Label; |copy ¥ Copy From Operator Narme

Operator: I General:copy j

oo R T —

Add | Edn || DeRE | g | Down |

Ok, I Lpply | Cancel | Help

Orchestrate Operators Visual Orchestrate User's Guide 5-5

The General tab contains the following:

» Labd is the operator label that appears inRnegram Editor dialog box. It defaults to the
operator name.

e Operator lets you select another operator. This pull-down list contains all Orchestrate built-in
operators and all operators that you have created with the Orchestrate operator builders.

« Optionslets you set the options that you can use to control and configure the currently selected
operator. Use the buttons to work on options, as follows:

Add opens th®ption Editor dialog box to set a new option for the operator.

Edit opens th@ption Editor dialog box to edit the selected option. WieandDown to
select the option to edit.

Delete removes an option from the list.

For example, if you select thesort operator from the list of available operators, selecting
Add opens the following@ption Editor dialog box:

. Option Editor E2
Operator: Sort:tsort
Dption: Iflagl:luster j
Type ocbliay

flagk.ey

key (REQUIRED)
TREmany

stable

stats

unigue

—Walue

Addl Deletel ok | Canecel | Heln |

In the Option Editor dialog box, use th®ption pull-down list to select the option you want
to set for the operator. The remaining area of the dialog box list the available values for the
selected option.

Each Orchestrate operator has its own options accessible throu@ipttba Editor dialog
box. See th®rchestrate User’s Guide: Operator$or information on each operator.

4. Usethe Advanced tab of the Operator Properties dialog box, asfollows:

» SetExecute operator options. This allows you to specify whether to execute an operator
in parallel or sequentially. All operators have a default execution mode of parallel or
sequential if you do not set this option.

« SetConstraints on the operator. Constraints allow you to control the processing nodes
used to execute the operator. See the chapter “Constraints” for more information.

Visual Orchestrate User's Guide Operator Interface Schemas

Operator Interface Schemas

Orchestrate schemas are described in the section “Record Schemas” on page 4-2. To be used in an
Orchestrate application, an operator hasnterface schema for each of its input and output data

sets. An output interface schema is propagated from an operator to the output data set, to the input
interface of the next operator downstream, to that operator’s output interface, and so forth through
the operators in the step. Because an output data set schema would be overridden by the upstream
operator’s output interface schema, specifying an output data set schema is unnecessatry.

The interface schemas of all the Orchestrate built-in operators are describedOitHbstrate
User’s Guide: OperatordDefining an interface schema is part of creating a user-defined operator;
as described in the chapter “Creating Custom Operators”.

Example of Input and Output Interface Schema

The following figure shows an operator that takes a single data set as input and writes its results to
a single output data set.
i Input data set

fieldl:int32; field2:int16; field3:sfloat

Input interface schema

Operator
Output interface schema

fieldl:int32; field2:int16; field3:sfloat

i Output data set

The figure shows the operator’s input and output interface schemas, which in this case are the
same. This interface schema specifies that the data set (both the input and the output) must have
two integer fields namef el d1 andfi el d2 and a floating-point field named el d3.

The following sections describe using input and output data sets with operators. They also describe
data type conversions between a data set’s record schema and the interface schema of an operator.

Orchestrate Operators Visual Orchestrate User's Guide 5-7

Input Data Sets and Operators

The following figure shows an input data set used with an operator:

Input data set schema
fieldl:int32;

field2:intl6;
field3:sfloat

fieldl:int32; field2:intl16; field3: sfloat

i Output data set

The operator’s input interface schema requires the input data set to have three fields named
fieldl, field2, andfiel d3, with compatible data types. In this example, the input data set’s
record schema exactly matches the input interface schema and is therefore accepted by the operator.

Input data sets can contain aggregate fields (subrecords and tagged fields), as well as vector fields.
To be compatible, the operator input interface must contain a corresponding vector or aggregate
field in its input interface schema.

Operators that Ignore Extra Input Fields

Some operators ignore any extra fields in an input data set, so that you can use the operator with
any data set that has least the fields that are compatible with those of the operator’s input
interface schema. The following example shows such an operator, with an input interface that
defines three fields, taking as input a data set that defines five fields:

Input data set schema
fieldl:int32;
field2:intl6;
field3:sfloat;

field4:string;
fiel d5: df |l oat

fieldl:int32; field2:int16; field3:sfloat

fieldl:int32; field2:int16; field3:sfloat

i Output data set schema

fieldl:int32;
field2:intl6;
field3:sfloat

Visual Orchestrate User's Guide Operator Interface Schemas

The first three fields of the data set are compatible with the three fields of the operator input
interface, and the operator accepts the input. The operator ignores the input dataksefisand
fi el d5 and does not propagate the extra fields to the output data set.

Output Data Sets and Operators

This section describes how an operator writes to an output data set, as dictated by the relationship
between the operator’s output interface schema and, if present, the schema of the output data set.
The following table gives a summary:

Output Data Set Schema In Relation to Operator Behavior

Operator Output Interface Schema

Output data set has no record schema (the usual The output data set adopts the schema of the
case). operator’s output interface.

Output data set schema defines the same numbEme operator writes to all fields in the output
of fields as the operator output interface. data set.

Output data set schema defines more fields thaithe operator sets extra fields to default value
the operator’s output interface schema. (according to nullability and type), and Orches-
trate issues a warning.

Output data set schema defines fewer fields thafhe operator drops the output fields that are not
the operator’s output interface. present in the output data set, and Orchestrate
issues a warning.

In many cases, an output data set has no record schema. When written to by an operator, the output
data set takes the schema of the operator’s output interface. Therefore, an output data set with no
record schema is compatible with all operators.

The following figure shows an output data set for which a record schema was not defined:

Input data set schema
fieldl:int32;

field2:intl6;
field3:sfloat

fieldl:int32; field2:int16; field3:sfloat

fieldl:int32; field2:intl16; field3:sfloat

Output data set schema Output data set schema
fieldl:int32;

field2:intl6;

field3:sfloat

None

Before operator executes After operator executes

An output data set may optionally have a record schema. If an output data set has a record schema,

Orchestrate Operators Visual Orchestrate User's Guide 5-9

it must be compatible with the output interface schema of the operator. As shown in the second fig-

ure in the section “Input Data Sets and Operators” on page 5-7, if the output data set has the same
number of fields and they are compatible with the output interface schema, the operator writes to all
the fields.

An output data set can define fewer fields than the operator’s output interface schema. In that case,
the operator drops the fields not defined in the output data set, and it issues a warning. In the
example shown in the figure below, the operator difidpd d4 andfi el d5 from the output
interface schema:

Input data set schema
fieldl:int32;
field2:intl6;
field3:sfloat;
field4:string;
fiel d5: df | oat

fieldl:int32; field2:int16; field3:sfloat

fieldl:int32; field2:intl16; field3:sfloat

iOutput data set schema

fieldl:int32;
field2:intl6;
field3:sfloat

Visual Orchestrate User's Guide Operator Interface Schemas

Operator Interface Schema Summary

The following figure and keyed text summarize the relationship between the record schema of a
data set and the interface schema of an operator:

Record schema of input data set

a b |c

11l0o

Ignored: Not propagated to output

b

) @

C

Operator input
interface schema

X

L@ ®

v Vv
x|y

z |
| |

w

Dropped

©)

1. Fields of an input data set are matched by name and compatible data type with fields of the
input interface schema of an operator. The input data set must contain at least the number of
fields defined by the input interface schema of the operator.

Operator output

interface schema Record schema of output data set

You can use the modify operator to perform certain changes, such as renaming, to enumerated
fields in the input data set. See the chapter on the nmodi f y operator in the Orchestrate User’s
Guide: Operatorgor more information.

2. The operator ignores extrafields in the input data set.

If the output data set has no record schema (as recommended), the data set adopts the record
schema of the operator’s output interface schema, and the operator writes all fields to the data
set.

4. If the output data set has a record schema, the operator writes to fields of the output data set
that match fields in the operator’s output interface schema. The operator drops any unmatched
fields from the operator’s output interface schema, and Orchestrate issues a warning.

5. If the output data set has a record schema, the operator sets to default values any fields in the
data set that are not matched in the operator output interface schema, and Orchestrate issues a
warning message.

Orchestrate Operators Visual Orchestrate User’s Guide

Record Transfers and Schema Variables

Some operators take or write an entire record, regardless of its size or the number and types of its
fields. In an operator interface schema, an entire record is represented by a schema variable. A field
that is a schema variable has an asterisk (*) in place of adatatype; for example, i nrec: *. Schema
variables give flexibility and efficiency to operators that input and/or output data on the record
level without regard to the record schema.

By default, an operator with a schema variable in its interface schema transfers (copies) an entire
record from an input data set to an output data set, regardless of the other elements of theinput and
output interface schema. The following figure shows this default behavior for an operator that
includes a schemavariable in its input and output interface schema:

i Input data set

fieldl:int32; field2:int16; field3:sfloat; inRec:*

Entire record transferred from

input data set to output data set
out Rec: *

i Output data set

Transfers are used by some operators that modify the input data set and by others that do not. For
example, the operator | ookup modifies the input data set, and the operator peek performs a
transfer without modifying the input data set.

Suppose that the operator in the figure above calculates the mean and standard deviation of the
three fields identified in the input interface schema, across the entire input data set. In calculating
these statistics, the operator does not have to modify the records of the input data set. This operator
reads the records, makes calculations, and transfers each record to the output data set without
change.

An operator can combine a schema variable in the output interface schema with additional,
enumer ated fields, as shown in the following figure:

i Input data set

fieldl:int32; field2:int16; inRec:*

sumint 32; outRec:*

i Output data set

Visual Orchestrate User's Guide Operator Interface Schemas

In this example, the operator transfers the entire input record to the output data set and adds an
additional field, which holdsthe sum of fi el d1 and fi el d2.

Determining the Record Schema of a Schema Variable

A schema variable refers to an entire input or output record, regardless of any other fields in the
interface schema. This section describes how to determine the record schema associated with a
schemavariable.

The following figure shows an operator with schema variablesin its interface. below the figure are
the record schemas represented by the input and output schema variables:

Input data set schema
fieldl: int32;
field2: int16;

field3: sfloat;
field4: int8

fieldl:int32; field2:int16; inRec:*

out Rec: *

Output data set i

inRec:* = fieldl:int32; field2:int16; field3:sfloat; field4:int8

outRec:* = fieldl:int32; field2:int16; field3:sfloat; field4:int8

Orchestrate Operators Visual Orchestrate User’s Guide

Output Interface with Schema Variable and Enumerated Fields

In the following example, the output interface includes two enumerated fields, whose values are
calculated by the operator, plus a schema variable;

Input data set schema inRec:* = a:int32; b:intl6; c:string
a:int32;
b:int16;
c:string

a:int32; b:intl6; c:string; inRec:*

d:int32; e:int32; outRec*

Output data set schema outRec:* = a:int32; b:intl6; c:string
a:int32;
b:int16;
c:string;
d:int32;
e int32

Thetotal output interface schema of the operator above comprises the schema variable out Rec and
the two new fields:

d:int32; e:int32; outRec:*
d:int32; e:int32; a:int32; b:intl6; c:string

The order of fieldsin the interface schema determines the order of fieldsin the records of the output
data set. In the example, the two new fields were added at the beginning of the record, as listed in
the output interface schema. The two new fields would be added to the end of the record if the
output interface schema listed out Rec first, asfollows:

outRec:*; d:int32; e:int32

a:int32; b:intl6; c:string; d:int32; e:int32

Handling Duplicate Field Names in an Output Schema

In an operator output interface, a schema variable can have one or more fiel ds with the same names
as individually listed fields. This situation introduces a potential name conflict. For example,
suppose in the example above, the record in the input data set that corresponds to i nRec in the
input interface schema, contained a field named d:

a: int32; b:intl6; c:string; d:intl6

5-13

Visual Orchestrate User's Guide Operator Interface Schemas

If that record were transferred to out Rec and both additional fields defined by the output interface
schema, d and e, were added to the output data set schema, there would be a conflict between thed
field in outrec and the extra d field, as shown below:

d:int32; e:int32; outRec:*
d:in'Qa:intsz; b:inth;m

Name conflict

You can use the nodi f y operator to explicitly drop or rename duplicate fields, as described in the
modi fy chapter of the Orchestrate User’s Guide: Operators

How Orchestrate Handles Duplicate Field Names

If you do not use nodi fy to handle duplicate field names, Orchestrate resolves name conflicts by
dropping from the output data set schema any field with the same name as a preceding field (to its
left) in the output interface schema, and Orchestrate al so issues a warning message. In the example
above, Orchestrate drops field d of the schema variable and issues a warning message.

Summary of Schema Variable Usage
This section summarize this section’s discussion of schema variables, with the figure below,
followed by a description keyed to the circled numbers:

Record schema of input data set

a b c |d e

©)

a |«
b (e
c al
v v v
Operator input)
interface schema inRec: *
X outRec: *

- i
Operator output @ \ 4 l v

interface schema

a

Record schema of output data set

X y a b C

1. The input interface schema can include a schema variable.

2. Operators use schema variables to transfer an entire record of an input data set to the output
data set. By default, an operator with a schema variables in its interface schema transfers an

Orchestrate Operators Visual Orchestrate User's Guide 5-15

entire record from an input data set to an output data set, regardless of the other elements of
input and output interface schemas of the operator.

Operatorsthat do not use schema variables drop unused fields from the records of an input data
set. See the section “Input Data Sets and Operators” on page 5-7 for more information.

3. The output interface schema can include enumerated fields and/or a schema variable. The enu-
merated fields are added to the output data set. If an enumerated field has the same name as a
field in the record assigned to the output schema variable, the duplicate field (reading left to
right in the output interface schema) is dropped from the output data set schema.

Flexibly Defined Interface Fields

Many Orchestrate operators (for examplegpar e) allow flexibility in the fields that they accept.

For example, one operator’'s dynamic interface might take any number of double-precision floating
point fields as input. Another’s might accept either a single 8-bit integer or a string as input. A third
operator’s dynamic interface could take fields of any data type supported by Orchestrate.

For example, the following figure shows a sample operagar t , that has a dynamic interface
schema:
Input data set schema

name: string;
i address: string;

age: int32
oy ; inRec:*
aSort

out Rec: *

isortOutDS.ds

The input interface accepts two fields and a schema variable. When you invoke this operator, you
pass the names of two fields in the input data set that youasant to use as sort keys.

The Orchestrate operatosort has a more advanced input interface, which lets you specify any
number of fields as sort keys. The tsort operator interface provides aontrol that takes one or
more field names. With this interface you can, for example, spagifias the sort key. TheSor t
operator determines the data typegé from the input data set.

Using Operators with Data Sets That Have Partial Schemas

When an Orchestrate operator processes a data set with a partial schema (defined ittt the
property), the operator cannot add, remove, or modify the data storage in the record. The operator
can, however, add result fields to the beginning or end of the record.

5-16 Visual Orchestrate User’s Guide Operator Interface Schemas

For example, the following figure shows an operator adding afield to a data set that uses a partial
schema definition:

Input data set record schema

record {intact} (
name: string[20] {position=0};
income:int32 {position=44})

i nRec: *

newFi el d: i nt 32; outRec:*

newFi el d: int32;

record {intact} (
nanme: string[20] {position=0};
incone: int32 {position=44})

Output data set record schema i

In this example, the operator adds the extrafield, newFi el d, at the beginning of the record. If the
operator output interface listed newFi el d after out Rec, the operator would add newFi el d to the
end of the output data set schema.

The name of an added field may be the same as a field name in the partia record schema. As with
potential name conflicts involving complete record schemas, you can use the nodi f y operator to

handle the conflict (see the section “Handling Duplicate Field Names in an Output Schema” on
page 5-13). If you do not usedi f y, Orchestrate drops the duplicate name (considering the output
interface left to right) from the output data set schema. For example, the following figure shows an
operator adding a field with the same naimesone, as a field in the partial record schema:

Input data set record schema

record {intact} (
nane: string[20] {position=0};
incone:int32 {position=44})

i nRec: *

newrFi el d: i nt 32; outRec:*

i ncone: int32;
record {intact} (
name: string[20] {position=0})

Output data set record schema i

In this example, the newncone field is added at the beginning of the data set schema, and the
i ncorme field of the partial record is dropped. Note that dropping a field from a partial record
schema eliminates only the field definition, and the contents of the record are not altered.

Orchestrate Operators Visual Orchestrate User's Guide 5-17

Data Set and Operator Data Type Compatibility

For a data set to be used as input to or output from an operator, its record schema must be
compatible with the operator’s interface. For input data set record fields with types that differ from
corresponding fields of the operator input interface, the types of those fields must be converted.
The basics of Orchestrate data type conversion are introduced in the chapter “Orchestrate Data
Types”.

For example, the figure below shows an input data set with field data types that differ from those of
the operator input interface schema:

Input data set schema
fieldl:int§;
field2:intl6;
field3:int16

fieldl:int32; field2:int16; field3:sfloat

fieldl:int32; field2:int16; field3:sfloat

i Output data set

The table in the section “Summary of Orchestrate Data Type Conversions” on page 3-9 shows the
data type conversions that Orchestrate performs by default and those that you can perform with the
modify operator.

The following sections contain additional information about default data compatibility and type
conversions between source and destination data types:

- “Data Type Conversion Errors and Warnings” on page 5-17
e “String and Numeric Data Type Compatibility” on page 5-18
e “Decimal Compatibility” on page 5-19

e ‘“Date, Time, and Timestamp Compatibility” on page 5-20

e “Vector Data Type Compatibility” on page 5-21

- “Aggregate Field Compatibility” on page 5-21

e “Null Compatibility” on page 5-21

Data Type Conversion Errors and Warnings

During data type conversion, Orchestrate detects warning and error conditions. This section
describes Orchestrate’s actions in warning or error conditions arising from type conversions.

Visual Orchestrate User's Guide Data Set and Operator Data Type Compatibility

Using nodi f y to Prevent Errors and Warnings

To prevent many of the conditions that lead to warnings and errors caused by type incompatibility,
use the nodi f y operator. For example, you can use nodi f y to configure afield to convert anull to
anon-null value. Using the nodi f y operator is described in the Orchestrate User’s Guide: Opera-
tors.

You can also use nodi f y to suppress warning messages.

Orchestrate Handling of Warnings

A warning condition causes Orchestrate to write a message to the warning log. When afield causes

awarning condition in consecutive records, the message appears for a maximum of five records.

After the fifth warning message, Orchestrate suppresses the message. After a successful data
conversion, Orchestrate’s message counter resets to 0. If the same warning condition then recurs,
Orchestrate begins issuing the message again, for up to five more records. However, Orchestrate
will suppress a warning message after it is issued a total of 25 times during the execution of a step.

Conversion Errors and Orchestrate Actions

An error occurs when Orchestrate cannot perform a data type conversion. For example, an error
occurs if you attempt to convert a string field holding nonnumeric data, such as “April”, to a
numeric value.

When a data type conversion error occurs, Orchestrate’s action depends on whether the destination
field has been defined as nullable.

Rule 1. If the destination field has been definedhak! abl e, Orchestrate sets it to null.

Rule 2. If the destination field is natul | abl e but you have directedbdi f y to convert a null to
a value, Orchestrate sets the destination field to the value.

Rule 3. Otherwise, Orchestrate issues an error message and terminates the application. Unless you
have disabled warnings, a warning is issued at step-check time.

String and Numeric Data Type Compatibility

You can use the modify operator to perform conversions betweestypeag and numeric types.
For information, see theodi f y chapter in th®©rchestrate User’s Guide: Operators

If you do not explicitly perform a conversion, Orchestrate automatically converts the integer or
floating-point value to its string representation. For example, it converts the integer 34 to the
character string "34", and the floating-point 1.23to "1.23".

For converting string fields to numerics, Orchestrate attempts to interpret the string contents as a
number that matches the data type of the target field. For example, Orchestrate converts the string
"34" to the integer 34, and it converts the string "1.23" to the float 1.23. Orchestrate can convert a
string-represented floating-point that includes an exponent, represented by "€" followed by the
numbers comprising the exponent. For example, Orchestrate converts "1.23e4" to 12300.0.

Orchestrate Operators Visual Orchestrate User's Guide 5-19

Before first performing an automatic type conversion between a string and a numeric type, Orches-
trate writes a warning to the error log. Orchestrate also issues a warning for any other type conver-
sion that introduces:

« A possible loss in precision, such as a single-precision float converted to a 32-bit integer
e A possible loss in range, such as a 16-bit integer converted to an 8-bit integer

If the conversion between numeric and string data if not possible, a data type conversion error
occurs.

For general information on Orchestrate warning and error handling, see the section “Data Type
Conversion Errors and Warnings” on page 5-17.

Decimal Compatibility

Orchestrate performs automatic conversions betweenmal fields and integer, floating point,
and string fields. As part of the conversion, Orchestrate checks for potential range violations and
loss of precision.

Orchestrate checks for potential range violations before it runs the step that includes the
conversion. If it detects a potential range violation, it issues a warning message and then proceeds
to run the step. A range violation occurs when the magnitude of a stercenl field exceeds

the capacity of the destination data type. iragnitude of adeci mal , or number of digits to the

left of the decimal point, is calculated by subtracting the scale afettieral from the precision.

For example, if théleci mal has a precision of 15 and a scale of 5, there are ten digits to the left of
the decimal point. Converting a decimal of this magnitude can result in a number that is too large
for ani nt 16 field, for example.

Orchestrate checks for required rounding before it runs a step. If it detects a need for rounding, it
issues a warning message and then proceeds to run the step.

Orchestrate performs the rounding necessary to convert the decimal. A decimal number with a
scale greater than zero represents a real number with a fractional component. Rounding occurs
when Orchestrate converts a source decimal with a scale greater than zero to an integer. Rounding
also occurs when Orchestrate converts a salgrcenal to anothedeci mal with a smaller scale.

In both cases, Orchestrate must round the source decimal to fit the destination field.

The default rounding mode used by Orchestrate is caliedtate toward zero. In converting a
deci mal to an integer field, Orchestrate truncates all fractional digits frond¢eémal . In
converting adeci mal to adeci mal , Orchestrate truncates all fractional digits beyond the scale of
the destinatiomleci mal field. For example, Orchestrate convertsdhei mal value -63.28 to the
integer value -63.

If the source and destination decimals have the same precision and scale, Orchestrate does not
perform a default conversion and thus does not check for a potential range violation or a need for
rounding. You can, however, use timedi fy operator to perform deci nal _from deci mal

Visual Orchestrate User's Guide Data Set and Operator Data Type Compatibility

conversion, which may be helpful if the source field allows all zeros and the destination field does
not (see the nodi f y chapter in the Orchestrate User’s Guide: OperatQrs

String to Decimal Conversion

When converting a string to a decimal, Orchestrate interprets the string as a decimal value. To be
converted to adecimal, the string must be in the form:

[+/-]ddd[. ddd]

Orchestrate ignores leading and trailing white space. Orchestrate performs range checking, and if
the value does not fall into the destination decimal, a requirement failure occurs during setup check.

Decimal to String Conversion
You can also convert a decimal to a string. Orchestrate represents the decimal in the destination
string in the following format:

[+/-]ddd. [ddd]

Orchestrate does not suppress leading and trailing zeros. If the string is of fixed length, Orchestrate
pads with spaces as needed.

A fixed-length string must be at least pr eci si on+2 byteslong. If afixed-length string field is not
large enough to hold the decimal, a range failure occurs.

Date, Time, and Timestamp Compatibility

Orchestrate does not perform any automatic conversions between dat e, ti me, or t i mest anp and
other data types. However, you can use the nodi f y operator to perform conversions between these
three types and most other data types, as described in the nodi f y chapter in the Orchestrate User’s
Guide: Operators

Orchestrate Operators Visual Orchestrate User's Guide 5 —-21

Vector Data Type Compatibility

Fixed-length vectors in the input data set must correspond to fixed-length vectors of the same
length in the input interface. Likewise, input data set variable-length vectors must correspond to
variable-length vectors in the input interface. The following figure illustrates these rules:

Input data set schema

fieldl[10]:int8;

field2[]:int16;

field3:int16

fieldl[10]:int32; field2[]:int16; field3:sfloat

iOutput data set

In this figure, fi el d1 of the input data set is a fixed-length vector of ten 8-bit integers; it is
compatible with f i el d1, a fixed-length vector of 32-bit integers, in the operator’s input interface
schema. Orchestrate automatically promotes the source field to a 32-bit integer representation.

The variable-length source fieltlj el d2, is compatible with the variable-length destination field,

fi el d2, in the operator input interface schema. As the data types are the same, no conversion is
necessary.

Aggregate Field Compatibility

For compatibility, subrecord fields in the input data set must correspond to subrecord fields in the
operator input interface schema, and the same rule holds for tagged fields.

You can use theodi f y operator to match field names or perform data type conversions among the
elements of an aggregate.

Null Compatibility

If a record field’s nullability attribute is set taul | abl e, the field can hold the null value. If a
field’s nullability attribute is set taot _nul | abl e (default), it cannot hold a null. For more details
on nullability of fields, see “Defining Field Nullability” on page 4-19.

5-22 Visual Orchestrate User’s Guide Data Set and Operator Data Type Compatibility

The following table lists the rules followed for the nullability setting when an operator takes an
input data set or writes to an output data set:

Source Field Destination Field Result

not _nullable not_nullable Source value propagates.

not_nullable nullable Source value propagates, destination value is never null.
nul | abl e not _nul | abl e If source valueis not null, source value propagates.

If source valueisnull, afatal error occurs.
nul I abl e nul I abl e Source va ue (can be null) propagates.

An error occurs only if a source field holds a null value and the destination field is defined as
not _nul | abl e. In this case, Orchestrate issues a fatal error and terminates the application. You
can use the modify operator to prevent the fatal error; see the chapter on the nodi fy operator in
Orchestrate User’s Guide: Operators

Visual Orchestrate User’s Guide 6-1

6: Orchestrate Steps

An Orchestrate application consists of at least one step, in which one or more Orchestrate
operators process the application’s data. A step is a data flow, with its input consisting of data
files, RDBMS data, or persistent data sets. As output, a step produces data files, RDBMS
data, or persistent data sets. Steps act as structural units for Orchestrate application develop-
ment, because each step executes as a discrete unit.

As described in the chapter “Creating Applications with Visual Orchestrate”, you use Visual
Orchestrate to create a step. The chapter describes in detail how to implement a multiple-step
application and also provides information on debugging your application.

Because Orchestrate steps can perform complex processing tasks requiring considerable time
to complete, you may want to check the step configuration before you run it. The last section
of the chapter describes how to check for errors in a step before you run it.

This chapter contains the following sections:
* “Using Steps in Your Application” on page 6-1
« “Working with Steps in Visual Orchestrate” on page 6-4

Using Steps in Your Application

In the data-flow model of your application, a step is bounded by the input and output of persistent

data, which can be flat files or persistent Orchestrate data sets. Because disk 1/0 consumes
resources and time, it is advantageous to use as few steps as possible to perform your application’s
processing.

Many applications, however, have conditions that require you to divide processing into two or more
steps. The following two conditions require a multiple-step application design:

e The application’s processing includes one operator that outputs a persistent data set and
another operator that inputs that data set.

If two operators need to input from and output to the same persistent data set, they cannot run
in the same step. For example, suppose in your application you need to use the transform oper-
ator, which always outputs a persistent data set, and then input that data to the statistics opera-
tor. The transform and statistics operators must run in separate steps.

e The application must reiterate an action, so that an operator processes the same data more than
once.

Looping (reversing the data flow) is not allowed in a step, as described on the section “Work-
ing with Steps in Visual Orchestrate” on page 6-4. Therefore, each iteration must be performed
in a separate step.

Visual Orchestrate User’s Guide

Using Steps in Your Application

The following section further describes the kinds of data flows that you can use in a step.

The Flow of Data in a Step

To create a step, you connect multiple operatorsin a data-flow model. The data flow for a step must
be adirected acyclic graph, which alows multiple inputs and outputs but in which data can flow in
only one direction. However, you cannot use aloop (reverse-direction dataflow) in a step.

The following example shows the data-flow model of a valid step that includes multiple outputs
(from Operator 1) and multiple inputs (to Operator 4):

7

7

Step

v

Operator 1

Operator 3

P—

Operator 2

Operator 4

]

]

The following figure shows a data-flow model of an invalid step, containing aloop:

a2

Operator 1
(]

®

v \<

Operator 2

i—

Loop - not allowed

If you attempt to run a step that includes a loop, Orchestrate terminates execution and issues an
error message. In order to reiterate an operation on a data set, you must create another step.

Orchestrate Steps

Visual Orchestrate User’s Guide

You can use branching operations within a step. The following figure shows an operator that
produces two output data sets, each of which is used by a separate operator:

Step with
branching

copy

I#

sort

group

:

statistics

y

Designing a Single-Step Application

The following example shows the data-flow model of a single-step application, which sorts data.
The step uses the predefined Orchestrate operatorsi nport, t sort, and export :

5\

Input data set

Step &

i mport operator

t Virtual data set

tsort operator

i Virtual data set

export operator

\

_@ Output data set

As described in the chapter “Orchestrate Operators”, a virtual data set is a temporary buffer for data
output from one operator and input to another operator in the step. The example figure shows a
virtual data set connectirigrport tot sort, and another one connectingort toexport.

6-3

Visual Orchestrate User’s Guide Working with Steps in Visual Orchestrate

Designing a Multiple-Step Application

In the sample step above, the step takes an input file, performs operations on it, and stores the result
in a file on disk, possibly to be used as input to another step. Storing the output of a step in a
persistent data set allows you to create a data set in one step and process the data set in a second
step. In the following figure, Step 1 performs a preprocessing action, such as sort, on a data set that
Step 2 also requires. By performing the preprocessing in Step 1 and saving the result to a persistent
data set, Step 2 can input the preprocessed data set.

Input data set | ® I /\

Sterl y Input data set /] Step 2 x

Operator 1 Operator 3

copy operator

B
v 14

Operator 2 Persistent data set

‘ 4 | Output data set

You cannot use a persistent data set both for input and for output within one step. However, as
described in the chapter “Orchestrate Data Sets”, you can use the Orcleglyaiperator to save

a data set to disk and to output the same data as a virtual data set that can be input to the next
operator in the step.

Working with Steps in Visual Orchestrate

The following sections describe how to use Visual Orchestrate to manipulate steps:
e “Creating Steps” on page 6-5

e “Executing a Step” on page 6-7

e “Setting Server Properties for a Step” on page 6-8

e “Setting Environment Variables” on page 6-10

e “Using Pre and Post Scripts” on page 6-12

Orchestrate Steps Visual Orchestrate User’s Guide 6-5

Creating Steps

When you create a new program, Visual Orchestrate automatically creates an initial step for the
program.

To add a step to a program, perform any one of the following actions:

e SelectProgram -> Add Step from the menu
e Click the step icon in the tool bar

e Right-click in theProgram Editor window background area (outside any step). From the
popup menu, seleétdd Sep.

The step displays as a box in freogram Editor window, as shown below

VYizual Drchestrate - Server "test_metheny™ as "stephen™
File Edit “iew Cusztorn Toolz Program Windows Help

o] o|z|a|s| Lmlo|o| | & |F(E|@| BlE[E] 2o][>

= @ Server - test_metheny
;1 Frograms B Program Editor - stephen:Untitled [modified]
[-3 Operators
[Datasets
-5 Schemas
[218 Configurations

Ready

Visual Orchestrate User’s Guide Working with Steps in Visual Orchestrate

You can add operators, data sets, and data-flow links to the step. For example, the figure below

shows a step that implements the example in the section “Designing a Single-Step Application” on
page 6-3:

1 Initial Step

export

To view and modify the properties of a step, usetep Properties dialog box, shown below. To

open theStep Properties dialog box, double-click in the step box (not on an operator, data set, or
link).

&, Step Properties: Initial Step

I§erver | Env | Exec Mode | Defaultz Qonstraintsl F'_rel Post I Notesl

— General Properties

Labet [iniial Step

Execution Order: |1

0k I Apply Cancel Help

This dialog box contains the following tabs:

Use theGeneral tab to set the stdpabel andExecution Order within your program.

Use theServer tab to configure the execution environment of the step. See the section “Setting
Server Properties for a Step” on page 6-8 for more information

Use theEnv tab to set the environment variables used by the step. See the section “Setting
Environment Variables” on page 6-10 for more information.

Orchestrate Steps Visual Orchestrate User's Guide 6-7

Use theExecution M ode to configure how your step uses processors when it executes. See the
section “Setting Step Execution Modes” on page 6-10 for more information.

Use theDefaults tab to set buffering parameters and default import schemas.

See the chapter on the import/export utility in ®rehestrate User's Guide: Operatorsor
more information on default schemas.

Use theConstraints tab to set constraints on the step.
See the chapter “Constraints” for more information.

Use thePre andPost tabs to add a UNIX shell script that executes befere) ©r after Post)
the step. These scripts are executed using the UNIX Bourne /dhietl/ 6h). See the section
“Using Pre and Post Scripts” on page 6-12 for more information.

Use theNotes tab to enter text that describes the step. The text is saved with the step. This tab
provides standard text editing functions, such as selection, cutting, and pasting; right-click to
display a context menu of these functions.

Executing a Step

To execute a step, press fRen button on the Visual Orchestrate tool bar. Orchestrate first checks
the step for errors (such as incorrectly connected links), and then runs the step.

To configure Visual Orchestrate to check a step but not to run it, uBedtgeam menu. This menu
entry has the following options:

Sep Check All: If you select this option, pressing the Run button will check all steps for
errors, but will not execute any step. This option sets the check-only flag for all steps. You
must explicitly clear the check-only flag usi8gp Check None, or by clickingEnable Sep

in the popup menu for the step.

Shown below is a step with the check flag set:

Check flag indicator 1: Initial Step

%

Sep Check Selected: Sets the check flag for the currently selected step. Pressing the Run but-
ton will check the step for errors, but will not execute it. You must explicitly clear the check-
only flag usingStep Check None, or by clickingEnable Step in the popup menu for the step.

Sep Check None: Clears the check-only flag for all steps in an application. After choosing

Visual Orchestrate User’s Guide Working with Steps in Visual Orchestrate

this menu command, pressing the Run button will both check and execute all stepsin the appli-
cation.

Note: Running an application that displays a great deal of text (more than afew thousand lines) in
Visual Orchestrate can negatively affect its performance. When you run a display-intensive appli-
cation in Visua Orchestrate, redirect its output from the screen to a file, which you can examine
outside Orchestrate (in atext editor, for example) after the run.

Setting Server Properties for a Step

An Orchestrate program consists of one or more Orchestrate steps. When you create an Orchestrate
program, you use the Program Properties dialog box to set the global properties on the program.
However, you can override many of these properties on individual steps using the Server tab of the
Sep Properties dialog box, shown below:

. Step Properties: Initial Step

General Env | Exec Mode | Defaulks | Constraints I Fre | Poszt I Mates I
— Orchestrate Server Propertie
— Configuration —Databaze
DB2 -
I[N p ﬂ I [Mone] J
Infarmix I[None] j
~ Erecution Optiong————————————————— Oracle I [Mone] j
* Execute || ShowScores
¢ Check Only [Show Schemas — Checkpointing
" Disabled [~ Show Environment [~ Enable
tax Outstanding KB |2|]43 Segments I
Temp Dir W Eroyise . |

k. I Apply | Cancel | Help |

Note: Any properties left unchanged in the Step Properties dialog box default to the settings in the
Program Properties dialog box.

You can optionally set any one of the following server properties:

Configuration: Select the Orchestrate configuration used to execute the step. The configuration
defines the processing nodes and disk drives available for use by your program.

The Orchestrate server administrator is required to set up at least one default configuration
before you can create an Orchestrate step or program. If no configuration is available, see
the Orchestrate server administrator

You may have several different configurations available. For example, one configuration
may be for testing and another for deployment.

Orchestrate Steps Visual Orchestrate User's Guide 6 -9

Execution Options: Click Check Only to validate the step but not run it, and Execute to execute
the step. Click Disabled to cause Visual Orchestrate to skip this step (that is, not to execute the step
as part of the application).

If you change execution options with the menu (such as with Program->Sep Check All) or with
the step popup menu (such as with Disable Sep), the Execution Options setting on the Server
Properties tab will reflect the setting the next time you open the Step Properties dialog box.

Show Scores causes Visua Orchestrate to display extensive diagnostic information about the step
asit executes.

Shows Schemas causes Visual Orchestrate to print the record schema of all data sets and the inter-
face schema of al operators.

Shows Environment causes Visual Orchestrate to display the applicable environment variables
during the program run.

Max Outstanding KB: Sets the amount of memory, in bytes, reserved for Orchestrate on every
node to communicate over the network. The default valueis 2 MB (2048 bytes).

Note: If you are working on a stand-alone workstation or stand-alone SMP, leave M ax Outstand-
ing KB at its default value.

If your system uses a network to connect multiple processing nodes, such as an IBM switch in an
MPP or an Ethernet connection in a network cluster, set Max Outstanding KB as follows:

« If you are using the IBM HPS switch (also referred to as TB2), set a value less than or equal to
(thewal | *1024)/2.

< If you are using the IBM SP switch (also referred to as TB3), set a value less than or equal to
MIN(spool si ze, r pool si ze).

» For workstations connected by a network, set a value less than or eghahtal (* 1024)/2.

Contact your system administrator for the correct setting/ffax Outstanding KB. The fol-
lowing are some guidelines for determining the setting for your system.

SettingM ax Outstanding KB to its maximum value means that Orchestrate reserves all avail-

able memory for communicating over the network, and that no other application will be able to
communicate. Set this environment variable based on your understanding of the system load
required by Orchestrate and by all other applications running on the system by all other users.

For example, if you are using DB2 and Orchestrate together, you coids€dutstanding
KB to reserve 8 MB for Orchestrate. If you are testing Orchestrate by running small applica-
tions, you could sd1ax Outstanding KB to reserve only 4 MB.

If you run multiple Orchestrate applications concurrentlyMsat Outstanding KB to a frac-

tion of the value that you would use for a single application. For example, if you normally set
Max Outstanding KB to 8 MB for a single Orchestrate application, set it to 4 if you are going
to run two concurrent Orchestrate applications.

If you use SMP nodes in your system, you musiMset Outstanding KB to the value deter-
mined above, divided by the number of Orchestrate nodes defined for the SMP node. For
example, if you configure Orchestrate to recognize a single SMP node as two separate process-

Visual Orchestrate User’s Guide Working with Steps in Visual Orchestrate

ing nodes, set Max Outstanding KB to its normal value divided by two. If you have multiple
SMP nodes, divide the value of Max Outstanding KB by the largest number of Orchestrate
nodes defined for any single SMP node.

Database: Specifies the database configuration used by the step. The database configuration
defines the database type (DB2, INFORMI X, Oracle) as well as the specific database configuration
to use.

If you are accessing a database, the Orchestrate server administrator must set up at least a
default database configuration before you can create an Orchestrate step or program. If no con-
figuration is available, see the Orchestrate server administrator.

You may have several different configurations available depending on the database and data-
base data that you want to access.

Setting Environment Variables

You can use the Env tab in the Step Properties dialog box to set environment variables required by
the step, or to override global environment variables set in the Program Properties dialog box.
The Env tab is shown below:

. Step Properties: Initial Step

General | Server i | Exec Model Defaults Qonstraintsl Fie | Post I Notesl

— Environment Yariables

Hame W alus
Yaniable MName:

Walue:

sl e i | DeEE |

ak. I Apply Cancel Help

Setting Step Execution Modes

Debugging a parallel Orchestrate application can be difficult when the application executes in
multiple UNIX processes on multiple processing nodes. To simplify application development and
debugging, you can execute your Orchestrate application in the sequential execution mode.

In sequential execution mode, a step executes on a single processing node and has access only to
the resources (including disk storage) of that node. To use sequential execution mode, you need to
construct atesting data set as a subset of your complete data set. The testing data set must be small
enough to be handled easily on a single processing node with the available system resources.

Orchestrate Steps Visual Orchestrate User’s Guide

When your application works properly in sequential execution mode, it is time to test the program
in parallel execution mode. In parallel mode, your application executes in multiple UNIX processes
on multiple processing nodes using the full capabilities of the Orchestrate framework.

The Execution M ode tab of the Step Properties dialog box, shown below, lets you override global
execution mode properties set in the Program Properties dialog box.

. Step Properties: Initial Step

General | Server | Env Defaults | Qonstraintsl Pre | Post I Notesl

— Execution Mode

& Momal [Paraliel, Multiple Frocesses)

" One Process it Diatasst Tiemm Dit

£ No Serialize | RETETEE
bl ary S equential
Processes

ak. I Apply Cancel Help

You can optionally set the following properties:

Normal: Specifies standard execution mode. This means each operator executing on each process-
ing node creates a separate UNIX process. The operators execute in parallel or sequentially based
on how you configured the operator.

One Process: Sets the program to execute sequentially on a single processing mode. In addition,
the application executes in asingle UNIX process. You need to run only a single debugger session,
and you can set breakpoints anywhere in your code. In addition, datais partitioned according to the
number of nodes defined in the configuration file.

Orchestrate executes each operator as a subroutine. Each operator is called the number of
times appropriate for the number of partitions on which it must operate.

No Serialize: The Orchestrate persistence mechanism is not used to load and save objects. Turning
off persistence may be useful for tracking errorsin derived C++ classes. That is, if turning off seri-
alization in a program that previously crashed results in the program executing correctly, the prob-
lem may be located in your serialization code.

Many Sequential Processes. Sets the program to execute sequentially on a single processing node.
Orchestrate forks a new UNIX process for each instance of each operator and waits for it to com-
plete.

Virtual Dataset Temp Dir: During sequential program execution, virtual data sets are written to
files in the specified directory which defaults to the current working directory. These files are
named using the prefix apt vds. This allows you to examine avirtual data set as part of debugging
your application. Virtual data sets are deleted by the framework after they are used.

Visual Orchestrate User’s Guide Working with Steps in Visual Orchestrate

Using Pre and Post Scripts

This section describes how to create and use pre and post scripts and server variables, to modify the
execution of your steps. This section includes a detailed example, in the section “Example: Passing
a Value to an Operator from the Pre Shell Script” on page 6-13.

Creating Pre and Post Scripts

Each Orchestrate step allows you to create and associate two scripts with th@rstemdaaPost
shell script. You can use these scripts to perform such operations as:

e Opening and closing UNIX pipes for use by the import/export operators
e Calculating run-time values passed to Orchestrate operators
« Performing any other pre or post processing actions required by the step

The order of execution of a step and its associated shell scripts:
1. Execute th&re shell script, if any.

2. [Execute the step.

3. Execute th&ost shell script, if any.

Note that thé’re andPost shell scripts are independent of each other; that is, you can create either
aPre or aPost shell script, or both.

By default, Orchestrate uses the Bourne shell to execute the shell script. However, you can use any
shell to execute the script. For example, the first line of the following script specifies the Korn
shell:

#!'/ bi n/ ksh
script goes here

Each step in an application, as well as eldohandPost shell script, executes in its own shell
environment. Any modifications to the UNIX shell environment made byPtkeshell script are

not passed to the shell environment of the step or to that ¢fadteshell script. Therefore, you
cannot use UNIX environment variables to pass information. Instead, you can use Orchestrate
server variables, which exist only during execution of the application in which you create them.

Using Orchestrate Server Variables

Orchestrate provides a function that you can use to store on the server the result of calculations in
your Pre shell script. In your step, operators can reference that value. Orchestrate also provides a
function that you can use to access the variabldPwsashell script.

To write a value to the server, use the function:

set _orchserver_vari abl e var_nane var_val ue

Orchestrate Steps Visual Orchestrate User's Guide 6 -13

where:

e var_nane is a variable name. The server stores the variable and its value for the duration of
your Orchestrate program, so that other steps in the program can access the variable. At the end
of the program run, Orchestrate deletes the variable.

e var_val ue is the variable’s value and can be an integer (signed or unsigned), float, or string.
All values are stored on the server as strings.

To get a value from the server, use the function:
val ue = get_orchserver_vari abl e var_nane

where:
* val ueis the variable value represented as a string
* var_nane is the name of the server variable

get _orchserver _vari abl e returns an exit code of 0 if it succeeds and 1 if it failgalf_nane
is not stored in the server, the call succeeds but returns the empty string.

The following two sections describe examples of using pre scripts and server variables.

Example: Passing a Value to an Operator from the Pre Shell Script

A common use of thBre shell script is to calculate the value of an argument for an operator in the
step. For example, the Orchestradepl e operator takes an argument specifying the percentage of

an input data set written to each output data set. The percentage is a floating-point value in the
range of 0.0, corresponding to 0.0%, to 100.0, corresponding to 100.0%.

Shown below is a shell script that you can use to calculate the percent sample size required by the
sanpl e operator to copy 1600 records from the input data ‘set to the output data set. You enter this
script in thePre tab area of th&ep Properties dialog box:

#1/bin/ ksh

nunBSanpl ed=1600 # Line 1
numRecs='dsrecords inDS.ds | cut -f1 -d" * # Line 2

percent="echo "10 k $numSampled $numRecs / 100 * p 9" | dc'# Line 3
set_orchserver_variable sample_percent ‘echo $percent’ # Line 4

Line 1. Inthis example, you want the output data set to contain 1600 records.

Line 2. Usethedsrecords utility to obtain the number of recordsin the input data set. The return
value of dsrecords has the form # records where # is the number of records. This statement
returns the record count and strips off the word record from the value.

Line 3. Calculate afloating point value for the sample percentage from the 1600 records required
by the sample and the number of recordsin the data set. This example uses the UNIX dc command
to calculate the percentage. In this command, the term 10 k specifies that the result has 10 digitsto
the | eft of the decimal point. See the man page on dc for more information.

Line 4. Useset_orchserver_variable to write the variable sample_percent tothe server.

You can now reference sample_percent in your step, to set the sampling percentage for the
sample operator. To reference the sample_percent , double-click the operator to display its

6-14 Visual Orchestrate User’s Guide Working with Steps in Visual Orchestrate

Operator Propertiesdialog box. On the General tab, select Add to add a option or Edit to edit an
existing one. The Options Editor dialog box for the sanpl e operator appears. Click the Variable
Reference button, marked with a blue V, to select it. In the text field to the left of the Variable
Reference button, type the variable name, as shown in the following figure:

. Option Editor !Em

Operator. General sample

Option: Ipercent ﬂ
Type: Float

| Variable Reference button
— Mumeric Value

Walue: Isample_percenl IV

(n]4 I Cancel | Help |

Each time you run the step, the Pre shell script calculates the required percentage to generate 1600
records in the output data set and passes this sampling percentage to the operator.

Visual Orchestrate User’s Guide

7: The Performance Monitor

The Orchestrate performance monitor (also called or chvi ew) produces a graphical, 3-D rep-
resentation of an Orchestrate step asit executes. The monitor allows you to track the execu-
tion of an Orchestrate step and display statistical information about Orchestrate operators
during and after step execution.

This chapter describes the performance monitor, including the monitor’'s graphical user
interface. This chapter also describes how to configure your system to use the performance
monitor and how to run the performance monitor.

This chapter contains the following sections:
e “The Performance Monitor Window” on page 7-1
e “Controlling the Performance Monitor Display” on page 7-5

Note: Your system must have X Windows support in order to run the Orchestrate performance
monitor.

The Performance Monitor Window

The performance monitor shows the execution of astep in a 3-D format that allows you to view the
operators and the data flow among the operators that make up the step. You can use the monitor to
display a step as it executes, or you can record the step and play it back later.

The performance monitor allows you to zoom the display, and rotate the display horizontally and
vertically, to examine individual operators or operator connections. You can set a number of
options that control how the performance monitor displays your program execution. For example,
you can set the frequency at which the entire display is updated. You can also customize the display
style for data flows, and the volume or rate cutoff at which the performance monitor shows a
change in the data flow.

The performance monitor lets you display statistical information about the operators and the data
setsin your program. For example, you can display a snapshot of the current record read and write
rates. The performance monitor also has a feature that lets you create a spreadsheet from your
program statistics.

7-2 Visual Orchestrate User’s Guide The Performance Monitor Window

Shown below is the performance monitor window with a run-time display of a sample application:

X Orchview

File Options Data Help

Message panel Displaying Current Step Topeology and DataRates.
Zoom V Rotate H Rotate Op Width
11 -22 22 0.97 .
Control panel Auto View

0 100 80 0 80 0 180360 0.001.002.00

The Performance Monitor Visual Orchestrate User’s Guide 7-3

How the Performance Monitor Represents Your Program Steps

The symbols the performance monitor uses to represent operators and data sets are similar to those
used in data-flow diagrams, as shown below:

In performance monitor In data-flow diagram
Operator OpNane
1
1
| | Data flow |
1
1
: | Virtual data set i
1

eole)
Persistent data set
eo|e

As shown in the figure above, the performance monitor displays operators as square grids. Each
used cell in an operator grid represents an instance of the operator on an Orchestrate processing
node. The performance monitor also displays persistent data sets as square grids. Each used cell in
the grid represents an Orchestrate processing node.

An operator grid may also contain cells that are never used, as explained below.

How the Performance Monitor Determines Grid Dimensions

All operator and persistent data contain a square number of cells (4, 9, 16, 25, and so forth),
arranged as a square. All the operator and persistent data set grids in a step have the same number
of cells: the largest number of Orchestrate processing nodes used by the step, rounded up to the
nearest square number.

For example, if the largest number of processing nodes used by the step is 16, then all operator and
data-set grids have 16 cells (4 rows by 4 columns). In another example, if the largest number of
processing nodes used is 22, the number of cells is rounded up to the nearest square number, 25,
and every grid in the step has 5x5 cells.

Note: Any cellsin a grid that do not represent processing nodes, which the performance monitor
has added to make the grid a square, are never used and therefore never show activity. Do not con-
fuse these never-used cells with temporarily inactive cells, which represent Orchestrate nodes but
show no activity in the current display.

The cells in grids for operators and persistent data sets are identified by row-column coordinates,
with each row and column indexed 0 through n- 1.

Visual Orchestrate User’s Guide The Performance Monitor Window

How the Performance Monitor Represents Data Flows

Flows of data (including virtual data sets), among operators and data sets in the step, are
represented by solid or dashed lines (arcs). The performance monitor treats any data connection
with no flow of data within a sampling interval as currently inactive, and by default does not
display it. You set the sampling interval when you configure the performance monitor (see the
section “Configuring the Performance Monitor” on page 7-4).

During the step’s processing, the performance monitor first represents a data flow as a dashed line.
After a minimum number of records (by default, 100,000) have been written to one processing
node in the virtual data set, the performance monitor changes the virtual data set representation to a
solid line. As explained on the section “Data Set Display Control” on page 7-7, you can use the
Options dialog box to enable or suppress the display of inactive data flows. You can also use this
dialog box to change the minimum number of records at which the performance monitor represents
the flow with a solid line.

Configuring the Performance Monitor

To configure the performance monitor for an entire application, you uder tigeam Properties
dialog box, as described below:

1. ChooseéProgram -> Propertiesto open thd’rogram Properties dialog box.

2. From theOrchview tab, select th®ebug Options button. This opens th&ep Debug dialog
box.

3. Set the parameters that enable the performance monitor, as follows:
Enable: Click to enable the performance monitor.

Host running Orchview performance monitor: The name of the UNIX processing node run-

ning the performance monitor. On MPP systems, this is the node from which the server is
started. On other systems, this is the name of the node as it appears in the Orchestrate configu-
ration file, using the node parameter.

X Windows DISPLAY on which Orchview window appears: The name of the machine on
which the performance monitor output window is displayed. This entry is usually the network
name of your PC.

TCP port by which Orchview receives performance data: The logical port number used to
communicate information from your application to the performance monitor.

The port number must be different from all other performance monitor processes, and from
that of other applications that allocate specific port numbers.

Many standard applications port numbers are in the 0-1000 range. Recommended values for
the port number are between 10,000 and 60,000.

Temporary ScoreFile: The name and path of the file used by the performance monitor to hold
data. The performance monitor creates this file if it does not already exist.

Display update interval (seconds): The sampling interval for the performance monitor in
one-second increments.

The Performance Monitor Visual Orchestrate User’s Guide 7-5

Increasing the number reduces the network bandwidth used by the monitor. Decreasing the
number creates afiner granularity for viewing the step.

Shown below are example settings for these environment variables:

Enable: Checked

Host running Orchview performance monitor: node0

X Windows DI SPLAY on which Orchview window appears. nyPC: 0
TCP port by which Orchview receives performance data: 22222
Temporary Score File: / horme/ user 1/ wor ki ng_di r/ nyscorefile
Display updateinterval (seconds): 10

Controlling the Performance Monitor Display

This section describes how you can control the display of the performance monitor. Included in this
section isinformation on:

e “General Display Control” on page 7-5

e “Operator Display Control” on page 7-6

e “Data Set Display Control” on page 7-7

e “Generating a Results Spreadsheet” on page 7-8

General Display Control

The performance monitor contains the following general controls:

* In the menu bar, th®ptions selection includes several display options, such as setting the
background color of the display window to black or white.

« Inthe menu bar, thidelp selection accesses online help.

- Below the graphical display area, the message panel displays output messages from the perfor-
mance monitor.

e The control panel lets you:
e Automatically pan and zoom the display with thieto View button.
e Zoom in and out on the display.

* Rotate the step both horizontally and vertically, so you can focus in on a particular opera-
tor or connection.

e Change the width of the operator grids. Reducing the size of the grids can make a complex
step easier to view, and it gives you the option of displaying only the data flow of the step.

Visual Orchestrate User’s Guide Controlling the Performance Monitor Display

Operator Display Control

Not all operators execute on all nodes. By observing the data connections to an operator’s grid, you
can determine the number of nodes used to execute it. For example, if you have a 16-node system,
each grid contains 16 cells. However, constraints applied to an operator or to the step can restrict an
operator to executing on a subset of the 16 Orchestrate processing nodes. Only the cells
corresponding to nodes actually executing the operator have a data connection. Cells with no

connection correspond to nodes not used by the operator.

The performance monitor provides the following controls for operator display:

« To move an operator in the window, you use the middle mouse button (or both buttons on a
two-button mouse) to click and drag the operator grid in the window.

« To display a window with a snapshot of the statistics about the operator, click the right mouse
button on the operator-grid cell that represents the operator instance on which you want to
obtain statistics. The statistics display includes the operator number and instance number of the
operator cell on which you clicked, as shown below:

/ Operator number

2 0p: 10, parallel funnel(2)

Operator Rate Records Runtime (sec)
In: |0 [8073 E
out: |0 | 8073 [2
Instance (1) Rate Records Runtime (sec)

In: X [0 | 4036 |0
@8 [g [4036 [2

\
Instance number

The statistics window remains open as long as you hold down the right mouse button. To
refresh the statistics display, release the mouse button and then click again to display the
updated statistics.

e To display statistics about an operator for which you know the operator number and operator

instance number, you can also use the menu to display the operator statistics window shown
above. Choose tHeata -> Operator Sats menu selection to open tspecify Operator dia-

log box. Enter the operator number into 8pecify Operator Number field, and enter the
instance number into thgpecify Instance Number field. Then, click thestats... button to

open the statistics window for the operator.

When opened via the menu, the window remains open until you dismiss it, and it is automati-
cally updated every 5 seconds.

The Performance Monitor Visual Orchestrate User’s Guide 7-7

Data Set Display Control

The performance monitor displays virtual data sets as dashed or solid lines, and it displays
persistent data sets as grids. The performance monitor lets you control some aspects of the display
of data sets, and to display statistical information about your data.

Not al persistent data sets are transferred using all processing nodes. From the performance

monitor window, you can see the data connections to a data set’s grid and therefore determine the
number of nodes used to store the a data set. For example, if you have a 16-node system, each data-
set grid contains 16 cells, but constraints applied to an operator or to the step restrict an operator to
transferring the data set on fewer than 16 nodes. Only the data-set grid cells corresponding to nodes
actually used for the data set have a data connection. Cells with no connection correspond to nodes
that are not used to transfer the data set.

The performance monitor provides the following options for controlling the display of information
about a data set:

« To display a snapshot of statistics about a data set, control-click the right mouse button on the
data flow (solid or dashed line). The statistics window remains open as long as you hold down
the right mouse button. To refresh the statistics display, release the mouse button and then con-
trol-click again to display the updated statistics.

The window includes the data-set number and the reading and writing operators, as shown
below:

Data-set number Writing operator Reading operator

// /

> DS5: 9, parallel funnel(1] -to- parallel funnel(2)
Rate Records Runtime (sec)

DataSet Total:l 0 | 8073 | 1
Arc(0,0): [0 | 2019 [1

Data-set arc information

At the bottom of the window is the information anc(N, M , whereN is the instance number

of the writing operator anllis the instance number of the reading operator. This window dis-
plays information about the partition of the data set connecting the output of instance 0 of the
writing operator to the input of instance 0 of the reading operator.

You can determine the data-set number from this window in order to open the statistics win-
dow for the operator, described next.

e To display statistical information about a data set and a specific arc in it, cho@&dhe
DataSet Stats menu selection. The statistics displayed include the time running, total records
passed, and data-flow rate. The performance monitor updates this window continuously.

« To show the volume of records processed, séptions from the menu to open th@ptions
dialog box. In that dialog box, check the selectifs Spectrum Coloring Marker (No. of
Records). By default, the data-flow line color is determined by the node number of the pro-

7-8 Visual Orchestrate User’s Guide Controlling the Performance Monitor Display

cessing node writing the data, and the color remains constant throughout processing. Setting
the DS Spectrum Coloring Marker option causes the performance monitor to indicate record
volume by cycling through the color palette, from orange to violet, changing color when your
specified number of records has been processed.

To show the rate of data flow, you can use either of two selections @ptiens dialog box:

e DS Spectrum Coloring Marker (Records per Second). Check this option, and enter the
number of records per second at which you want the color to change. The performance
monitor cycles through the color palette (from orange to violet), changing color at the
number of records you specify.

« DS Binary Rate Coloring (Records per Second). Using his option causes the perfor-
mance monitor to display in red the data flows that transfer data below the cutoff rate, and
to display in green the data flow arcs with a rate at or above the cutoff. Check the option
and set the cutoff rate in tiRecords per Second field, and then press Enter.

To set the number of records processed after which a virtual data set is displayed as a solid line,
check theOptions dialog box selectiorset DS Solid Line Marker (No. of Records). The
default number of records is 100,000.

To cause the performance monitor to display inactive data connections, @g#tithres dialog

box selectionshow Data Set By Blockage (Solid Line). The performance monitor treats a
data connection asactive if no records have been transferred over it during one sampling
period (approximately five seconds).

Generating a Results Spreadsheet

The performance monitor lets you save to a file, in a spreadsheet layout, the information it gathers
on record flow in your data set. The information is saved as tab-delimited ASCII text, so that you
can open the file in any ASCII text editor. The format is also compatible with Microsoft Excel, so
you can use Excel to view your results spreadsheet.

Use the following procedure save your record-flow data to a spreadsheet:

1.

In the performance monitor, choose Fike -> Save Spread Sheet menu command to open a
dialog box prompting you for the name of the file.

Enter the name of the file.
Click theSave Spread Sheet button to save the current data flow information to the file.

This action saves the number of records transferred by every data-flow arc in the step at the
time you click theSave Spread Sheet button. Clicking on the button again overwrites the con-
tents of the file with new information.

View the file using either an ASCII text editor or in Microsoft Excel.

When you read the file into Excel, Excel opens a text import dialog box allowing you to spec-
ify the layout of the file. Use the default valuel@dlimited text to read the file, then click on
theFinish button.

The Performance Monitor

The following is an example of the contents of the saved spreadsheet:

O chestrate Performance Spreadsheet, Copyright (C 1995 -

Torrent Systens,

Sequence Nunber:

I nc.

3
Spr eadsheet Versi on:

1

Current Date 1997 10 28
Current Time 12:35:50
Uni que Orchestrate Step I D: 60346-878059706

Step Start Date 1997 10 28
Step Start Tine 12:28:26

Data Secti on:

All

Ri ght s Reserved.

data saved: detailed data set flow vol unes.

begi n data:

DS0
(0,0) 673
(0, 1) 673
(0,2) 673
(0, 3) 672
(1,0) 0
(1,1) 0
(1,2) 0
(1,3) 0
(2,0) 0
(2,1) 0
(2,2) 0
(2,3) 0

End Data

End Data Section

Sequence Nunber:

In the spreadsheet, the row labels (such as 0, 0) specify the partition numbers of the reading and

3

DS1
673
673
673
672

o O o o o o o o

DS2
1346

1346
0

1346
0

writing operators for each data-flow arc, in the form.

(witing_partition,

The column labels identify the data sets. To determine the data set that corresponds to the label for
a column (such as DS0), control-click the right mouse button on the data flow arc in the

readi ng_partition)

DS4
1346

1346

Visual Orchestrate User’s Guide

DS5
337
337
336
336
337
337
336
336
337
337
336
336

2000

DS6
337
337
336
336
337
337
336
336
337
337
336
336

7-9

performance monitor display. See the section “Data Set Display Control” on page 7-7 for
information about data set arcs.

Visual Orchestrate User’s Guide Controlling the Performance Monitor Display

Each cell in the spreadsheet body corresponds to a single arc in the display of the performance
monitor. The cell contains the number of records transferred from the writing operator to the
reading operator for a partition of the data set.

Creating Movie Files

The performance monitor movie feature lets you record and play back the run-time display of your
program. You save one or more steps to a movie file, and you play it back in the performance
monitor. Once the display information is saved, you can repeatedly play back thefile.

To save a step to a movie file, choose the File -> Save Movie As menu command before you run
the step. This command prompts you for the file name for the movie.

To play a movie file back, choose the File -> Play M ovie menu command, and enter the name of a
file containing a movie.

You can also view a step’s configuration stored in a movie file, without playing back the entire
movie. The step configuration is a snapshot of all operators and data sets in a step. To display the
step configuration stored in a movie file, chooseRihe-> View Sep menu command.

Visual Orchestrate User’s Guide 8-1

8: Partitioning in Orchestrate

Partitioning isthe action of dividing a data set into multiple ssgments or partitions. Partition-

ing implements the “divide and conquer” aspect of parallel processing, where each processing
node in your system performs an operation on a portion of a data set rather than on the entire
data set. Therefore, your system produces much higher throughput than it does using a single
processor.

One of the goals of Orchestrate is to insulate application developers from the complexities of
partitioning. Usually, a parallel operator defines its own partitioning algorithm, or method, so
that you do not have to modify how the operator partitions data.

However, Orchestrate allows you to specify an explicit partitioning method in certain circum-

stances. The first section of this chapter describes how Orchestrate partitions data during
normal program execution and how you can control the partitioning behavior of an applica-

tion.

Note that sequential Orchestrate operators do not use a partitioning method. Instead, a
sequential operator defines aollection method. A collection method defines how a sequential
operator combines the partitions of an input data set for processing by a single node. See the
chapter “Collectors in Orchestrate” for more information.

This chapter contains the following sections:

e “Partitioning Data Sets” on page 8-1

e “Partitioning Methods” on page 8-3

* “Using the Partitioning Operators” on page 8-7
* “The Preserve-Partitioning Flag” on page 8-11

Partitioning Data Sets

A record comprises one row of adata set and is the unit of partitioning in Orchestrate. An operator
partitions an input data set by dividing it record by record to distribute the data set to all processing
nodes executing the operator.

All records assigned to a single processing node are referred to as a data-set partition. An operator
executing on a processing node performs an action only on those records in its input partition. All

records on a processing node output by an operator are written to the same partition of the output

data set. For each partitioning method, Orchestrate provides a partitioning operator (also called a
partitioner), which you use to partition data for a parallel operator. Partitioning methods are
described in the section “Partitioning Methods” on page 8-3, and the partitioning operators are
introduced in the section “Using the Partitioning Operators” on page 8-7 and are described in detail
in theOrchestrate User’s Guide: Operators

Visual Orchestrate User’s Guide Partitioning Data Sets

Partitioning and a Single-Input Operator

Partitioning operators work closely with parallel operators, so that all partitioning and parallelism

are hidden from the application user. In the following figure, the left-hand data-flow diagram is an
application user’s view of a parallel operator that takes one input data set and outputs one data set.
The detailed diagram on the right shows the application developer’s view: a partitioning operator
partitions the data that the parallel operator then processes, and the parallel operator outputs a
partitioned data set.

Input data set *

Operator (user’s view)

Input data set partitions

NS | _ Partitioning operator

/Parallel operator

| Processing nodes
[~ executing the operator
Output data set

vV vy v
Output data set partitions

As shown in the right-hand diagram, the partitioning operator performs the following tasks:
e Takes as input a data set, which may have already been partitioned

< According to its partitioning method, determines the output partition for each record

* Writes each record to an output partition

The parallel operator runs as a separate instance on each processing node in the system. The opera-
tor instance processes records from a single input partition, and it writes all its output to a single
output partition.

Partitioning and a Multiple-Input Operator

A multiple-input parallel operator can use a different partitioning operator to partition each input.
However, the partitioning operators must create the same number of partitions for each input of the
parallel operator.

In the figure below, the left-hand data-flow model is an application user’s view of a two-input
operator. The right-hand diagram shows the details: the operator takes each of its two inputs from a
different partitioning operator. It also shows that each partitioning operator takes a different number

Partitioning in Orchestrate Visual Orchestrate User’s Guide

of partitions (four partitions to the left-hand partitioning operator and two partitions for the right-
hand partitioning operator), as output by differently partitioned upstream operators.

Partitioning operators
Input data sets

Input
data set
]

L Input data set
Operator (user’s view)

Parallel operator

Output data set
v v v

Output data set partitions

The right-hand diagram shows that each partitioning operator creates three partitions for one of the
two inputsto the parallel operator.

Partitioning Methods

Each Orchestrate partitioning operator uses a different method to determine how to partition a data
set. A partitioning method may be as simple as the random distribution of records, or it may involve
complex analysis of the data.

The Benefit of Similar-Size Partitions

In selecting a partitioning method, an important objective isto make all partitions similar in size, so
that processing will be distributed fairly evenly among processing nodes. Greatly varied partition
sizes can result in heavy record processing by some of your processing nodes and little processing
by others.

For example, suppose that you need to partition a data set in which every record contains a zipcode
field. You could select a partitioning method that partitions the data according to value of the zip-
code field. If there are approximately the same number of records for each zipcode, your partitions
will be of similar size. However, if most of your data set records have one zipcode value and few
records have other zipcode values, your partitions will vary significantly in size.

8-3

Visual Orchestrate User’s Guide Partitioning Methods

Partitioning Method Overview

Many Orchestrate operators specify a default partitioning method of any. The any method allows
Orchestrate to partition the input data set in any way that it determines will optimize the
performance of the operator. However, insertion of a partitioning operator in front of the operator
overrides the any method.

Orchestrate supports a number of the following commonly used partitioning methods, briefly
described below. The Orchestrate operators that implement these methods are described in the sec-
tion “Using the Partitioning Operators” on page 8-7.

Round robin: The first record goes to the first processing node, the second to the second pro-
cessing node, and so on. When Orchestrate reaches the last processing node in the system, it
starts over. This method is useful for resizing partitions of an input data set that are not equal in
size. Theround robin method always creates approximately equal-sized partitions.

Random: Records are randomly distributed across all processing hodesouiidrobin, ran-

dom partitioning can rebalance the partitions of an input data set to guarantee that each pro-
cessing node receives an approximately equal-sized partitiorraiitiem partitioning has a
slightly higher overhead thaound robin because of the extra processing required to calculate

a random value for each record.

Same: The operator using the data set as input performs no repartitioning and takes as input the
partitions output by the preceding operator. With this partitioning method, records stay on the
same processing node; that is, they are not redistribGek is the fastest partitioning
method.

Entire: Every instance of an operator on every processing node receives the complete data set
as input. It is useful when you want the benefits of parallel execution, but every instance of the

operator needs access to the entire input data set. You are most likely to use this partitioning
method with operators that create lookup tables from their input.

Hash by field: Partitioning is based on a function of one or more fields (the hash partitioning
keys) in each record. This method is useful for ensuring that related records are in the same
partition.

Modulus. Partitioning is based on a key fietbdulo the number of partitions. This method is
similar tohash by field, but involves simpler computation.

Range: Divides a data set into approximately equal-sized partitions, each of which contains
records with key fields within a specified range. This method is also useful for ensuring that
related records are in the same patrtition.

DB2: Partitions an input data set in the same way that DB2 would partition it. For example, if
you use this method to partition an input data set containing update information for an existing
DB2 table, records are assigned to the processing node containing the corresponding DB2
record. Then, during the execution of the parallel operator, both the input record and the DB2
table record are local to the processing node. Any reads and writes of the DB2 table would
entail no network activity. See the chapter on interfacing with DB2 iOthbestrate User’s

Guide: Operatorgor more information.

Other: You can define a custom partitioning operator by deriving a class from the C++
APT _Partitioner clas©ther is the partitioning method for operators that use custom partition-
ers. See the chapter on partitioning in @rehestrate/APT Developer's Guifier more infor-

Partitioning in Orchestrate Visual Orchestrate User's Guide 8-5

mation.

Partitioning Method Examples

This section describes examples of different partitioning methods used with several basic data-
flows.

The following figure shows a data flow between two Orchestrate operators:

Partitioning method = any,) Partitioning method = same
round robin,
random,
hash by field,
modulus,
range
i other
Operator 1 Processing node 1! 11l |1 1
L
i Record data flow I I I I
_—>
Operator 2 2 2 2 2
i Case 1l Case 2

On the left, the operators appear in a data-flow diagram. The rest of the figure shows the internal
dataflow.

Operator 1 processes its input data set on multiple nodes. Each processing node receives a single
partition of the input data set. As Operator 1 writes its results to its output data set, Operator 2
redistributes the records based on its partitioning method.

Case 1: If Operator 2 uses any, round robin, random, hash by field, modulus, range, or other, an
output record from a node executing Operator 1 may be sent to any node executing Operator 2
because this second operation repartitions the data. Note that the number of partitions for Operator
1 and Operator 2 do not need to be equal.

Case 2: If Operator 2 uses same, each node executing Operator 2 inherits a complete partition of
the data set as created by anode executing Operator 1. No repartitioning is performed. Note that the
any partitioning method is treated as same if the input data set has its preserve-partitioning flag set.
See the section “The Preserve-Partitioning Flag” on page 8-11 for more information.

Case 3 (not shown): If Operator 2 usestire, each node executing Operator 2 receives a copy of
the entire input data set.

Visual Orchestrate User’s Guide Partitioning Methods

Case 4: Orchestrate lets you include both parallel and sequential operators in a step. Sequential
operators execute on a single processing node and therefore always take an entire data set as input.
Sequential operatorsinput the output of al processing nodesin the upstream, parallel operator. This
fan-in operation is shown in the following figure:

:

Operator 1 Processing node
4—
(parallel)
i Record data flow
Operator 2
(sequential)

!

You have the option of using a collector operator to control how the partitions are gathered for input
to the sequential operator; see the chapter “Collectors in Orchestrate” for more information.

Case 5: This case is the converse of Case 4 above. When a sequential operator precedes a parallel

operator, the parallel operatfans out the sequential operator’s output to the processing nodes, as
shown in the following figure:

¢

Operator 1
(sequential)

:

Operator 2
(parallel)

!

This fan -out is controlled by the partitioning method of the parallel operator.

Processing node

Record data flow

Partitioning in Orchestrate Visual Orchestrate User's Guide 8-7

Using the Partitioning Operators

Nearly all Orchestrate built-in operators have a predefined partitioning method, Only the psort
operator and the gr oup operator in hash mode. require that you specify a partitioning method.

Many Orchestrate operators have the predefined partitioning method any. You can place any
partitioning operator in front of an operator that specifies the any method. Overriding an operator’s
partitioning method is useful for controlling the distribution of records in your system. Note that
inserting a partitioning operator before an operator with a partitioning method otheanthan
causes an error.

You can also use a partitioning operator before you write a persistent data set to disk. This allows
you to distribute your data set as a preprocessing operation before the write.

Orchestrate has a partitioning operator for each partitioning method described in the section “Parti-
tioning Method Overview” on page 8-4, as follows:

* roundrobi n operator
e randomoperator

e sanme operator

* entire operator

e hash operator

* range operator

. nodul us operator

For example, the following figure shows theundr obi n operator inserted before the Orchestrate
pconpr ess operator:

roundr obi n operator

!

Partitioning method = any

pconpr ess operator

!

A benefit of the oundr obi n operator is that it creates relatively equal-sized partitions in its output
data set. If processing previous to thmundr obi n operator, such as a filter or duplicate-record
removal, creates partitions that are unequal in size, you camuisér obi n to redistribute records
before inputting them to theconpr ess operator.

8-8 Visual Orchestrate User’s Guide Using the Partitioning Operators

The following figure shows the r andom operator used to distribute the output partitions of the
r endup operator before writing a data set to disk:

:

r enrdup operator

!

r andomoperator

Like the r oundr obi n operator, the r andom operator also performs a load balancing form or
repartitioning so that the partitions in its output data set are approximately equal in size.

Note: The optional Orchestrate Analytics Library includes the specialized operator smart parti -
ti oner, which uses model-building techniques to partition a data set. The Analytics Library man-
ual describeshow to usesmart partiti oner to support parallelizing modeling algorithms.

Choosing a Partitioning Operator

This section contains an overview of how to use the partitioning operators in an Orchestrate
application. See the Orchestrate User's Guide: Operatordor a complete description of each
operator.

General Guidelines for Selecting a Partitioning Method
Following are some general guidelines for choosing a partitioning method and, therefore, an
Orchestrate partitioning operator:

e Choose a partitioning method that creates a large number of partitions. For example, hashing
by the first two digits of a zipcode produces a maximum of 100 partitions. This may not be a
large enough number of partitions for a particular parallel processing system. To create a
greater number of partitions, you could hash by five digits of the zipcode, to produce as many
as 10,000 partitions. Or, you could combine a two-digit zipcode hash with a three-character
name hash, to yield 1,757,600 possible partitions (100 * 26 * 26 * 26).

« Choose a partitioning method that creates partitions that are roughly uniform in size, as dis-

Partitioning in Orchestrate Visual Orchestrate User's Guide 8-9

cussed in the section “Partitioning Methods” on page 8-3.

« Make sure the partitioning method matches the action of the operator. For example, if you are
performing a comparison, choose a partitioning scheme that assigns related records to the same
partition, so the processing node can compare them.

« Do not use a complicated partitioning method with an operator that performs a uniform opera-
tion on all records, for example, extracting data. If the processing operation performed on each
record is not related to any other records, arge Remember that you are processing huge
amounts of data. Any additional processing on an individual record is multiplied by the num-
ber of records in the data set.

Keyed and Keyless Partitioning

Keyed partitioners examine one or more fields of a record, callegdhtitioning key fields, to
determine the partition to which to assign the record. The keyed partitioning operataas lgre
modul us, andr ange.

Keyless operators determine the partition for a record without regard to the record itself. The
keyless partitioning operators are trendom r oundr obi n, andsarne.

The keyed patrtitioning operatdiash andr ange are discussed in more detail below.

Hash Partitioning

Hash partitioning is useful when you need to compare records, such as in a sort or join operation.
You usehash to hash-partition the data set, to assign records with the same partitioning key values
are to the same patrtition. Then, you sort or join the individual partitions of the data set. While you

cannot control which partition receives which records, the hash partitioner guarantees that all
records with the same hashing keys are assigned to the same partition.

You can also use hash partitioning when the processing operation relies on a particular ordering or
relationship among the records of each partition. For example, suppose that yourusei tipe
operator to remove duplicate records from a data set, according to the first-name and last-name
fields. If you randomly partition records, duplicate records might not be in the same partition and,
therefore, would not be detected and removed.

While thehash partitioning operator guarantees that all records with the same hashing keys will be
assigned to the same partition, it does not control the size of each partition. For example, if you
hash partition a data set based on a zipcode field, where a large percentage of your records are from
one or two zipcodes, a few partitions will contain most of your records. This behavior can lead to
bottlenecks because some nodes will be required to process more records than other nodes.

8-10 Visual Orchestrate User’s Guide Using the Partitioning Operators

For example, the figure below shows the possible results of hash partitioning a data set using the
field age asthe partitioning key:

Age values
Partition size 10
(in records)
36 12 35 15 54
40 18 5 44 17
22 27 60 39
[1

Partition number

The hash operator assigns records with the same age valueto the same partition. Asevident in this
figure, the key values are randomly distributed among the partitions, but the number of keys per
partition is the same.

The partition sizes resulting from a hash partitioner depend on the distribution of recordsin the data
set. The example distribution shown above could be created when the data set contains an unequal
record distribution based on the age field. Note that you may be able to choose a set of partitioning
keys for this example that creates equal-sized partitions. Or, your application may not care that the
partitions are of different sizes.

See the chapter on the hash operator in the Orchestrate User's Guide: Operators§or more
information.

Range Partitioning

The r ange partitioning operator guarantees that all records with the same partitioning key values
are assigned to the same partition and that the partitions are approximately equal in size. This
means that all nodes perform an equal amount of work when processing the data set.

Using the range operator always results in partitions with a size distribution similar to that in the

figure below:
Partition size Age values
(in records) N
0-| [3-] [1] |22 66 -
2 17| |25 7

Partition

Partitioning in Orchestrate Visual Orchestrate User’s Guide

As shown in the figure, all partitions are approximately the same size. In an ideal distribution,
every partition would be the same size. However, you will usually observe small differences in
partition size, based on your choice of partitioning keys.

In order to size the partitions, the r ange operator orders the partitioning keys. The r ange operator
then calculates partition boundaries based on the partitioning keys in order to evenly distribute
records to the partitions. The above figure shows that the distribution of partitioning keys is not
even; that is, some partitions contain many partitioning keys, and others contain relatively few.
However, based on the calculated partition boundaries, the number of records in each partition is
approximately the same.

The r ange operator offers the advantages of keyed partitioning, while guaranteeing similar-size
partitions. The random and round robin partitioning method also guarantee that the partitions of a
data set will be equivalent in size. However, these two partitioning methods are keyless and,
therefore, do not allow you to control how the records of a data set are grouped within a partition.

See the chapter on ther ange operator in the Orchestrate User’s Guide: Operatorgdetails on using
that operator.

The Preserve-Partitioning Flag

Some Orchestrate operators produce as output a data set with a specific partition layout. For
example, thet sort operator produces a data set in which the recordsin each partition are sorted. If
you then use the output data set from t sort as input to an operator with a partitioning method
other than same Orchestrate by default repartitions the data set and consequently destroys the
sorted order of the records.

To let you control automatic repartitioning, Orchestrate provides the preserve-partitioningflag,
which when set, prevents repartitioning of the data set. In some cases, Orchestrate automatically

sets the preserve-partitioning flag, and in others, you specify the flag’s setting when you create your
step. Orchestrate’s setting of the preserve-partitioning flag and the propagation of the setting, as
well as how you specify the setting when you create a step, are described in the section

“Manipulating the Preserve-Partitioning Flag” on page 8-13.

Example of the Preserve-Partitioning Flag’s Effect

In the figure below, the data-flow diagram on the |eft showsthet sort operator outputting data that
is partitioned and sorted. The tsort output is then input to another operator, which has a partitioning
method of any. The diagram in the middle shows that with the preserve-partitioning flag clear, the

8-12 Visual Orchestrate User’s Guide The Preserve-Partitioning Flag

data is automatically repartitioned before it is input to the operator. The right-hand diagram shows
that with the preserve-partitioning flag set, the partitioning is preserved.

Unsorted data set Preserve-partitioning Preserve-partitioning
flag = Clear flag = Set
tsort Processing nodes
R)
Sorted data set M I I I —‘7 Record data flow
47
& A
Operator

. . Processing nodes

Partitioning method=any «—

Filtered data set

Only operators that allow a partitioning method of any or same alow you to set the preserve-
partitioning flag for an input data set. In fact, operators that specify the same partitioning method
issue awarning if the preserve-partitioning flag set is not set for an input data set. If the flag is set
for an input data set to a partitioning operator, Orchestrate issues awarning and repartitions the data
Set.

The state of the preserve-partitioning flag is stored to disk along with the records of a persistent
data set. Therefore, when you read a persistent data set into Orchestrate, the saved state of the
preserve-partitioning flag will control how the data set is partitioned.

You need to be concerned with the preserve-partitioning flag only if you include operators in your
application that explicitly set the flag. Because most Orchestrate operators ignore the flag when it
has not been set, you can create an entire application without manipulating the flag.

Partitioning in Orchestrate Visual Orchestrate User's Guide 8 -13

Preserve-Partitioning Flag with Sequential Operators

Sequential operators use as input the output of all processing nodes from the preceding operator, as
shown in the following figure:

¢

Operator 1 Processing node
4+—
(parallel)
i Record data flow
Operator 2
(sequential)

!

In this example, the sequential operator has to repartition the input data set, regardless of the state
of the preserve-partitioning flag, because all partitions must be collected into asingle input stream.
Orchestrate issues awarning if the preserve-partitioning flag is set and a sequential operator repar-
titions a data set. In the example above, if Operator 1 is sequential, that is, its output data set has
only one partition, Orchestrate will not issue the warning.

See the section “Partitioning Method Examples” on page 8-5 for more information on how
Orchestrate performs partitioning with parallel and sequential operators.

Manipulating the Preserve-Partitioning Flag

A data set’s preserve-partitioning flag may be set indirectly by Orchestrate as it executes your
application or directly by you using tiiedvanced tab area of th&ink Properties dialog box for
the data set. The following rules define how the preserve-partitioning flag can be manipulated:

Rule 1. If any data set input to an operator has the preserve-partitioning flag set, Orchestrate sets
the preserve-partitioning flag in all the operator’s output data sets.

This means that Orchestrate automatically propagates the preserve-partitioning flag from an input
data set to an output data set. This is necessary when you want to perform several actions on a care-
fully partitioned data set.

Rule 2. An operator can set or clear the preserve-partitioning flag of an output data set as part of
writing its results to the data set.

The ability to manipulate the preserve-partitioning flag is required by operators that create carefully
partitioned data as output. For example,tther t operator sets the preserve-partitioning flag in its
output data set.

Visual Orchestrate User’s Guide The Preserve-Partitioning Flag

Several Orchestrate operators set the preserve-partitioning flag in the output data set as part of nor-
mal execution. These operators include:

e Thetsort operator

e Thepsort operator

e Thepconpress operator (compress mode)
* Theencode operator(encode mode)

e Thehash partitioning operator

e Ther ange partitioning operator

Rule 3. You can directly set or clear the preserve-partitioning flag for any data set using the
Advanced tab area of th&ink Properties dialog box. An operator cannot modify the preserve-
partitioning flag of a data set if the flag has been explicitly set or cleared using these arguments; an
attempt by an operator to modify the flag is ignored. This rule means that an Orchestrate applica-
tion programmer has final control of the state of the preserve-partitioning flag.

In order to set the flag, double click on the link to operi_timk Properties dialog box, then select
the Advanced tab, as shown below:

. Link Properties

Adapters

— Advanced Propertie

— Preserve-Patitioning Flag
 Setlt Clearlt & Leave It Alone

— Checkpointing

[~ Each segment reads entire source data set

— Bulffering
Buffer data flow: & when Needed = Alwayz Mever

b aximum Memony Bulfer [ME]: |3 td aximum T otal Buffering (ME]: ID

Buffer "Free Run' Size [ME]: |1 Digk. wirite Increment [ME]: |1

Ok I Apply | Cancel | Help |

You can use this dialog box to set the flag, clear the flag, or do nothing (the default).

Example: Using the Preserve-Partitioning Flag

This section presents a sample Orchestrate step that uses four operators and five data sets. The
operators are the following:

e The Orchestrateash operator, which hash-partitions the input data set and sets the preserve-
partitioning flag in its output data set.

e The Orchestratesort operator.

Partitioning in Orchestrate Visual Orchestrate User's Guide 8 -15

* The Orchestrateendup operator, which specifies a partitioning methodarfe. This opera-
tor removes duplicate records from its input data set. The input data set is assumed to be sorted.

e Comput eOper at or, a third-party operator which calculates values on an input data set. This
operator assumes no order in its input data set and defines its own partitioning method.

In this example, you manipulate the preserve-partitioning flag as required by each operator.

The figure below shows the data-flow diagram for this example:

unsortedDS.ds

hash operator

@ Virtual data set
Preserve-partitioning flag set

t sort operator

@ Virtual data set
Preserve-partitioning flag set

Partitioning method = same

r endup operator

Virtual data set
@ Preserve-partitioning flag cleared

Partitioning method = ??7??

Comput eQper at or

@ finalDS.ds

Preserve-partitioning flag cleared

The state of the preserve-partitioning flag for each of the data sets is described below:
1. Thehash operator sets the preserve-partitioning flag in its output data set (Rule 2).
2. Thetsort operator sets the preserve-partitioning flag on the output data set (Rule 2).

3. Note that you can explicitly clear the preserve-partitioning flag in the output data set, overrid-
ing the default sort setting (Rule 3)rendup creates a single output data set. Because the
input data set has its preserve-partitioning flag set, the output data set also has its preserve-par-
titioning flag set (Rule 1).

8-16 Visual Orchestrate User’s Guide The Preserve-Partitioning Flag

4. However, the next operator, Conput eQper at or, does not care about ordering to perform its
action; therefore, Conput eOper at or should be allowed to repartition its input data sets. Use
the Link Properties dialog box to clear the flag.Conput eCper at or writesits output to a per-
sistent data set. Since Conput eOper at or takes asinput a data set with the preserve-partition-
ing flag cleared, and it does not modify the flag of its output data set (Rules 1 and 2), theflagis
cleared in its output data set.

The state of the preserve-partitioning flag is stored to disk along with the records of the data
Set.

This example shows how you can manipulate the preserve-partitioning flag as part of an
Orchestrate application. Note, however, that the partitioning rules are designed so that your step
functions properly if you ignore the flag. However, because you limit the system ability to
repartition data in this case, your application may not function as efficiently as possible.

Visual Orchestrate User’s Guide 9-1

9: Collectors in Orchestrate

Partitioning is the process by which a parallel operator divides a data set into multiple seg-
ments, or partitions. Each processing node in your system performs an operation on one par-
tition of a data set, rather than on the entire data set. A collector defines how a sequential
operator combinesthe partitions of an input data set for processing by a single node. Collect-
ing for sequential operatorsistheinverse of partitioning for parallel operators.

Usually, a sequential operator definesits own collection algorithm or method, and you do not
have to modify this method. However, in certain circumstances Orchestrate gives you the
option of modifying an operator’s collection method.

Building on information in the chapter “Partitioning in Orchestrate”, this chapter describes
how sequential operators perform collection. It then describes how to select and use collection
operators to modify the partitioning behavior of an operator. This chapter contains the fol-
lowing sections:

e “Sequential Operators and Collectors” on page 9-1
e “Choosing a Collection Method” on page 9-3
e “Setting a Collection Method” on page 9-4

For details on using the Orchestrate operators described in this chapter, see tBechestrate
User’s Guide: Operators

Sequential Operators and Collectors

Orchestrate allows you to use both parallel and sequential operators in a step. Parallel operators
execute on multiple processing nodes, where each node receives a partition of an input data set.
Sequential operators execute on a single processing node, which receives all partitions of an input
data set.

Visual Orchestrate User's Guide Sequential Operators and Collectors

When a sequential operator takes as input a data set with multiple partitions, the operator must
combine all partitions into a single input stream. This fan-in operation is shown in the following

figure:

Operator 1 Processing node
‘—
(parallel)
i Record data flow
Operator 2
(sequential)

!

In this figure, Operator 2 is a sequential operator that combines the partitions of its input data set.
Once these partitions have been combined, al partition boundaries are lost. This process of
combining the input partitions by a sequential operator is called collecting the partitions. The
mechanism used by a sequential operator to combine the partitionsis called a collector.

A collector defines the way a sequential operator combines the partitions of an input data set for
processing by a single node. Collectors are the inverse of partitioners, which define how a parallel
operators distribute input data sets over multiple processing nodes.

Sequentia operators offer various algorithms, called collection methods, that control the way an
operator combines partitions. A sequential operator with multiple inputs can define one collection
method for all input data sets, or it can use a different method for each input. The following section
describes the collection methods available for sequential operators.

Sequential Operators and the Preserve-Partitioning Flag

As described in the chapter “Partitioning in Orchestrate”, you can set the preserve-partitioning flag
for a data set, to prevent its repartitioning by a parallel operator that uses a partitioning method of
any. However, the preserve-partitioning flag applies only to parallel operators.

A sequential operator repartitions an input data set without regard to the state of its preserve-
partitioning flag. Before a sequential operator repartitions an input data set with its preserve-
partitioning flag set, Orchestrate issues a warning. If the input data set has only one partition, no
warning is issued.

Collectors in Orchestrate Visual Orchestrate User’s Guide 9-3

Collection Methods

A collection method may be as simple as combining the partitions on a first-come first-served
basis, in which the sequential operator processes records in the order in which they are received
from the preceding operator. More complex collection methods may determine the collection order
from information in the records of the data set.

Orchestrate al so supports the following collection methods:

Any: By default, Orchestrate built-in operators in sequential mode usantheollection
method. (The one exception is tyeoup operator in sort mode, for which you must specify a
collection method.) With thany method, the operator reads records on the first-come first-
served basis. Operators that usedhg method allow you to override that collection method
with another.

Round robin: Read a record from the first input partition, then from the second patrtition, and so
on. After reaching the last partition, start over. After reaching the final record in any partition,
skip that partition in the remaining rounds.

Ordered: Read all records from the first partition, then all records from the second partition,
and so on. This collection method preserves the order of totally sorted input data sets. In a
totally sorted data set, both the records in each partition and the partitions themselves are
ordered. See the chapters on the Sorting Library itDtickestrate User's Guide: Operators

for more information on totally sorting a data set.

Sorted merge: Read records in an order based on one or more fields of the record. The fields
used to define record order are calbellecting keys. You use thaor t ner ge collection oper-
ator to implement the sorted merge collection method.

Other: You can define a custom collection method by deriving a class from APT_Collector.
Operators that use custom collectors have a collection metluidenfSee the chapter on col-
lectors in theOrchestrate/APT Developer’s Guider information on creating a collection
method.

Choosing a Collection Method

When you choose a collection method, take into account the particular action of its associated
operator. The built-in collection methods any, round robin and orderedare keyless. A keyless
collector does not rely on information in the records to define the order of records read by the
operator.

Visual Orchestrate User’s Guide Setting a Collection Method

Unless your sequential operator requires a deterministic order for processing records, the any
collection method is likely to serve your needs. For more control over the order of records
processed by the operator, you can use the ordered method, the sor t mer ge collection operator, or
a custom collector that you define.

Operators use any when the location of the record in the data set is irrelevant and the operator
performs the same operation on every record. For example, in an unsorted data set, each record has
no relationship to the record immediately before or after it. When you specify any, your sequential
operator is never forced to wait for arecord from a particular partition.

The ordered method requires that all records are read from partition O before any records from
partition 1 are read. Even if all records of partition 1 are ready for processing before all records of
partition O, the sequential operator must wait in order to process the partitions in order, possibly
creating a processing bottleneck in your application. However, that the ordered collection method
is necessary if you want to preserve the sort order when you process a totally sorted data set with a
sequential operator.

Setting a Collection Method

To set an operator’s collection method, you use one of the three Orchestrate collection operators:
* roundrobin_coll
e ordered

. sortmerge

These operators implement respectively the round robin, ordered, and sorted merge methods (see
the section “Collection Methods” on page 9-3).

The output of a collection operator must be one of the following:
* Avirtual data set that is input to a sequential operator that usasytieellection method.
e A persistent data set. If the data set exists, it must contain only one partition.

Collectors in Orchestrate Visual Orchestrate User’s Guide

Collection Operator and Sequential Operator with Any Method

The output virtual data set from a collection operator overrides the collection method of an operator
using the any collection method. For example, the following figure shows the or der ed operator
inserted before the Orchestrate export operator:

:

or der ed operator

!

Collection method = any

export operator

Data file

This example usesthe or der ed operator to read all records from the first partition, then all records
from the second partition, and so on. This collection method preserves the order of the input data
set that has been totally sorted. The export operator can then write the data set to asingle datafile
that contains ordered partitions.

Note: You can insert a collection operator before an operator that uses the any collection method.
Inserting a collection operator before an operator with another collection method causes an error.

Collection Operator before Write to Persistent Data Set

You can insert a collection operator before the write operation to a persistent data set. Inserting a
collection operator before the write operation allows you to control how the partitions of the data
set are collected for writing to a single partition.

9-6 Visual Orchestrate User’s Guide Setting a Collection Method

For example, the following figure shows the sort mer ge operator used to collect the output
partitions of ther endup operator:

r enrdup operator

!

sort ner ge operator

Thesort mer ge operator collects records based on one or more collecting keys.

Visual Orchestrate User’s Guide 10-1

10: Constraints

A parallel processing system contains multiple processing nodes and multiple disk drives.
Orchestrate’s view of your system is controlled by the contents of the Orchestrate configura-
tion file.

The configuration file includes definitions for the default node and disk pools. Most Orches-
trate operators by default execute on all processing nodes that are members of the default
node pool. In addition, Orchestrate data sets are stored on all disk drives in the default disk
pool.

However, you can limit the processing nodes used by a specific operator or an entire step or
the disks used to store a data set. For example, an operator may use system resources, such as
a tape drive, not available to all nodes, or the action of the operator may be memory intensive
and you want to execute the operator only on nodes with a large amount of memory.

To limit an operator or step to specific processing nodes, you imposeanstraint. A constraint
configures an operator or step to execute only on a particular set of processing nodes. You can
also constrain a data set to a specific set of disks on a specific set of processing nodes.

This chapter first introduces constraints, then describes how to apply constraints to both you
code and to your data. The chapter contains the following sections:

e “Using Constraints” on page 10-1
e “Using Constraints with Operators and Steps” on page 10-5
« “Data Set Constraints” on page 10-9

Using Constraints

An Orchestrate application’s view of your system is defined by the current Orchestrate
configuration file. This file describes the processing nodes and disks drives connected to each node
allocated for use by Orchestrate. Whenever it invokes an application, Orchestrate first reads the
configuration file to determine allocated system resources, and it then distributes the application
accordingly.

Whenever you modify your system by adding or removing nodes and disks, you need to make a
corresponding modification to the Orchestrate configuration file. Then, the next time you start an
application, Orchestrate reads the modified configuration file and automatically scales the
application to fit the new system configuration, without requiring you to modify the application
itself.

10-2 Visual Orchestrate User’s Guide Using Constraints

For example, the following figure shows a six-node MPP system, with four nodes configured as
logical nodes for Orchestrate applications:

High-speed network

80
80

OO0
OO0

node0 nodel ionode0 ionodel node2 node3
CPU CPU CPU CPU CPU

Orchestrate logical nodes

In this configuration, Orchestrate applications run on nodes 0 and 1 and I/O nodes 0 and 1, but not
on nodes 2 and 3. Suppose your system gains a node, node4 (with processor and disk), that you
want Orchestrate to use in running your application. You modify your configuration file to allocate
node4 for Orchestrate processing and I/O. Then, on its next run your application would use node4
according to your modified configuration file.

See the Orchestrate Installation and Administration Manual for detailed information on creating
and administering configuration files.

Controlling Where Your Code Executes on a Parallel System

The Orchestrate configuration file provides a great deal of flexibility in controlling the processing

nodes that execute your application and the disk drives that store your data. All the processing

nodes in your system may not be identically configured — some nodes may have a large amount of
data storage, while other nodes have a large amount of physical memory that could be

advantageous in performing complex calculations. Your application may use an operator requiring

a particular system resource, such as a tape drive, that is not available to all nodes.

You can use the Orchestrate configuration file to define subgroups of nodes,nodieabols,
within your group of logical nodes. Using node pools, you select the specific nodes on which you
want to perform certain actions.

Constraints

The following figure shows an example of the nodes specified for use by Orchestrate applications:

Visual Orchestrate User’s Guide

High-speed network

nodel

CPU

80

ionode0

CPU

lw

ionodel

00
g0

10-3

. 80

Compute node pool

1/0 node pool

Orchestrate logical nodes

In this example, the group of Orchestrate logical nodes is divided into two node pools: compute
nodes and 1/0 nodes. A processing node may be a member of multiple pools; in this example,
nodel is part of both the compute node pool and the 1/0 node pool.

You can choose to execute an entire step, or any operator within the step, on all four processing
nodes or on either node pool. Specifying the processing nodes that execute your application is
called constraining the application. A node pool constraint limits execution (processing and 1/0) to
the nodes in the pool(s) that you allocate to the step or operator.

You can apply two other types of constraints to control the processing nodes that execute your
code:

* Resource constraints limit the execution of an operator or step to nodes that have a specific
resource, such as a disk or scratch disk (for temporary storage), or a resource in a specified
resource pool.

* Node map constraints specify the list of processing nodes for a specific run of an operator. A
node map constraint applies only to the particular operator invocation and while in effect, over-
rides any other constraint (node pool or other resource) previously specified for the step.

See the section “Using Constraints with Operators and Steps” on page 10-5 for more information
on all three types of constraints.

Using Node Constraints on a Stand-alone SMP

A stand-alone SMP (symmetric multiprocessing system) uses multiple CPUs that share system
resources such as memory, disk drives, and network connection. This section describes how node
constraints affect application execution on a stand-alone SMP.

10-4

Visual Orchestrate User’s Guide Using Constraints

For each operator in a step, Orchestrate creates one UNIX process for each Orchestrate processing
node defined in the Orchestrate configuration file. On an SMP, each CPU executes a different
process, allowing multiple processes to execute simultaneoudly.

The degree of parallelism in an Orchestrate application is determined by the number of Orchestrate
processing nodes that you define in the configuration file. When applying node constraints on a
stand-alone SMP, you can control the degree of parallelism (number of processes) that Orchestrate
uses to execute an operator or step. Note, however, that you cannot select a particular CPU to exe-
cute a particular process.

Suppose, for example, that your SMP has four CPUs. You can define four Orchestrate processing
nodes for the SMP, so that your application executes in a four-way paralel mode. However, you
can aso define only two Orchestrate processing nodes for the SMP, so that your application exe-
cutesin atwo-way parallel mode.

Note: Torrent recommends that you initially define one Orchestrate processing node for every two
CPUs in an SMP. Later, during application testing and evaluation, you can modify this configura-
tion to determine the optimal configuration for your system and application.

Controlling Where Your Data Is Stored

Orchestrate lets you designate the logical nodes and the disk drives that store your application data.
To control storage of an Orchestrate data set, you use the Orchestrate configuration file to define
one or more disk pools, which are groups of disks that store your data. The disksin a disk pool can
be all on one node or on multiple nodes.

For example, the following figure shows a system that defines two disk poals:

High-speed network

node0 nodel ionode0 ionodel node2 node3

CPU CPU CPU CPU CPU CPU

08 | | B0 O O
00 | B8

Disk pool 1 Disk pool 2

Orchestrate logical nodes

Constraints Visual Orchestrate User's Guide 10-5

In this example, i onode0 has one disk in disk pool 1 and two disksin disk pool 2. Also, i onodel
has two disksin disk pool 2.

You can constrain an operator to use a particular disk pool; see the section “Data Set Constraints”
on page 10-9 for more information.

Using Constraints with Operators and Steps

You use the Orchestrate configuration file to set up node pools and disk pools. This section first
briefly describes how to use your configuration file to set up node pools and disk pools. (For details
on configuration file statements, see thiehestrate Installation and Administration Manual.) It

then describes how to use the constraints in execution of steps and individual operators and in stor-
age of your data.

Configuring Orchestrate Logical Nodes

The configuration file contains a node definition for each logical node that can be used by an
Orchestrate application. The node definition can specify hode pools and resource pools, as shown
in the following example:

node "node0" {
fast name "node0O_css"
pools "" "node0" "nodeO_css" "conpute_node" /* node pools */
resource disk "/orch/s0" {pools "" "pool 1"}
resource scratchdi sk "/scratch" {}

}

In this example:

e Thenode argumentpodeO, is the node name.

e Thef ast nane argumentpode0_css, is the name used internally for data transfers.
e Thepool s option lists the node pools of which this node is a member.

The first argument " is the default node pool; the other arguments are nodenpdels
node0_css, andconput e_node. If you do not assign a node to any node pools, it is automat-
ically a member of the default node pool.

e The resource resource_type "directory" {resource_pools pl...pn} option
defines a disk or scratch disk connected to the node. You can optionally specify the disk’s
membership in non-default disk pools by includingoal s clause inside the required braces
{}; if you also want the disk or scratch disk to belong to the default disk pool, you must list it.
Without a pools clause, the disk is automatically a member of the default disk pool.

In the example, theesour ce di sk clause assigns file directofyr ch/ s0 to this node for
permanent storage, and assigns the disk to the default pool awoditb. Theresour ce

scr at chdi sk clause assigns to this node the file directargr at ch, for temporary storage;
the empty braces {} indicate that the scratch disk is in the default scratch disk pool only.

10-6

Visual Orchestrate User's Guide Using Constraints with Operators and Steps

Using Node Pool Constraints

After you have defined a node pool, you can constrain an Orchestrate operator or an entire
Orchestrate step to execute on only the processing nodes in the node pool.

To set anode pool constraint on an operator:
1. Double click the operator in the Program Editor to open the Operator Properties dialog box.
2. Click the Advanced tab.

3. Click the Add button under Constraints to add a new constraint, using the following dialog
box:

. Constraint Editor

Constraint Type:

Canfig Mame:
Fesource Pool
Mode Map

— Mode Pool Constramr

Prool M ame: I ﬂ

ok I Cancel Help

4. Select Node Pool from the Constraint Type pull-down list.

5. Select the Orchestrate configuration from the Config Name list, containing the names of
Orchestrate configuration files (created by the Orchestrate server administrator).

6. Enter the node pool name in the Pool Name area. You can enter multiple node pool names,
separated by commas. For example, to specify the node pool conput e_node, you enter:

Pool Name: conput e_node

In addition, you can constrain an entire step to a node pool. To constrain a step, double click the
step in the Program Editor to open the Step Properties dialog box. In that dialog box, choose the
Constraintstab to set anode pool constraint for all the operatorsin a step.

Multiple node pool constraints are ANDed together, so that a node must meet al constraints in
order to process the operator. For example, the following command constrains an operator to all
nodes in both the conput e_node andi o_node node pooals:

Pool Name: conput e_node, i o_node

Inthis case, only nodel satisfies both constraints; therefore, the operator executes only on nodel.

You can combine the nodepool and resources statements to combine constraints. See the
section “Combining Node and Resource Constraints” on page 10-8 for more information.

Constraints Visual Orchestrate User's Guide 10-7

Using Resource Constraints

Each processing node in your system can have access to specific resources. Orchestrate allows you
to impose constraints on operators based on node resources. As described in the section
“Configuring Orchestrate Logical Nodes” on page 10-5, theource di sk andresource
scr at chdi sk options allow you to specify pools for each type of disk storage.

To set a resource constraint on an operator:
1. Double click the operator in th¥ogram Editor to open théperator Properties dialog box.
2. Click theAdvanced tab.

3. Click theAdd button undefonstraintsto add a new constraint. This opens the following dia-
log box:

. Constraint Editor E

Canstraint Type: |[SYymmy—y. ﬂ

Canfig Mame: |[Mode Pool
Mode b ap

0
— Rezource Pool Colemam

Poal Type: I

[|
[|

Prool M ame: I

ok I Cancel Help

4. SelecResource Pool from theConstraint Type pull down list.

5. Select the Orchestrate configuration from @umfig Name list. A configuration corresponds
to a configuration file and is created by the Orchestrate server administrator.

6. Enter the resource pool type and name uR@source Pool Constraint. You can enter multi-
ple pool names, separated by commas.

The following example constrains an operator to execute only on those nodes with a disk resource
in the poolpool 1:

Pool Type: di sk
Pool Name: pool 1

In addition, you can constrain an entire step to a resource pool. In order to constrain a step, double
click a step in thé’rogram Editor to open theStep Properties dialog box. Then choose the
Constraintstab to set a resource pool constraint for all the operators in a step.

Orchestrate applies all resource constraints, so that a node must have a disk that satisfies both
constraints in order to execute the operator. In this casej onbe0 has a disk in botpool 1
andpool 2 and is therefore the only node to execute the operator.

10-8

Visual Orchestrate User's Guide Using Constraints with Operators and Steps

The following example constrains an operator to the nodes with a disk resource in pool 1 and
pool 2:

Pool Type: di sk
Pool Name: pool 1, pool 2

Combining Node and Resource Constraints

You can combine node and resource constraints. Node and resource constraints are ANDed
together; a node must meet al constraintsin order to execute the operator.

To combine constraints, you use the Constraint Editor for either a step or an operator to set both
Node Pool and Resour ce Pool constraints. The following example sets both a node and a resource
constraint:

Node Pool:
Pool Name: conput e_node

Resour ce Poal:
Pool Type: di sk
Pool Name: pool 1

In this example, only nodel isin the conput e_node pool and hasadisk in pool 1.

Using Node Maps

Node maps allow you to constrain a particular run of an operator to execute on a specific set of
processing nodes. A node map applies to an operator invocation overrides any node pool or
resource pool constraint applied to the operator or to its step. You cannot combine node maps with
any other type of constraint.

To set anode map constraint on an operator:
1. Double click the operator in the Program Editor to open the Operator Propertiesdialog box.
2. Click the Advanced tab.

Constraints Visual Orchestrate User's Guide 10-9

3. Click the Add button under Constraintsto add a new constraint. This opensthe following dia-
log box:

. Constraint Editor

Caonstraint Tepe: (eSS
Config Mame: |Mode Pool
Rezource Pool
—Mode Map Constr
MNode(s]:
Mode Map: |
118 I Cancel Help

Select Node M ap from the Constraint Type pull down list.

5. Select the Orchestrate configuration from the Config Name list. A configuration corresponds
to aconfiguration file and is created by the Orchestrate server administrator.

6. Enter the node names, as defined by either the node or f ast name parameter in the configura-
tion file, in the Node(s) area. You can enter multiple node names, separated by commas.

For example, to specify that an operator executes only on nodel and node2, you enter:
Node(s): nodel, node2

Note that you can specify a node map only for an individual operator and not for an entire step.

Data Set Constraints

By default, Orchestrate writes a persistent data set to al disks assigned to the default disk pool.
However, Orchestrate lets you to use disk pool constraints to specify the disk drives that store
persistent and temporary data sets on your system. The data set constraints are based on the disk

pool assignments in your Orchestrate configuration file, described in the section “Configuring
Orchestrate Logical Nodes” on page 10-5.

In addition, you can use node pools and node maps to control the processing nodes used to store a
data set. See the section “Using Node Pool Constraints” on page 10-6 or the section “Using Node
Maps” on page 10-8 for more information on using these constraint types.

To set a resource constraint on a data set:

1. Double click the link for the data set in tRieogram Editor to open thd.ink Properties dia-
log box.

2. Click theConstraintstab.

10 -10 Visual Orchestrate User’s Guide Data Set Constraints

3. Click the Add button under Constraintsto add a new constraint. This opensthe following dia-
log box:

. Constraint Editor

Congtraint Type:

Config Mame: |Mode Pool
Rezource Pool
—Mode Map Constr

Mode(z):

MHode Map: |

Ok I Cancel Help

Select Node Pool, Resour ce Pool, or Node M ap from the Constraint Type pull down list.

5. Select the Orchestrate configuration from the Config Name list. A configuration corresponds
to aconfiguration file and is created by the Orchestrate server administrator.

6. Enter the constraints.

For example, to specify that an output persistent data set is written only to the disks in the pool
pool 1, you set the following constraint;

Resour ce Pool:
Pool Type: di sk
Pool Name: pool 1

The number of partitions of the data set equals the number of nodes that have disks in the specified
pool. All processing nodes executing the writing operator must contain at least one disk in the
specified disk pool. See the Orchestrate Installation and Administration Manual for more
information on disk pools.

Visual Orchestrate User’s Guide

11: Run-Time Error and Warning
Messages

During execution of your application, Orchestrate detects and reports error and warning
conditions. Thischapter describesthe format of Orchestratewarning and error messages and
describes how to control the format of message display, in the following sections:

* “How Orchestrate Detects and Reports Errors” on page 11-1
e “Error and Warning Message Format” on page 11-2
e “Controlling the Format of Message Display” on page 11-4

How Orchestrate Detects and Reports Errors

During execution of your application, Orchestrate detects error and warning conditions, which can
be generated by the following:

11-1

» Orchestrate operators, used in your application steps. For details on Orchestrate operator error

messages, see techestrate User’s Guide: Operators

* Your application code, outside the Orchestrate steps. For information on using the Orchestrate

error-handling class, see techestrate/APT Developer's Guide
e Subprocesses in your application, including wrappers and third-party applications.

When Orchestrate detects an error or warning condition, it writes the applicable information and

message to the error log.

If the condition is not severe, after writing a warning message to the error log, Orchestrate allows
the application to continue execution. At various points in running an application or utility,
Orchestrate checks the error log for new entries. It writes hew warning messages to the message
window on the screen of the workstation from which you invoked the application. Right-clicking in

the message window pops up a menu of standard commands that you can use to edit and copy the

messages.

If the condition is so severe that application execution cannot continue, after writing an error

message, Orchestrate terminates the application.

11-2

Visual Orchestrate User’s Guide Error and Warning Message Format

Error and Warning Message Format

The table below lists the components of Orchestrate error and warning messages, as follows:
e The first column shows whether the default is on or off for display of the component.

« The second column is the keyword (case-insensitive) for changing the default display (see the
section “Controlling the Format of Message Display” on page 11-4).

e The third column is the component length, which for some components is fixed and for others
is variable. Orchestrate left-pads with zeros all fixed-length components. For any variable-
length component, you can configure Orchestrate to display the component length.

e The last column describes the component.

Note that except where indicated, there is a one-space separator between message components.
Every message is terminated with a newline. Only the last message component, the message text,
may contain spaces.

Default Display Keyword Length Description

On 2 The string "##". You cannot suppress display

of this component.
0 [No separator]

On severity 1 Severity of condition: "F","E", "W, or "I ", for
Fatal, Error, Warning, or Informational mes-
sage.

Off vseverity 7 Verbose severity indicator: "Fat al ",
"Error","War ni ng", or "l nf or ni".

Off jobid 3 Job identifier of the Orchestrate application, to

let you identify concurrently running Orches-
trate applications. The default job ID isO.

On nodul el d 4 Module identifier, which is one of the follow-
ing:
For Orchestrate-defined error messages, afour-
character string beginning with "T".
For user-defined error messages, the string

"USER".
For a message from a subprocess, the string
"USBP".
[No separator]
On errorl ndex 6 Index of the message at the time it was written.
On ti mestanp 13 M essage time stamp, consisting of the string

"HH: MMt SS(nBg_seq)", whichisthe hour,
minute, second, and message sequence number
at the time the message was written.

Note that error messages written within one
second have ordered sequence numbers.

Run-Time Error and Warning Messages Visual Orchestrate User's Guide 11-3

Default Display Keyword Length Description

Off i paddr 15 I P address of the node generating the message.
This 15-character string isin octet form, with
octets zero-filled; e.g., 104.032.007.100.

Length in bytes of the following field,
nodepl ayer.

N

Off | engt hprefix

Off nodepl ayer Variable String " (node, pl ayer) ", containing the
number of the section leader and player that
generated the message.

N

Off | engt hprefix Length in bytes of the following field,

nodenane.
Off nodenane Variable Name of the node generating the message.
Off I engthprefix 2 Length in bytes of the following field, opi d.

On opid Variable Operator identifier, which is one of the follow-
ing:
For messages originating in the main program
(not in a step), the string
"<mai n_progranp".
For system messages originating on anode, the
string " <node_nodenane>" , where node-
nane is the name of the node.

For messages originating in a step, the operator
originator identifier, which identifies the
instance of the operator that generated the mes-
sage. Thisidentifier isthe string "/ dent,
partition_n".ident istheoperator name.
If there is more than one instance of the opera-
tor, i dent includes an operator index in
parentheses. parti ti on_n identifies the par-
tition of the operator issuing the message. An
example of an opid originating in aosh step is
<myop, 4>

Off lengthprefix 5 Length in bytes of the following field, nmes-
sage.

On nessage Variable Text of the message. Maximum message length
is15 KBytes.

1 Newline

Messages from Subprocesses

The message display configuration also controls display of error messages from subprocesses run

by Orchestrate, including wrappers and third-party applications. Orchestrate catches subprocess
messages written to the subprocess’s standard output or standard error. Orchestrate displays the
messages using the current message display configuration, on a per-line basis. The module

11-4

Visual Orchestrate User’s Guide Controlling the Format of Message Display

identifier for all subprocess output is "USBP". Orchestrate gives messages written to standard
output Informational severity and a message index of 1. Orchestrate gives messages written to
standard error Warning severity and a message index of 2.

Controlling the Format of Message Display

The following is an example of awarning message with all its components displayed:

##1 Inform 000 TOSHO00010 10:46: 15(001) 010.000.002.119 05 (0,0) 09
| ocal host 14 <mmi n_progrant 00016 orchsort: | oaded

You can limit the message components that Orchestrate displays. Suppose, for example, that you
limit the display of the sample warning message above to message severity, module and index, pro-
cessing node, operator identifier, and message text. Orchestrate would then display the message as
follows:

##| TOSHO00010 | ocal host <mai n_progran® orchsort: | oaded

You use keywords to control message display. Specifying an unmodified keyword configures
Orchestrate to display the associated message component. Preceding the keyword with an
exclamation point (!) configures Orchestrate to suppress display of the associated component.

For example, shown below is the default message configuration for all messages originating from
Orchestrate applications:

severity, !vseverity, !jobid, nodul eid, errorlndex, tinestanp,
l'i paddr, !nodepl ayer, !nodenane, opid, nessage, !lengthprefix

This example specifies suppression of the display of verbose severity, job identifier, IP address,
node name, and length prefixes are all suppressed.

The display of messages from Orchestrate command utilities (such as bui | dop and cbui | dop)
has the following default:

severity, !vseverity, !jobid, noduleid, errorlndex, !tinestanp,
l'i paddr, !nodepl ayer, !nodenane, !opid, nmessage, !lengthprefix

For messages from command utilities, Orchestrate suppresses the display of verbose severity, job
identifier, time, |P address, node player, node name, operator identifier, and length prefixes.

To control message display format, you use the APT_ERROR_CONFIGURATION environment
variable.

For further details on APT_ERROR_CONFIGURATION and other environment variables, see the
Orchestrate I nstallation and Administration Manual.

The environment variable APT_ERROR_CONFIGURATION lets you configure error and warning
message display for al Orchestrate applications and utilities. To use the variable

Run-Time Error and Warning Messages Visual Orchestrate User's Guide 11-5

APT_ERROR_CONFIGURATION, you issue a UNIX command to set it to a string containing the
component keywords defined in the section “Error and Warning Message Format” on page 11-2.
Any keywords omitted from your command to set APT_ERROR_CONFIGURATION remain
unchanged from their previous state.

For example, the following commands set and export APT_ERROR_CONFIGURATION, in the
syntax for the Korn and Bourne shells:

APT_ERROR_CONFI GURATI ON="! severity, ! timestanp, ipaddr, nodenane’
export APT_ERROR_CONFI GURATI ON

Following is the equivalent command to set and export APT_ERROR_CONFIGURATION, in the
syntax for the C shell:

set env APT_ERROR_CONFI GURATI ON "\! severity, \! tinestanp, ipaddr,
nodenane’ "

In the C shell command, you must precede an exclamation pdimtith the escape character,
backslash\().

In both versions of the command to set APT_ERROR_CONFIGURATION, note the space between
the exclamation point and the keyword. It is recommended that you insert this space, to make sure
that the command shell does not interpret the exclamation point and keyword as a reference to the
command history buffer.

11-6 Visual Orchestrate User’s Guide Controlling the Format of Message Display

Visual Orchestrate User’s Guide 12-1

12: Creating Custom Operators

Many Orchestrate applications require specialized operators to perform application-specific
data processing, in parallel. You may need an operator to perform a simple operation such as
adding two particular fields. Or, you may need an operator to carry out a much more com-
plex task.

Visual Orchestrate givesyou the ability to create two kinds of custom operators: native oper -
ators and UNIX command operators. This chapter describes how to create native operators,
for which you supply a few C or C++ statements to perform the operator’s action. (Creating
UNIX command operators is described in the chapter “Creating UNIX Operators”.)

This chapter includes the following sections:

e “Custom Orchestrate Operators” on page 12-1

e “Using Visual Orchestrate to Create an Operator” on page 12-5

« “Specifying Operator Input and Output Interfaces” on page 12-8

e “Examples of Custom Operators” on page 12-14

e “Using Orchestrate Data Types in Your Operator” on page 12-20

e “Using the Custom Operator Macros” on page 12-27

e “How Visual Orchestrate Executes Generated Code” on page 12-31
« “Designing Operators with Multiple Inputs” on page 12-31

Custom Orchestrate Operators

Visual Orchestrate lets you create custom (native) operators by supplying only afew lines of C or
C++ code for the operator body, and some configuration information. From this information,
Orchestrate creates the operator by automatically generating C/C++ code, and then compiling and
linking the operator.

This section describes the characteristics of the custom operators that you can create. It then
describes how custom operators perform input and output and process data.

12-2

Visual Orchestrate User's Guide Custom Orchestrate Operators

Kinds of Operators You Can Create

Orchestrate allows you to create custom operators with the following characteristics:

The operator has at least one input data set and one output data set. The operator can have mul-
tiple input data sets and multiple output data sets. The following data flow diagram shows a
custom operator with multiple inputs and outputs:

Input data sets

b

Custom operator

Output data sets

By default, the operator’'s execution mode is parallel. However, you can override this mode to
specify sequential execution when you use the operator in a step.

The default partitioning method of the operatoang (parallel mode), and the default collec-
tion method isany (sequential mode). You can use a partitioner or collector operator to modify
these defaults.

You can optionally define a transfer to copy an entire input record to an output data set, as
shown in the data-flow diagram below:

Input data set i

inRec: *

out Rec: *

Output data set i

Note that the transferred record is represented in the operator input interface schema as
i nRec: *, and in the output interface schemaasRec: *. For a complete description of the
Orchestrate transfer feature, see the section “Record Transfers and Schema Variables” on page
5-11.

You can define user-settable options, or arguments, passed to an operator. Then, when users
insert the operator into a step, they can set those control options by usdyitires Editor
dialog box.

Creating Custom Operators Visual Orchestrate User’s Guide

How a Generated Operator Processes Data

To plan and create an operator, you need to understand how Orchestrate operators process one or
more input data sets and create one or more output data sets. This section describes this operation.

The following figure shows an operator with a single input and a single output data set:

Input data set Output data set
Previously processed ------------ ! frommm s 4 Previously written
input records] E s J output records
(not available) E ' Input data set ' : E (not available)
Current input record ' ; i I i
— <
Current output record
Operator
Order of record read Output data set Order of record write

An operator executes an 1/O and processing loop, with iteration (time through the loop) for every
input record. After al the required number of input records have been read from one or more
inputs, the operator terminates.

How the Operator Executes the Loop
For each input record, the operator executes the following stepsin the 1/O and processing loop:

1. Readsarecord from the input data set (unless there are no remaining records or automatic read
has been disabled).

Performs the action of the operator.
As needed, assigns results to the current output record.

4. If specified, performs atransfer of the entire input record to the output record (unless there are
no more records to transfer or automatic transfer has been disabled).

5. Writes the current output record to the output data set (unless automatic write has been dis-
abled).

Note that your operator does not have to produce one output record for each input record. Some
operators read multiple input records before producing a single output record, such as an operator
that removes duplicate records from the input data set. Other types of operators can create multiple
output records from a single input record.

12-3

12-4

Visual Orchestrate User's Guide Custom Orchestrate Operators

How the Operator Processes the Input Data Sets

An operator reads each input data set record by record, to process its data. The operator continues
to read and process records until it has read all records in the input data set. Once the operator has
moved beyond arecord of an input data set, it can no longer access that record.

Note that the fields of all input data sets are read-only, while the fields of all output data sets are
readable and writable.

How the Operator Writes to the Output Data Set

In creating your operator, you define the operator’s input interface schema and output interface
schema. See the section “Specifying Operator Input and Output Interfaces” on page 12-8 for more
information.

After the operator assigns the processing results to the record fields, it writes the record to the
output data set. Writing the output record commits the record to the data set, and it creates a new
output record with default values for all fields. As with input data sets, once processing has
advanced beyond a record of an output data set, the operator can no longer access the record.

The default value for an output record field is based on the field’s data type and nullability setting.
For a complete list of default values for fields of all types, see the description. For a list of default
values for fields of all types, see the section the section “Default Values for Fields in Output Data
Sets” on page 4-27.

Configuring Orchestrate For Creating Operators

To allow creation of operators, the Orchestrate server must be able to access the necessary UNIX
C++ compiler and other utilities. The appendix on supported operating systems, software packages,
and databases in ti@rchestrate Installation and Administration Manual lists these compilers and
utilties.Your Orchestrate server administrator must ensure that you have the correct access
privileges and path settings to run these utilities.

You can specify a non-default compiler for your custom operators, by using the Paths tab of the
Program Properties dialog box. See the section “Setting Program Directory Paths” on page 2-13.

Included Header Files
The custom operator utility lets you to use standard 1/O, I/O stream, and math functions automati-
cally. In order to do so, the utility includes the following header files:

¢ stdio.h
* jostream.h
* math.h

Creating Custom Operators Visual Orchestrate User’s Guide

Using Visual Orchestrate to Create an Operator

To create a custom operator, choose the Custom -> Define Custom Operator menu command. If
there are no existing custom operatorsin your system, the New Oper ator dialog box (shown on the
next page) opens. If there are existing custom operators, the following dialog box opens:

Create Mew Operatar

— Start with...
i+ Mew Dperator
¢ Copy of Existing Operator

Operator Mame:

| [-|
Ok I Cancel | Help |

The Create New Operator dialog box allows you to select an existing custom operator to copy as
astarting point for your new operator, or to create a completely new custom operator. If you choose
Copy of Existing Operator, you then select an operator from the Operator Name list. When you
click OK, the Customer Operator dialog box appears with the definition of the existing operator.

12-5

12-6

Visual Orchestrate User’s Guide Using Visual Orchestrate to Create an Operator

If in the Create New Operator dialog box you select New Oper ator, clicking OK opens an empty
Custom Operator dialog box, as shown below

Native Operator selected

&8 Custom Operator !Elﬁ
M atre; I Library: Iuser
Type: % Mative Operator € UNI¥ Comnmand
Interfaces | Perrecord | Defintions | Pre-oon] Postloon | Mise | Options | Access|
— Dperator Interface S pecification
Input | Mame Schema Properties Add Up I
E dit | On |
Defete |
Output | Hame Schema Froperties Add Up I
E dit | On |
E(ete |
[Automatic Reject Dutput
Tranzfer | From nput | To Output | Properties Add I Up |
Edit I Din I
Welete |
Create | Save | Cancel | Help |

By default, the Native Operator radio button is selected. The Library text box defaults to your
user name. You can typein anew library name or the name of any existing library.

Inthe Name text box (upper left of dialog box), type the name of this operator. A name can be up to
250 characters long. An operator name must be unique within its library, but it can be the same as
the name of an operator in another library.

You define the operator by using the Custom Operator dialog box tabs, asfollows:

I nterfaces (shown above): Specify the names and schemas of the operator’s inputs and outputs for
the operator input and output interfaces.

Specifying your operator interface schemas is described in the section “Specifying the Interface
Schema” on page 12-10. Also specify and configure record transfers, as described in the section
“Defining Transfers” on page 12-13.

Per-record: Specify the code loop, which is executed once for every input record.

Definitions: Optionally, specify definitions to include before the operator’s executable code. This
option allows you to specify header files or other information needed to compile your code.

Creating Custom Operators Visual Orchestrate User’s Guide

By default, Orchestrate always includes the header files st di 0. h, i ost r eam h, and mat h. h.

Pre-loop: Optionally, specify code to execute before the operator executes the Per-record code to
process the record. You can use this code section to initialize variables used in the Per-record sec-
tion.

Post-loop: Optionally, specify code to execute after the operator has completed the Per-record sec-
tion and before the operator terminates.

Misc: Optionally, specify the following options for operator execution:

Operator Execution Mode: You can select Parallel, Sequential, or Operator Default
(default for this option). Specifying Operator Default allows the operator user to set the exe-
cution mode upon inserting the operator into a step.

Compiler Options: You can specify options passed to the C++ compiler (and linker) used to
create the operator:

Verbose: Echoes commands and compiler messages to the message window.

Debug: Runs the compiler in debug mode.

Optimize: Optimizes the speed and efficiency of the compiled code.

Additional Compiler Flags: You can specify additional compiler command options.
Additional Linker Flags. You can specify additional linker command options.

Operator Description: Optionally, type your notes about this operator, to be saved with the
operator definition. Right-clicking the text box opens a menu of standard text-editing com-
mands, such as cut and paste.

Options: Optionally, define user-settable controls for the operator, with which the operator user can
control the action of the operator.

Access: Set the access privileges of the operator, by selecting one of the following:
Public Write (default): Anyone can read, write, or execute the operator.
Public Read: Anyone can read and execute the operator; only the operator creator can modify
it.
Private: Only the operator creator can read, write, or execute the operator.

At any time after you have specified a name and library for the operator, you select a dialog box
buttons to do one of the following:

12-7

e Save the information about the operator, but do not create it. A saved operator appears under
the specified library in the Server View area of Visual Orchestrate in parentheses, to indicate

that the operator user cannot use it. (You must pEesate to make it usable in an applica-

tion.)

e Create the operator, so that an operator user can insert it into an Orchestrate application. The

created operator appears under the specified library in the Server View area.
e Cancel operator definition.
e Open onlineHelp.

12-8

Visual Orchestrate User's Guide Specifying Operator Input and Output Interfaces

The Per-record, Pre-loop, Post-loop, and Definitions tabs each have an Import button. That
option lets you specify an ASCII text file on the PC, containing your code for the section, which
Orchestrate will read into that section of your operator definition.

How Your Code Is Executed

The following steps show how an operator executes to processits input data set and write to its out-
put data set:

1. If specified, the operator executes the code in the Pre-loop section.

2. For each record in the input data set, performs the steps of the 1/O and processing loop (intro-
duced in the section “How the Operator Executes the Loop” on page 12-3):

a. Reads a record from the input data set (unless there are no records to input or automatic
read has been disabled).

b. Executes the processing code specified ifPdnerecord section.
c. As needed, assigns results to the current output record.

As specified, performs a transfer of the entire input record to the output record (unless
there are no more records to transfer or automatic transfer has been disabled).

e. Writes the current output record to the output data set (unless automatic write has been dis-
abled). After the write, the operator creates a new, empty output record.

3. |If specified, the operator executes the code irfPtdseloop section.

Specifying Operator Input and Output Interfaces

This section describes how to create an input and output interface for your operator, in the
following sections:

e “Adding and Editing Definitions of Input and Output Ports” on page 12-8
e “Reordering the Input Ports or Output Ports” on page 12-10

e “Deleting an Input or Output Port” on page 12-10

« “Specifying the Interface Schema” on page 12-10

« “Defining Transfers” on page 12-13

« “Referencing Operator Interface Fields in Operator Code” on page 12-13

Adding and Editing Definitions of Input and Output Ports

To view and modify the input and output interfaces, you usdrteefaces tab in theCustom
Operator dialog box, shown in the section “Using Visual Orchestrate to Create an Operator” on

Creating Custom Operators Visual Orchestrate User's Guide 12 -9

page 12-5. From the Custom menu, select Define Custom Operator or Edit Custom Oper ator,
to open the Custom Oper ator dialog box. Inthe I nterfacestab, the top list shows the ports defined
for the input interface, and the middle list shows the port defined for the output interface. The input
and output interface ports are always indexed 0. . . nunPort s- 1. When you create the operator,
Orchestrate automatically creates input port O for the input interface and output port O for the output
interface.

To add an input port click the Add button to the right of the input interface list. The Input
Interface Editor dialog box opens, with an Input Name text field and the input interface schema
name. You can type a port name (see below for naming guidelines), or you can leave | nput Name
blank to accept the default name. If you want to disable automatic read, check the Disable
automatic record read box. Click OK to create the port. The new port then appears in the input
interface list.

To create an output port, click the Add button next to the output interface list to open the Output
Interface Editor. Optionally type a name into the Output Name text field. If you want to disable
automatic write, check the Disable automatic record write box. Click OK to add the port, which
then appearsin the output interface list.

Note: To save the changes that you make to the input and output interfaces, you must click Update,
Save, or Create, in order to rebuild the operator with your changes. If you close the Custom Oper -
ator dialog box without updating the operator, any changes you have made to the operator are dis-
carded.

Also note that the checkbox Automatic reject output on the Interfaces tab is to support
applications created with earlier releases of Orchestrate. For a description of creating an operator
with a reject data set, see the section “Example Operator: reject” on page 12-30.

Naming Input and Output Ports

By default, Orchestrate names the input ports of your operator input interfdce. i nnum i ns-

1, and it names the output ports of the operator output intesiaid@ . . out num out s- 1. You

can use these default names to refer to input and output ports in your operator code. You also have
the option of specifying non-default names for any input or output port in your operator's
interfaces. The only restriction is that you cannot specify a name of thé fieror out n, which is

reserved for the default naming.

Editing Port Definitions

You can create or modify a non-default name for an input or output port at any time, by selecting
Edit from thelnterfaces tab to open thénput Interface Editor or Output Interface Editor

dialog box. You can type in a new hame or modify an existing one. To accept the new name, click
OK. To save the change to the operator interface, Cliekte or Update in thel nterfaces tab.

12-10

Visual Orchestrate User's Guide Specifying Operator Input and Output Interfaces

Reordering the Input Ports or Output Ports

To reorder the list of inputs or outputs, use the Up and Dn buttons for the list. Clicking Up
exchanges the position and index of the selected port with the position and index of the port above
it (at alower index number) in the list. Clicking Dn makes the exchange between the selected port
and the one below it.

Deleting an Input or Output Port

To delete an input port, select the port and click the Delete button for the input interface. To delete
an output port, select the port and click the Delete button for the output interface. When you delete
an input or output port, Orchestrate immediately removes the port from the interface list and
decrements the index of any input or output port that was below it in the interface list. To save the
change to the operator interface, click Update in the I nterfaces tab.

As an operator must have at least one input and one output, the Delete button is not active for an
input or output interface with only one port.

Port Deletions and Transfer Definitions

As described in the section “Defining Transfers” on page 12-13, transfer definitions identify the
input and output by index only, so that changing a port's name or schema does not change the
transfer definition, even though the port change may affect the result of performing the transfer.
Likewise, If your operator defines a transfer that uses a port affected by a deletion, the change does
not affect the transfer definition as long as there is still an input or output port defined with the
index used in the transfer definition.

However, if your port deletion results in the loss of a port index that is used in a transfer, you cannot
save the interface change. For example, suppose your operator input interface has two ports and
defines a transfer from the input port at index 1. If you deleted an input port, leaving only input port
0, clicking Update to rebuild the operator would produce an error message regarding the undefined
input port 1 in the transfer.

Specifying the Interface Schema

To create and edit the input and output interface schemas, you use the Schema Editor. For a detailed
description of the Schema Editor, see the chapter “Orchestrate Data Sets”.

Creating or Editing an Interface Schema

To create an input or output interface schema, ope@tiseom Operator dialog box, as described
in the section above. Clickdd to add a new port, or select an existing port and &iik. In the

Creating Custom Operators

Input Interface Editor or Output Interface Editor dialog box, click the Details button to open

the Schema Editor, shown bel ow:

Visual Orchestrate User’s Guide

&1 Custom Operator

IS 3

Mame: ITestDpD

Library: Iuser

Type: f | stive Wperator €0 WK Eemmatd . Schema Editor - Yiewing Private Interface [own... =] E3 I
Access Control
Interfaces | Perrecord | Definions | Predoon| Pos Mame: IM vl .
Ovwner: Ivschaefel
— Operatar Interface Specification Type: IF'uinc: Write 'I
|
Interface Stucture
----- Fecord ems I
T I > I
[Inpul Inlerface Editor Hpe
i Input [nterface — L it
i] Field List: = | it
Input Name: [T estinputd ™| Eied leriaths I
Input Schema: I[Iocal]
™ Automati Tupe Infarmation
[Dizable
Transfer [F
LCres
Properties for:
|Irnporta"E wport Operators j
EarEEE PoEEEEEEE Properties >> |
Select | Mew | Import | Edit | Cancel | Help |

In the Schema Editor, you can click New to create a new schema. The Schema Editor window
displays the Name and Library text fields, with radio buttons Named and Unnamed. Naming an
interface schema enables you to use the schemafor more than one input or output port. If you select
the Named radio button, you then enter a schema name in the Name field, and you can optionally
modify the schema library name (the default is your user name). The schema name be unique
within itslibrary, but it can be the same as a namein another schemallibrary.

In creating a new schema, you add and edit fields in the schema. You can optionally modify the

owner and access control for the schema. To save the new schema, click Save to save the new

schema. When you save a named schema, its name appears in the selected port’s schema column in
thelnterfaces tab; however, to save the change to the port definition, you mustigit#te on the

I nterfacestab.

You can create an unnamed schema, by selectindrthamed radio button in the Schema Editor
window. When you save an unnamed schema, it appedrsoaal) in the definition for the
selected port, and it is not available to be used in the definition of other ports.

12-12 Visual Orchestrate User's Guide Specifying Operator Input and Output Interfaces

To edit an existing schema, click Edit in the Schema Editor window. You can access properties, and
fields of the schema. If it is a named schema, you can also edit the schema name and library name.
To save the changes to the schema, click Save in the Schema Editor window.

Selecting an Existing Named Schema for a Port

After you have saved a named schema, you can select it for an input or output port other than the
one for which you created it. When you add or edit an input port, you can define it with any named
input schema defined for the interface, and likewise, you can define an output port with any named
output interface schema. To change the schema for a port, select the schema name from the list in
the Input Interface Editor or Output Interface Editor dialog box, and click OK. To save the
change to the operator interface, be sure to click Updatein the Interfaces tab.

Special Restrictions on Interface Schema Field Definitions

Note that every input and output interface schema must be alegal record schema. In addition, the
following elements are not allowed in operator interface schemas:

e Subrecord or tagged aggregate elements
* Import/export or generator properties
* Schema variables

If you attempt to save or create an operator interface schema that contains any of these elements,
the action will fail with an error message.

Naming Fields in the Interface Schemas
You cannot a hame record schema field with any of the C++ reserved words, listed below:

asm cl ass double friend new return switch uni on
aut o const el se goto oper at or short tenmpl ate unsigned
break continue enum if private signed this vi rtual
case def aul t extern inline protected sizeof throw voi d
catch delete fl oat i nt public static try vol atile
char do f or |l ong register struct typedef whi | e

In addition, you cannot use either of the following as field names:

o r

e _record__ (two trailing underscores)

If you create an operator used in an application that accesses an RDBMS (such as DB2, INFOR-
MIX, Teradata, or Oracle), do not create a field with the same name as an SQL reserved word. See
the SQL manual for your RDBMS for a list of these reserved words.

Creating Custom Operators Visual Orchestrate User's Guide 12 -13

Defining Transfers

You can define one or more transfers for your operator. As described in the section “How a
Generated Operator Processes Data” on page 12-3, Orchestrate performs a transfer as part of
executing the code loop of the operator.

To define, modify, or delete a record transfer, openhstom Operator dialog box, by clicking
Define Custom Operator or Edit Custom Operator in theCustom menu. On thénterfaces tab,

the bottom list shows all transfers defined for your operator. The transfer column is the index of the
transfer Q- n- 1), From Index is the index of the input port, To Index is the index of the output port,
and Properties is the automatic transfer set#g © or NOAUTO) followed by the combine-transfer
setting COVBI NE or SEPARATE). When you create an operator, by default there are no transfers
defined, and transfer definition is optional.

To define a transfer, click th&dd button to the right of the transfer list to open Thansfer

Editor dialog box. From the From Input list, select the index of the input port for the transfer, and
from the To Output list, select the output port index. If you want to disable automatic transfer,
check theDisable Automatic Transfer box. If you want to prevent Orchestrate from combining
this transfer with others to the same output, checkTttamsfer Separately box. Click OK to
create the transfer. The transfer then appears in the transfer list on the Interfaces tab.

To reorder the list of transfers, use the andDn buttons for the list. Clickingp exchanges the
position and index of the selected transfer with the position and index of the transfer above it (at a
lower index number) in the list. Clickirgn makes the exchange between the selected transfer and
the one below it.

To delete a transfer, select it in the transfer list and Eligkte. Orchestrate decrements the index
of any transfers below it in the list. For example, if there are two transfers defined and you delete
the first transfer in the list (index 0), the index of the second transfer is changed from 1 to 0.

Referencing Operator Interface Fields in Operator Code

In your Pre-loop, Post-loop, andPer-record code, you refer to schema components with the field
name, as defined in the input or output interface schema. If the field name is not unique among all
interfaces, both input and output, for the operator, you must prefix the field name with the default
or explicitly defined port name followed by a dgt (

If the field name is not unique among all the operator’s interface schema, then you must reference it
with port nane. fi el d_nanme, wherepor t nane is either the name you have given the port (see

the section “Naming Input and Output Ports” on page 12-9) or, for a port that you have not named,
the default name. For example, for a field price in your input schema for the third input port (index
2), which you have not explicitly named, you use the referengepri ce.

12-14 Visual Orchestrate User's Guide Examples of Custom Operators

Processing Fields According to Data Type and Properties

To let you process fields according to Orchestrate data type and properties, including nullable fields
and vector fields, Orchestrate supplies functions that you can use in your code. These functions are
described in the section “Using Orchestrate Data Types in Your Operator” on page 12-20.

Examples of Custom Operators

This section describes how to define the following sample operators:

e “Example: Sum Operator” on page 12-15

e “Example: Sum Operator Using a Transfer” on page 12-16

« “Example: Operator That Recodes a Field” on page 12-17

* ‘“Example: Adding a User-Settable Option to the Recoding Operator” on page 12-17

Convention for Property Settings in Examples

In all custom operator examples, the property settings for inputs, outputs, and transfers are abbrevi-
ated, as follows:

e Inputs. Auto stands forautomatic input (Disable automatic read is not checked), and
Noaut o stands fono automatic input (Disable automatic read is checked).

e Outputs: Aut o stands forautomatic output (Disable automatic write is not checked), and
Noaut o stands fono automatic output (Disable automatic write is checked).

e Transfers: Aut o stands folautomatic transfer (Disable automatic transfer is not checked),
andNoaut o stands fono automatic transfer (Disable automatic transfer is checked)Com
bi ne stands focombine transfer (Transfer separately (don’t combine with other transfers
to the same output)is not checked), and Separ at e stands for separate transfer (Transfer
separately...is checked).

Creating Custom Operators Visual Orchestrate User's Guide 12 -15

Example: Sum Operator

This section describes how to define a sample operator, sum shown in the following diagram:

Input data set i

a:int32; b:int32;

Operator sum

sum i nt 32;

Output data set i

This operator sums two fields of an input record to create a new field in the output record. Each
record of the output data set contains a single field containing the sum.

Shown below is the definition for this operator.

Name: Sum

Input 0 Name: Sumi n0

Input O Properties: Auto

Input O Interface Schema: record (a:int32; b:int32;)

Output O Name: Suntut 0

Output O Properties. Auto

Output O Interface Schema: record (sumint32;)

Per-record: sum= a + b;
You can modify this operator to also copy the input fields to the output record. Shown below is a
version of the operator to copy fieldsa and b to the output record:

Name: Sum

Input 0 Name: Sumi n0

Input O Properties. Auto

Input O Interface Schema: record (a:int32; b:int32;)

Output O Name: Suntut 0

Output O Properties. Auto

Output O Interface Schema: record (a:int32; b:int32; sumint32;)

Per-record:
sum = Sum n0.a + Suni n0. b;

Sunut 0. a = Sum nO. a;
Sumut 0. b = Suntut 0. b;

Note that field name references include the input and output port names. See the section
“Referencing Operator Interface Fields in Operator Code” on page 12-13 for more information.

12-16

Visual Orchestrate User's Guide Examples of Custom Operators

Example: Sum Operator Using a Transfer

This section contains a modified version of the sumoperator described in the section “Specifying
Operator Input and Output Interfaces” on page 12-8. This version efitheperator performs a
transfer from input to output, as shown below:

Input data set i

a:int32; b:int32; inRec:*;

Operator sum

sumint32; outRec:*;

Output data set i

For a description of defining a transfer, see the section “Defining Transfers” on page 12-13.

Shown below is the definition for this operator.
Name: Sum
Input 0 Name: Sum n0
Input O Properties. Auto
Input O Interface Schema: record (a:int32; b:int32;)
Output 0 Name: Suntut 0
Output O Properties. Auto
Output O Interface Schema: record (sumint32;)
Transfer O0: I nput From 0; Qutput To: O
Transfer O Properties. Auto, Conbi ne
Per-record: sum = Suml n0.a + Sum nO. b;

Creating Custom Operators Visual Orchestrate User's Guide 12 -17

Example: Operator That Recodes a Field

This section describes how to define another sample operator, cl assi f yPur chase, shown in the
following diagram:
Input data set i

price:dfloat; inRec:*;

cl assi f yPur chase

code:int8; outRec:*;

Output data set i

In this example, operator A assi f yPur chase reads a record and transfers the entire input record
to the output data set. The operator also definesthe field, code, for the output data set. The operator
assigns code the value 1 if the input field pri ce is greater than or equal to 100, and O if pri ce is
below 100.

Shown below is the definition for this operator:
Name: d assi f yPur chase
Input 0 Name: Pur chl n0
Input O Properties. Auto
Input O Interface Schema: record (price: dfloat;)
Output O Name: Pur chQut 0
Output O Properties. Auto
Output O Interface Schema: record (code:int8;)
Transfer O: I nput From 0; Qutput To: O
Transfer O Properties. Auto, Conbi ne
Per-record:

if (PurchlnO.price >= 100) PurchQutO.code = 1;
el se PurchQut0. code = 0;

Example: Adding a User-Settable Option to the Recoding Operator

In the example above, operator Cl assif yPurchase set the code field according to a set
condition: whether the price field has the cutoff value of 100 or greater. This example aters the
d assi f yPur chase operator, to define a parameter cut of f that operator users set. The operator
then uses that cutoff to determine whether to set code to 1 or 0.

12 -18 Visual Orchestrate User's Guide Examples of Custom Operators

The following is the Per-record code for this modified O assi f yPur chase operator, in which
cut of f isafloating-point variable holding a value set by the operator user:

Per-record:
if (price >= cutoff) code = 1;
el se code = 0;

Defining the User-Settable Option
To define the user-settable option cut of f , you perform the following steps:

1. Openthe Custom Operator dialog box, and select the Optionstab:

=% Custom Operator !E
Mame: Il:lassif_l,lF'urchase Library: IUser

Type: ! [ative Nperator, €00 NI Eammand

Interfaces | Perrecard | Definitions | Predoon| Pastloon | Mise Options | Access|

— Mative Operator Optiohs
Option Name Option Type
it |
[Velete I
Operatar Created Update | Cancel | Help |

2. Pressthe Add button to open the Custom Operator Option Editor dialog box:
[Custon Operator Option Edtor — MISIE|

— Uniz Operator Dption
Option Mame: |
Option Type: IBUUIean j
oat
Integer
String
Pathnarne

[oFe Cancel

Creating Custom Operators Visual Orchestrate User’s Guide

3. Specify the Option Name, which the operator user will select in the Option Editor dialog
box. For this example, you enter the name cut of f .

4. Select the Option Type from the pull-down list. As shown in the figure above, available data
types are bool ean, f| oat , i nt eger, st ri ng, and pat hname. (An option of type pat hnane
takes a directory path, the validity of which must be determined by the operator.)

For this example, select typef | oat .

Set the Option Nameto cut of f .

Set the Option Typetof | oat .

Click OK to close the Custom Operator Option Editor.

Click Update to rebuild operator C assi f yPur chase with the cut of f option.

© N o o

How the Operator User Sets the Option

To set the cutof f option for C assi fyPurchase, the operator user opens the Operator
Properties dialog box for C assi f yPur chase operator. The Add and Edit buttons open the
Options Editor dialog box, with which the user adds or edits an option setting. The user can also
use the Delete button to delete a setting, and the Up and Down buttons to rearrange the order of
option settings.

To add a setting for option cutoff, click Add to open the Option Editor. In that dialog box, enter a
value in the Value field. (Note that for a bool ean option, the operator user simply selects or
deselectsit.)

To add the setting to the operator without closing the Option Editor dialog box, click Add. Or, the
click OK to add the setting and close the Option Editor dialog box.

12-19

12-20 Visual Orchestrate User's Guide Using Orchestrate Data Types in Your Operator

The following figure shows the Option Editor dialog box with the value 300.5 entered as a
cut of f option setting, and the Operator Properties dialog box after that option has been added.

w Dperator Properties x|

General | Advanced I Notesl

— General Propertie:

Label: |EIassifyF'urc:hase [+ Copy From Operatar Mame

Operatar: IUser:EIassifyF'urchase j

Optionz: | Mame

Add Edit | | Delte | Up || Down |
0k | Operator: User:ClassifyPurchase
Option: Icutoff j
Type: Float

— Mumeric: Value

Walue: [300.5

=

Addl Deletel 0k | Concel | Hep |

To save the setting, in the Operator Properties dialog box, you must either click the Apply button
to apply the setting to the operator, or click OK to apply the setting and close the Operator
Properties dialog box.

Using Orchestrate Data Types in Your Operator

This section describes how to code your operators to use all the Orchestrate data types, in the fol-
lowing sections:

e “Using Numeric Fields” on page 12-21

e “Using Date, Time, and Timestamp Fields” on page 12-21
e “Using Decimal Fields” on page 12-23

e “Using String Fields” on page 12-24

e “Using Raw Fields” on page 12-25

e “Using Nullable Fields” on page 12-25

e “Using Vector Fields” on page 12-26

Creating Custom Operators Visual Orchestrate User's Guide 12 - 21

Orchestrate implements some of its data types using C++ classes. The Orchestrate C++ Classes
and Headers Reference Cards provide a listing of the header (. h) files in which the Orchestrate
C++ classes and macros are defined.

Using Numeric Fields

This section contains a basic example using numeric fields. A numeric field can have one of the
following data types:

e int8,intl6,int32,int64
o ui nt 8, ui nt 16, ui nt 32, ui nt 64

e sf|oat,dfl oat

See the section “Specifying Operator Input and Output Interfaces” on page 12-8 for examples of
declaring of integer fields in input and output interface schemas, and using integer fields in operator
code.

Using Date, Time, and Timestamp Fields

Orchestrate allows you to access fields containing a date, time, or timestamp. Orchestrate uses the
following C++ classes to represent these data types:

e APT_Date

e APT_Time

e APT_TimeStamp

You can use any public member function of these classes in your operator. Seehdsi ate

C++ Classes and Headers Reference Cards for a listing of the classes implementing these data
types.

For example, the following figure shows an operator containing a date field in its interface

schemas:
i Input data set

fieldl:date; inRec:*;

DateFiIter/ \

out Rec: * out Rec: *

Output data set Oi i Output data set 1

12-22

Visual Orchestrate User’s Guide

Name: Dat eFil ter
Input O Name: Dat el n0O
Input O Properties: Auto

Using Orchestrate Data Types in Your Operator

In this example, the operator copies all records with ayear greater than 1990 to the output data set.
All records with year before 1990 are copied to the reject data set.

Input O Interface Schema: record (fieldl:date;)

Output O Name: Dat eCut 0
Output O Properties. Auto

Output O Interface Schema: record ()
Output 1 Name: Dat eCut 1

Output 1 Properties: Noaut o

Output O Interface Schema: record ()

Transfer O0: | nput From O0; Qutput To:

Transfer O Properties. Noaut o, Conbi ne

Transfer 1. I nput From O0; Qutput To:

Transfer 1 Properties. Noaut o, Conbi ne
Per-record:

0

1

/'l Check year conponent of date.

if (DatelnO.fieldll.year() < 1990)

/1 Send record to reject output
transfer AndWiteRecord(1);

el se {

/1 Copy record to accepted out put

doTransfersTo(0);
/'l Wite the record.
writeRecord(0);

}

Creating Custom Operators Visual Orchestrate User's Guide 12 - 23

Using Decimal Fields

Orchestrate implements decimal fields using the C++ class APT_Decimal. The most common
functions of APT_Decimal that you may need to use in your operator are shown below:

Class APT_Decimal

assignFromDecimal ()
assignFromDFloat ()
assignFromint32()
assignFromString()
asDFloat()
asinteger()

asstring()

compare()

scale()
stringLength()

You can use any public member function of these classes in your operator. See the Orchestrate
C++ Classes and Headers Reference Cards to find the header file containing a complete
description of APT_Decimal.

For example, Orchestrate decimals do not provide arithmetic functions. In order to use a decimal
within an arithmetic expression, you must first convert it to an integer or float, perform your
arithmetic operation, and convert it back to a decimal.

For example, the following operator adds two decimal fields and outputs a field containing the
total:

Name: sum
Input 0 Name: Sum n0
Input O Properties. Auto

Input O I nterface Schema:
record (fieldl:decimal[6,2]; field2:decimal[6,2];)

Output O Name: Suntut 0
Output O Properties. Auto

Output O Interface Schema:
record (total:decimal [7,2];)

Per-record:

Sum nO. fi el d1. asDFl oat () ;
Sum nO. fi el d2. asDFl oat () ;

float varl =
float var2 =
float total _tenp = varl + var?2;

Sunut 0. t ot al . assi gnFronDFl oat (total _tenp);

12-24

Visual Orchestrate User’s Guide Using Orchestrate Data Types in Your Operator

Using String Fields

One possible data type for a field is string—a field containing a fixed-length or variable-length
character string. Orchestrate uses the class APT_StringField to define a string field. APT-
_StringField defines member functions that you use to manipulate a string field.

A string field has the following characteristics:

e The string can be fixed-length or variable-length.

e You can assign various kinds of strings to the field.

e Astring field is not null-terminated; that is, it always has an explicit length.

« Astring field can contain white-space characters and, if nullable, the null character (\0").

The following figure shows common functions in the public interface to APT_StringField:

Class APT_StringField

assignFrom()
content()

isFixedL ength()
isVariablelL ength()
length()

padChar()
setFixedL ength()
setL ength()
setPadChar()
setVariablel ength()

You can use any public member function of these classes in your operator. S¥ehtstrate
C++ Classes and Headers Reference Cards to find the header file containing a complete
description of APT_StringField.

For example, you can define an operator that takes as input a variable-length string field. To
determine the runtime length of the field in an input record, you can use the string field function
| ength().

Input 0 Name: Lenl n0

Input O Properties. Auto

Input O Interface Schema: record (a:string;)
Output O Name: LenCut 0

Output O Properties. Auto

Output O Interface Schema: record (a:string;)
Per-record:

int length = Lenln0.a.length();
/1 1f length is 0, discardRecord;
if (length == 0) discardRecord();

/1 Process string...

Creating Custom Operators Visual Orchestrate User’s Guide

/1 Copy string to output record
LenQut 0.a = LenlnO0. a;

Using Raw Fields

Orchestrate lets you create raw fields, an untyped collection of contiguous bytes. You can also
create an aligned raw field, a special type of raw field where the first byte is aligned to a specified
address boundary. Raw and aligned raw fields may be either fixed- or variable-length.

Orchestrate uses the class APT_RawField to define both raw and aligned raw fields.
APT_RawField includes member functions that you use to manipulate these fields. The following
figure shows common member functions of APT_RawField:

Class APT_RawField

assignFrom()
content()

isFixedL ength()
isVariablelL ength()
length()

setFixedL ength()
setLength()
setVariablel ength()

You can use any public member function of these classes in your operator. See the Orchestrate
C++ Classes and Headers Reference Cards to find the header file containing a complete
description of APT_RawField.

To process raw fields, you use the same techniques described above for string fields. However, you
copy raw fieldsinto adestination field of typevoi d *, rather than of typechar *.

Using Nullable Fields

Orchestrate supports a null value representation for all field types. To define afield asnullablein an
input or output interface schema, you use the nul | abl e keyword, as shown in the following sam-
ple schema declarations:

Input O Interface Schema: record (a:nullable int32; b:nullable int32;
c:int8;)
Output O Interface Schema: record (d: nullable int32; e:intl6;)

You can specify nullability for any field in the schema. In this example, fields a, b, and d are
declared asnul | abl e, and fields ¢ and e are declared as not nul | abl e (the default). All fieldsin
the output interface schema defined as nul | abl e areinitialized to null in each output record.

An expression using anul | abl e source field generates an error if the source field contains a null.
For example, the following expression uses fields a, b, and d:

12-25

12-26

Visual Orchestrate User’s Guide Using Orchestrate Data Types in Your Operator

In this case, both source fields (a and b) must not be null. If either field is null, the expression
causes an error that terminates your application. Field d may contain anull, as it is the destination.
The result of the expression iswritten to field d, replacing the null.

To process nullable fields, you can use the following functions:

e fieldNane_null (): Returns the boolean value wle if fi el dNane contains a null and
fal se if not.

e fieldNanme_setnull (): Sets an output field to null (input fields are read-only)
e fieldNanme_cl earnul | (): Sets an output field to non-null (input fields are read-only)

You can rewrite the example expression above to avoid an error causedilbyaal e field, as
shown below:

if (ta_null() & !'b_null())
d=a/ b;

Using Vector Fields

Orchestrate record schemas allow you to define vector fields (one-dimensional arrays). Shown
below is an example interface schema using vector fields:

Input O Interface Schema: record (a[10]:int8;)
Output O Interface Schema: record (total :int32;)
In this example, field is a 10-element vector.

You can use the following functions with vector fields:

e fiel d\vane[i ndex] : Accesses the vector element at the specified index, where the first ele-
ment in the vector is at index 0. Vector elements in an input record are read-only, and vector
elements in an output record are read/write.

e fieldNane. vector Lengt h(): Returns, as an integer, the number of elements in the vector

e fiel d\Nane. set Vect or Lengt h(/ engt h) : Sets the length of a variable-length vector field
in an output record (input fields are read-only)

e fieldNanme_nul | (i ndex): Returns the boolean valueue if the vector element at the spec-
ified index is null, and al se if it is not

e fieldNane_set nul |l (i ndex): Sets the vector element in an output record at the specified
index to null (input fields are read-only)

e fieldNane_cl earnul | (index): Sets the vector element in an output record at the specified
index to non-null (input fields are read-only)

The following code sums all the elements in the input vectomd stores the results in the output
field t ot al :

total = O;

Creating Custom Operators Visual Orchestrate User's Guide 12 - 27

for (int i =0; i < 10; i++)
{

total = total + afi];
}

Using the Custom Operator Macros

Orchestrate provides a number of macros for you to use in Pre-loop, Post-loop, and Per-record
code for your custom operator. This section describes these macros, which are grouped into the fol-
lowing four categories:

e Informational macros

e Flow-control macros

e Input and output macros
e Transfer macros

Informational Macros

You can use the informational macros in your operator code, to determine the number of inputs,
outputs, and transfers, as follows:

i nputs() Returns number of declared inputs.
out put s() Returns number of declared outputs.
transfers() Returns number of declared transfers.

Flow-Control Macros

Flow-control macros let you override the default behavior of the input and processing loop in your
operator’s action section. Modifying the loop makes your operator code more complex and more
difficult to debug. Before coding with these macros, be sure to carefully read the section “How
Visual Orchestrate Executes Generated Code” on page 12-31 and the section “Designing Operators
with Multiple Inputs” on page 12-31.

endLoop() Causes operator to stop looping, following completion of the current loop and
after writing any aut o outputs for thisloop.

next Loop() Causes operator to immediately skip to start of next loop, without writing any
outputs.

fail Step() Causes operator to return af ai | ed status and terminate the enclosing Orches-

trate step.

12 -28 Visual Orchestrate User's Guide Using the Custom Operator Macros

For an example of using endLoop() inan $act i on section, see the section “Using Both auto and
noauto Inputs” on page 12-34.

Input and Output Macros

The input and output macros let you control read, write, and transfer of individual records.

Each of the input and output macros listed below takes an argument, as follows:

e Aninput argument is the index () of the declared input, and ant put argument is the
index (0n) of the declared output. If you have defined a port name for an input or output, you
can usepor t nane. por ti d_ in place of the index.

* Anindex argument is the index (8- of the declared transfer.

readRecor d(/ nput) Immediately reads the next record fromi nput , if thereisone. If
thereis no record, the next call toi nput Done() will return
fal se.

wri t eRecor d(out put) Immediately writes arecord to out put .

i nput Done(i nput) Returnst r ue if thelast call tor eadRecor d() for the specified
input failed to read a new record, because the input has no more
records.

hol dRecor d(i nput) Causes aut o input to be suspended for the current record, so that

the operator does not automatically read a new record at the start
of the next loop. If aut o isnot set for the input, hol dRecor d()
has no effect.

di scar dRecor d(out put) Causes aut o output to be suspended for the current record, so
that the operator does not output the record at the end of the cur-
rent loop. If aut o isnot set for the output, di scar dRecor d()
has no effect.

di scar dTr ansf er (/ ndex) Causes aut o transfer to be suspended, so that the operator does
not perform the transfer at the end of the current loop. If aut o is
not set for the transfer, di scar dTr ansf er () hasno effect.

For examples of using input and output macros, see the following:
e readRecord() in the section “Example Operator: reject” on page 12-30

e witeRecord() in several examples, including the section “Example Operator: reject” on
page 12-30 and “Example Operator: noauto” on page 12-34

e inputDone() in “Example Operator: noauto” on page 12-34
e discardRecord() anddi scardTransfer () inthe example below

Example Using di scar dRecor d() and di scar dTr ansf er () : Operator divide

The following example definition file is for operatdirvi de, which calculates the quotient of two
input fields. The operator checks to see if the divisor is zero. Ifdt id,de callsdi scar dTr ans-

Creating Custom Operators Visual Orchestrate User’s Guide

fer() so that the record is not transferred, and then calls di scar dRecor d() , which drops the
record (does not copy it from the input data set to the output data set).

Name: di vi de

Input 0 Name: [default]

Input O Properties: Auto

Input O Interface Schema: record(a:int32; b:int32;)

Output 0 Name: [default]

Output O Properties. Auto

Output O Interface Schema: record(quotient:int32; renainder:int32;)
Transfer O: I nput From 0; Qutput To: O

Transfer O Properties: Auto, Comnbi ne

Per-record:
if (b==20) {
di scardTransfer(0); // Don't performtransfer.
di scardRecor d(0); /1 Don't wite output record.
}
el se {
quotient = a / b;
remai nder = a % b;
}
Transfer Macros

This section describes how to use the transfer macros. Each of the transfer macros, listed below,
takes an argument, as follows:

e Aninput argument is the index () of the declared input, and ant put argument is the

12-29

index (00) of the declared output. If you have defined a port name for an input or output, you

can usepor t nane. por ti d_ in place of the index.
* Anindex argument is the index (8- of the declared transfer.

doTr ansf er (i ndex) Performs the transfer specified by i ndex.
doTr ansf er sFron(/i nput) Performs all transfersfromi nput .
doTransfersTo(out put) Performs all transfersto out put .

transferAndWiteRecord(output) Performsal transfersand writesarecord for the speci-
fied output. Calling this macro is equivalent to calling
the macrosdoTr ansf er sTo(out put) and
writeRecord(output);

A transfer copies the input record to the output buffer. If your definition file spemifiestransfer

(the default setting), immediately after execution ofReerecord code, the operator transfers the

input record to the output record.

12-30

Visual Orchestrate User’s Guide Using the Custom Operator Macros

For an example of using doTransfer (), see the section “Example Operator: score” on page
12-32.

The code example below shows how you cardo3e ansf er sTo() andt r ansf er AndWi t eR-
ecord() in a sample operatorgej ect . Following the code description is an example of using
reject in arosh command.

Example Operator:r ¢j ect
This example operatorej ect , has one automatic input. It has two non-automatic outputs. It also
declares two non-automatic transfers, the first to output O and the second to output 1.

The input record holds a dividend in figldand a divisor in fielth. The operator checks the divisor,
and if it is zero, callsr ansf er AndW i t eRecor d(1) to perform a transfer to output 1 and write
the record to output 1. If the divisor is not zero, the operatordallsansf er sTo(0) to perform
the transfer to output 0, assigns the division results to the fialsls ent andr emai nder, and
finally to callwri t eRecor d(0) to write the record to output O.

Name: rej ect

Input 0 Name: [default]

Input O Properties: Auto

Input O Interface Schema: record(a:int32; b:int32;)

Output 0 Name: [default]

Output O Properties. Noaut o

Output O Interface Schema: record(quotient:int32; renainder:int32;)

Transfer O: I nput From 0; Qutput To: O

Transfer O Properties: Noaut o, Conbi ne

Output 1 Name: [default]

Output 1 Properties: Noaut o

Output 1 Interface Schema: record()

Transfer O0: I nput From 0; Qutput To: 1

Transfer O Properties. Noaut o, Conbi ne

Per-record:

if (b==20) {
/1 Send record to reject output
transfer AndWiteRecord(1);
}
el se {
/1 Copy record to nornal output
doTransfersTo(0);
/] Set additional data fields.
quotient = a / b;
remai nder = a % b;
/l Wite the record.
writeRecord(0);

Creating Custom Operators Visual Orchestrate User’s Guide

How Visual Orchestrate Executes Generated Code

This section describes how Visual Orchestrate executes the code generated from your custom
operator definition. If you are writing simple operators and your code uses only the default,
automatic 1/0 handling, you do not need to be concerned with the details of this section. If you are
writing more complex operators with non-default 1/0 handling, these details can be helpful.

Visual Orchestrate executes your custom operator code, as follows:

1. Handles any definitions that you have entered in the Definitions tab of the Custom Operator
dialog box.

2. If you have entered any code in the Pre-loop section, executesiit.

3. Loops repeatedly until either al inputs have run out of records, or the Per-record code has
explicitly invoked endLoop() . In the loop, performs the following steps:

a. Reads one record for each input, except where any of the following istrue;
e The input has no more records left.
e The input has been declared wittaut o.
e Thehol dRecor d() macro was called for the input last time around the loop.

12-31

b. Executes thPer-record code, which can explicitly read and write records, perform trans-

fers, and invoke loop-control macros sucleasLoop() .

c. Performs each specified transfer, except where any of the following is true:
e The input of the transfer has no more records.
* The transfer has been declared wittaut o.

e ThediscardTransfer () macro was called for the transfer during the current loop

iteration.
d. Writes one record for each output, except where any of the following is true:
e The output was declared witlvaut o.

e Thedi scardRecor d() macro was called for the output during the current loop itera-

tion.
4. If you have specifie®ost-loop code, executes it.
5. Returns a status value, which is one of the following:
APT_St at usCk (value 0). The default.
APT_St at usFai | ed (value 1). Returned only if your code has invokad! St ep() .

Designing Operators with Multiple Inputs

Orchestrate supports creation of operators that perform complex data handling, through use of mul-
tiple inputs and outputs, flow control, and transfers. This section describes some suggested
approaches for designing operators that successfully handle the challenge of using multiple inputs.

12-32 Visual Orchestrate User's Guide Designing Operators with Multiple Inputs

Note: Whenever possible, use the standard, automatic read, write, and record transfer features
described in this chapter. In using non-automatic inputs, outputs, or record transfers in your opera-
tor definition, you introduce complexity and a greater possibility of programming errors.

Requirements for Coding for Multiple Inputs

To use multiple inputs effectively, your operator code needs to meet the following two require-
ments:

« Perform a read of a record’s fields only when the record is available on the specified input.

Make sure that your operator code will not attempt to read a field from an input with no more
records. It also must not attempt to read a field on a non-automatic input before it has per-
formed a read on that input. Failure to prevent either of these situations causes the operator to
fail with an error message similar to the following:

i sUsabl e() fal se on accessor interfacing to field "fieldnane"

« Terminate the reading of records from each input immediately after (but not before) all needed
records have been read from it.

If you declare any inputs as non-automatic, your operator must determine when all needed
records have been read from all inputs, and at that point to terminate the operator by calling the
endLoop() macro. Remember that the operator continues to loop as long as there are records
remaining on any of its inputs.

Strategies for Using Multiple Inputs and Outputs

In general, the best approach to coding for multiple inputs is the simplest, using the automated fea-
tures as much as possible. Below are three simple strategies for designing an operator with multiple
inputs:

Using Automatic Read for All Inputs

In this approach to multiple inputs, your definition file defines all inputs as automatic, so all record
reads are handled automatically. You code your operator so that each time it accesses a field on any
input, it first invokes thé nput Done() macro to determine whether there are any more records on

the input.

Note that this strategy is appropriate only if you want your operator to read a record from every
input, every time around the loop.

Example Operator: scor e

This example operatogcor e, uses two automatic inputs. It also uses non-automatic outputs and
record transfers, so that it writes record only when the operator code has determined that its score
field has the highest value among all records oftthat.

Creating Custom Operators Visual Orchestrate User's Guide 12 - 33

Name: score

Input 0 Name: [default]

Input O Properties. Auto

Input O Interface Schema: record(type:int32; score:int32;)
Output 0 Name: [default]

Output O Properties: Noaut o

Output O Interface Schema: record ()

Transfer O: I nput From 0; Qutput To: O

Transfer O Properties. Noaut o, Conbi ne

Pre-loop:
int current_type = -1,
int current_score = -1;

Per-record:

/1 Operator score uses the output record as a buffer for
/1 the highest-scoring record of each type processed.

/1 Assunptions about input:
/1 The input data is hash-partitioned on the type field.
/1 Al records are guaranteed to have a score value not equal to -1.

/1 1f the input has passed the final record of a type,
/1 output the buffered high-scoring record for that type,
/1 and reset the score.

if (type !'= current_type & current_type !'= -1) {
/1 wite highest scored record from previ ous group.
writeRecord(0);
/1 start tracking new type
current _type = type;
current _score = -1;

[l 1f current record beats previous score, transfer it
/1 to the output buffer, but don't wite it yet.
if (score > current_score) {
doTransfersTo(0);
current _score = score;
current _type = type;

$post

/I If there’s a remaining record, write it to output.
if (current_type !=-1) {
writeRecord(0);

}

12-34 Visual Orchestrate User's Guide Designing Operators with Multiple Inputs

Using Both aut 0 and noaut o Inputs

Your definition file declares one automatic input (or possibly more than one), and the remaining
inputs as non-automatic. You code your operator to let the processing of records from the automatic
input drive the handling of the other inputs. Each time around the |oop, your operator callsi nput -
Done() on the automatic input. When the automatic input has no more records, your code calls
exi t Loop() to complete the operator action.

For an example of an operator that uses this coding strategy, see the section “Example Operator:
reject” on page 12-30.

Using noaut o for All Inputs

Your definition file declares all inputs as non-automatiga{it o), so your code must perform all
record reads. You declardae-loop section, which you code to cakadRecor d() once for each
input. You code th®er-record section to invoké nput Done() for every input, on every iteration
of the loop, to determine whether it obtained a record on the most reeeiRecor d() . If it did,
process the record, and then caladRecor d() on that input. When all inputs run out of records,
the operator automatically exits tRer-record section.

Example Operator: noaut o

The following example operatarpaut o, illustrates this strategy for reading multiple inputs. This
example uses non-automatic inputs, outputs, and transfers, so that the operator code performs all
reading and writing explicitly. This operator takes three inputs, with similar schemas, and merges
them into a single output. It also has a separate output for records that have been rejected.

Unlike the Orchestrateer ge operator, this operator filters and modifies some of the input. This
operator modifies thed field to reflect the input source (0, 1, or 2). It also filters records from
inputs 1 and 2, according to the values of fieldmdb.

Name: noauto

Input 0 Name: [default]

Input O Properties. Noaut o

Input O Interface Schema: record (id:int32;)

Input 1 Name: [default]

Input 1 Properties: Noaut o

Input 1Interface Schema: record (id:int32; a:int32;)
Input 2 Name: [default]

Input 2 Properties. Noaut o

Input 2 Interface Schema: record (id:int32; a:int32; b:int32;)
Output 0 Name: [default]

Output O Properties: Noaut o

Output O Interface Schema: record (id:int32;)

Output 1 Name: [default]

Output 1 Properties. Noaut o

Creating Custom Operators Visual Orchestrate User's Guide 12 - 35

Output 1 Interface Schema: record ()

Transfer O: I nput From 0; Qutput To: O
Transfer O Properties. Noaut o, Conbi ne
Transfer 1. I nput From 1; Qutput To: O
Transfer 1 Properties. Noaut o, Conbi ne
Transfer 2: I nput From 2; Qutput To: O
Transfer 2 Properties. Noaut o, Conbi ne
Transfer 3: I nput From 0; Qutput To: 1
Transfer 3 Properties. Noaut o, Conbi ne
Transfer 4: I nput From 1; Qutput To: 1
Transfer 4 Properties. Noaut o, Conbi ne
Transfer 5. I nput From 2; Qutput To: 1
Transfer 5 Properties. Noaut o, Conbi ne

Pre-loop:

/1 Before looping, it initially calls readRecord() once for each input,
/1 either to get the first record or to detect that input is enpty.
int i;

for (i=0; i<inputs(); i++) {

readRecord(i);

}

Per-record:

/1 Each time around the | oop, look for any input that is
/1 not done, i.e. has a record, and process that input.

for (i=0; i<inputs(); i++) {
if (! inputDone(i)) {
/1 Process current record for this input
switch (i) {
case O:
/1 lInput O needs no processing, sSo just copy to output.
out0.id = in0.id;
doTransfer(0); // frominput O to output 0
writeRecord(0);
br eak;
case 1:
/1 lInput 1 needs sone filtering/rejection of records.
if (inl.a > 50) {
/'l Reject the record.
doTransfer(4); // frominput 1 to output 1
writeRecord(1);
}
el se {
/1 Modify the id, and copy record to output O.

12 -36 Visual Orchestrate User's Guide Designing Operators with Multiple Inputs

outO0.id = inl.id + 10000;
doTransfer(1); // frominput 1 to output 0
writeRecord(0);

}

br eak;

case 2:
/1 Input 2 needs different filtering/rejection.
if (in2.a > 50 || in2.b > 50) {
/1 reject the record
doTransfer(5); // frominput 2 to output 1
writeRecord(1);
}
else {// Mdify the id appropriately.
if (in2.a > in2.b)
out0.id = in2.id + 20000;
el se
outO0.id = in2.id + 30000;
/1 Copy the record to output O.
doTransfer(2); // frominput 2 to output 0
writeRecord(0);
}
br eak;

}

/1 Get next record for this input (or detect end of input).
readRecord(i);

/1 When all inputs are exhausted, operator automatically termn nates.

Visual Orchestrate User’s Guide

13: Creating UNIX Operators

Orchestrate lets you use UNIX programs and commands in your Orchestrate application,
just as you use predefined Orchestrate operators. This capability lets you run existing UNI X
programsin parallel within an Orchestrate application, without having to rewrite them.

To execute your existing UNIX programsin Orchestrate, you create UNI X command oper a-
tors. UNI X command operator s execute your UNI X application in parallel or sequentially as
part of an Orchestrate step. You can use UNIX command operatorsin the same step that you
use Orchestrate operators.

This chapter describes how to create UNIX command operators. It describes how to handle
various kinds of operator inputs and outputs and how to define operators that accept user-
settable options. The final section of this chapter describes optimizations that Orchestrate
performswith UNIX command operators.

This chapter containsthe following sections:

* ‘“Introduction to UNIX Command Operators” on page 13-1

e “Handling Operator Inputs and Outputs” on page 13-7

e “Passing Arguments to and Configuring UNIX Commands” on page 13-22
« *“Handling Command Exit Codes” on page 13-35

e “How Orchestrate Optimizes Command Operators” on page 13-36

Introduction to UNIX Command Operators

The Orchestrate framework includes many operators, which you use to perform basic data
processing tasks such as copy, sample, and merge. Orchestrate also lets you create custom operators
from existing or new code, to run in parallel in your Orchestrate application. This chapter describes
how to use Visual Orchestrate to create custom operators from existing UNIX shell commands.
UNIX shell commands can be invoked from a UNIX shell prompt, and include UNIX built-in
commands such as gr ep, UNIX utilities such as SyncSort, and your own UNIX applications. (You
can also create custom operators from your own code in C or C++; see the chapter “Creating
Custom Operators”.)

Executing an existing UNIX application as a UNIX command operator has two main advantages:

1. Orchestrate’s parallel execution improves the performance of your UNIX application, as it can

process larger amounts of data than it can in sequential execution.

2. You can use your existing UNIX application, without any reimplementation, in your Orches-

trate application,.

13-2 Visual Orchestrate User's Guide Introduction to UNIX Command Operators

You insert a UNIX command operator into a step just as you would any other operator. The follow-
ing figure shows a UNIX command operator used in an Orchestrate step:

n

Step *

sort

UNIX operator

rendup

¥

UNIX command operators can be executed sequentially or in parallel. When executed sequentially,
the UNIX command operator adds the functionality of your existing application code to your
Orchestrate application.

When executed in parallel, your UNIX command operator also takes advantage of Orchestrate’s
parallel execution performance. Orchestrate handles all the underlying tasks required to run parallel
applications, including partitioning your data on the multiple nodes in a parallel system.

Characteristics of a UNIX Command Operator

A UNIX command operator has the following characteristics:
« Parallel or sequential execution mode (selectable by the creator or user of the operator)

» Partitioning method oéiny (parallel execution mode) and collection methodrgf (sequential
execution mode)

« Multiple input and output data sets

e Execution environment (environment variable definitions, exit code handling) controlled by
the operator creator

The UNIX operator in the figure above takes a single data set as input and produces a single data
set as output. You can also create UNIX command operators that take multiple inputs and outputs.

Creating UNIX Operators Visual Orchestrate User's Guide 13 -3

The following figure shows an operator that takes two input data sets and produces one output data
set:

Input data set 0 i i Input data set 1

UNIX operator

i Output data set 0

In addition, you can build node and resource constraints into the operator.

UNIX Shell Commands

The command executed by a UNIX command operator is any UNIX application, file, or command
that can be executed from a UNIX shell prompt. UNIX shell commands include:

A UNIX-executable program, compiled from code written in COBOL, C, C++, or another pro-
gramming language

A built-in UNIX command, such ag ep, or a UNIX utility, such as SyncSort
A UNIX shell script

Overview of UNIX Commands

This section contains an overview of UNIX shell commands, terms, and syntax. You will find this
information useful when designing and developing your UNIX command operators.

A UNIX command has the following general form:

command_name arg_list input_Ilist output_Iist

where:

command_nane is the name of the UNIX shell command. Example shell commandgs epe
sort, or any executable file or shell script.

arg_list is a list of arguments to the command, required and optional. For example, the
SyncSort sorting package takes arguments that define the sorting characteristics. Some com-
mands use environment variables to set arguments.

input_Iist is a list of inputs to the command. Inputs include data sets and other kinds of
data, such as parameter files.

out put _I i st is a list of outputs from the command. Outputs can be any output data, error or
log messages, and result summaries.

For example, the UNIX¢r ep command has the following form:

Visual Orchestrate User's Guide Introduction to UNIX Command Operators

grep [-bchilnsvw] [linmted-regul ar-expression [filenane ...]

The gr ep command searches one or more input files for a pattern and outputs al lines that contain
that pattern. If the command line specifies no input files, gr ep takes its input from the standard
input. By default, gr ep writes output to standard output.

UNIX commands take their input from one of the following sources:

e Standard inputst di n): Each UNIX command can have a single connection to standard input.
By default, standard input is the keyboard.

» Files: Data files specified as arguments to the UNIX command.

UNIX commands write their output to one of the following:

e Standard outpus(dout): A UNIX command can have a single connection to standard output.
By default, standard output is the screen.

e Standard errorst der r): A UNIX command can have a single connection to standard error.
» Files: Data files are specified as arguments to the UNIX command.

For example, the following command line caugesp to reads its input from the fileust s. t xt
and to write all lines of the file containing the strivigto standard output (the screen):

grep MA custs. txt
You can also use standard input and output to connect UNIX commands, as shown below:
cat options | grep options

where opt i ons are any arguments passed to the commanias. pipe symbol|() indicates a
connection between two UNIX commands. In this exampde, writes its output to its standard
output, andyr ep reads its input fromat on the standard input gf ep.

UNIX Commands Must Be Pipe-Safe

Orchestrate imposes one requirement on the UNIX command executed by a UNIX command
operator: the command must pipe-safe. To be pipe-safe, a UNIX command always reads its
input sequentially, from beginning to end. More specifically, the command does not use the UNIX
random-access commarsgek, on any of its inputs.

UNIX commands that are pipe-safe can be connected with a UNIX pipe, as shown below:
$ cat options | grep options | sort options

UNIX commands that read from standard input or write to standard output are pipe-safe and can be
included in a UNIX command operator. UNIX commands that read from or write to files are
usually pipe-safe.

Creating UNIX Operators Visual Orchestrate User’s Guide

Execution of a UNIX Command Operator

A UNIX command operator takes as input a data set containing data in the Orchestrate record
format. The embedded shell command then processes Orchestrate records one by one. The |eft-
hand side of the figure below shows an Orchestrate application step that uses a UNIX command
operator, and the right-hand side shows an expanded representation of the operator as it processes

data.
@ ¢

4

Step v @) export
Operator
fileorstdin
i ® UNIX command
UNIX operator file or st dout

@ ® i mport
i

In the figure above, the UNIX command operator performs both an export and an import operation.
It performs the export to convert the input data set to the data format required by the UNIX
command, and it performs the import to convert the output of the UNIX command to the
Orchestrate data set format. The UNIX command, executed by the command operator, receives and
processes data normally from either standard input or afile.

The following procedure summarizes the action of the UNIX command operator:

1. To convert input records to aformat compatible with the UNIX command, Orchestrate exports
the data set records.

You control how the output of the export operator is delivered to the input of the UNIX com-

13-5

mand: either through the command’s standard input or through a file name. If you use a file
name, rather than writing the data to disk Orchestrate creates a UNIX pipe that the command

reads in the same way that it reads a file.

2. The UNIX command processes its input and writes its output to standard output or to a file.

The result of the UNIX command is sent to theport operator, which converts it to an

Orchestrate data set.
You control how the output of the UNIX command is delivered to the input of rther t

operator: either through the command’s standard output or through a file name. If you use a file
name, rather than writing the data to disk Orchestrate creates a UNIX pipe that import reads as

it reads a file.

Visual Orchestrate User's Guide Introduction to UNIX Command Operators

For UNIX command operators with multiple inputs, Orchestrate separately exports data for each
input. For each output of the operator, Orchestrate separate imports data for each outpuit.

Default Properties for Operator Export and Import
By default, a UNIX command operator uses the following export properties:

* A new-line character delimits the end of each record.
e An ASCII space (0x20) separates all fields.

e The record uses a text representation for all data including numeric data (an unpacked ASCII
representation with one byte per digit).

This export format corresponds to the record schema:
record()

With this default export format, the embedded UNIX command receives its input as text strings
terminated by new-line characters.

By default, a UNIX command operator imports data by creating one output record from each new-
line delimited text string that is output by the embedded UNIX shell command. Each output record
contains a single, variable-length, string field namecd. This default import format corresponds

to the record schema:

record(rec:string;)

Many UNIX command operators require a non-default schema for import or export. For
information on specifying the import and export schemas, see the section “Handling Operator
Inputs and Outputs” on page 13-7 for more information.

Orchestrate can perform several kinds of performance optimization on your UNIX command
operators, based on their import and export record schemas. See the section “How Orchestrate
Optimizes Command Operators” on page 13-36 for more information.

Handling Other Input/Output Types

The example UNIX command operators shown above have taken data sets as inputs and generated
data sets as outputs. However, many UNIX commands operators handle other types of inputs and
outputs, including;

e Input parameter files used to configure the command
e Environment variables specifying configuration information

* Output message and error logs containing information generated by the command during exe-
cution

e Output files containing results or result summaries

Inputs and outputs of these types do not have to be represented by Orchestrate data sets. Instead, the
UNIX command can read directly from these inputs or write directly to these outputs.

Creating UNIX Operators Visual Orchestrate User's Guide 13 -7

For example, when a step passes the name of a parameter file as an argument to a UNIX command
operator, the UNIX command directly reads the parameter file for its configuration information.

See the section “Handling Configuration and Parameter Input Files” on page 13-25 for more
information.

Likewise, an embedded UNIX command can write directly to message and error logs. However, if
you are running the UNIX command operator in parallel, you must make sure that each instance of
the operator writes to a separate file, as defined by a file name or a path name. See the section
“Handling Command Exit Codes” on page 13-35.

If an embedded UNIX command uses environment variables, the command must be able to access
the environment variable to obtain runtime configuration information. If the UNIX command
operator runs in parallel, you must make sure that the environment variable is set correctly on all
processing nodes executing the operator. See the section “Using Environment Variables to
Configure UNIX Commands” on page 13-26 for more information.

Handling Operator Inputs and Outputs

One of the most important aspects of creating UNIX command operators is handling the various
kinds of inputs and outputs that UNIX commands can require. UNIX commands can take the fol-
lowing kinds of inputs:

e Data (from a file, or standard input)
e Command-line arguments
e Parameter files

UNIX commands can write the following kinds of output:

- Data (to a file, standard output, or standard error)

* Messages (to a file, standard output, or standard error)
e Results (to a file or standard output)

Orchestrate uses a data-flow programming environment, in which you define applications by
connecting operators using data sets. In this way, data flows from the beginning of a step to the end,
as each operator processes a stream of input records to create an output record stream.

You use Orchestrate data sets to input data to an operator and to hold the output data written by an
operator. By using data sets, you let Orchestrate handle the partitioning of your data to distribute it
to the processing nodes executing a parallel operator. In addition, data sets let you store and retrieve
your data in parallel.

For command operators that invoke UNIX commands that require other types of inputs and out-
puts, you must decide how your operator will handle those inputs and outputs. This section

13-8

Visual Orchestrate User's Guide Handling Operator Inputs and Outputs

describes how to handle different inputs to and outputs from an UNIX command operator, through
the following topics:

* “Using Data Sets for Inputs and Outputs” on page 13-8

e “Handling Command Exit Codes” on page 13-35

* “Handling Configuration and Parameter Input Files” on page 13-25

e “Using Environment Variables to Configure UNIX Commands” on page 13-26

Using Data Sets for Inputs and Outputs

The application data processed by a UNIX command operator is usually represented by an
Orchestrate data set. Orchestrate data sets have a parallel representation that lets you partition your
data to distribute it to the multiple processing nodes in a parallel system.

When you create a UNIX command operator, you specify how input and output data sets are
connected to the UNIX command. For example, UNIX commands usually read input data from
standard inputs di n) or from a file. For output, commands usually write output data to standard
output 6t dout) or to a file.

For example, the following figure shows a UNIX command operator taking a single input data set
and creating a single output data set:

Input data set +

@) export
Input data set]
fileorstdin

@ UNIX command

UNIX operator

rec:string; file or st dout

Output data set i rec:string;
@ i mport
I

Output data set i

In this example, the UNIX command operator performs an export of the data set to the UNIX
command, runs the UNIX command, and then imports the data to the output data set.

Creating UNIX Operators Visual Orchestrate User's Guide 13 -9

UNIX command operators use a default record schema for the input and output data sets, as
described in the section “Default Properties for Operator Export and Import” on page 13-6 for a
description of these defaults. The following figure shows two UNIX command operators, each
using the default input and output record schemas. The two command operators are connected by a
data set:

Input data set i

UNIX operator

rec:string;

¢

UNIX operator

rec:string;

¢

In this case, the output data set of the first UNIX command operator contains a single string field.
By default, the second operator converts that string to a hew-line delimited string and then inputs it
to its UNIX command.

Example: Operator Using Standard Input and Output

This section describes how to create a parallel UNIX command operator that runs the UNIX
commandyr ep. The following figure shows this sample operatgr,gr ep:

$

recovr d()

ny_grep

record(rec:string;)

!

In this example, thgr ep command:
e Takes its input from standard input.
e Writes its output to standard output.

e Uses the default export schema on its input data set and the default import schema on its output
data set.

e Takes no user-specified arguments.
e Isinvoked with the following command lingt ep MA.

13 -10 Visual Orchestrate User's Guide Handling Operator Inputs and Outputs

This command line defines asimple filter operator that outputs only the records containing the
string MA.

To create a UNIX command operator, perform the following steps:

1. Choose Custom -> Define Custom Operator from the Orchestrate menu. This command
opens the following dialog box:

Create Hew Operator

— Start with. ..
* Mew Dperator

¢ Copy of Existing Dperator

Operator Marme:

| s
[]'3 I Cancel | Help |

This dialog box allows you to create a new operator (default), or to copy the definition of an
existing operator and edit that definition to create a new operator. You create aNew Operator

in this example.
2. Click OK to open the Custom Operator dialog box.

3. Click the UNIX Command button, as shown in the figure below:
UNIX Command

& Custom Dperator

W ame: Im_l,l_grep Jeffary: ILIser

Type: " Mative Operator & UNI4 Command

Cammand |In|:uts | Outputs] Options | Exit & Ervironment | Advanced | Access|

— Command To Execute

— Command Mame

Command: Igrep b2y

Operator Type: & Paraliel © Sequential " Dperator Default

— Command Line Argument Order

Argument Source | Argument Mame Argument Type

g

[

Command echo

\ — 5 ampleCommandLine
'

$ grep Ma

Save | Qreatel Eanu:ell Help |

Creating UNIX Operators Visual Orchestrate User's Guide 13 - 11

4. Specify the Name of the operator: ny_gr ep.
5. Specify the Library name for the operator: User.
6. Specify the Command: grep MA.

As you enter the command, you see it echoed in the Sample Command Line area of the dia-
log box. This area shows how the UNIX application will be invoked by the operator.

In the Command Line Argument Order area, the list of operator arguments is empty. For a
description of adding and using command operator arguments, see the section “Handling Oper-
ator Inputs and Outputs” on page 13-7.

7. Specify theDperator Type asParallel.

You can specifyParallel, Sequential, or Operator Default (default). Operator Default
allows the operator user to set the execution mode when inserting the operator into a step.

8. Choose th&xit & Environment tab:

¥ Custom Dperator ME E
M ame: Im.'r'_ngP Library: IUser

Type: (" Native Operator % UNIX Command

Command | Inputs | Outputs| Options Esit & Enviranment |.-’-\dvanc:ed | Access|

— Exit Code and Erviranment

r— Command Exit Code Handling
[~ Esit codes denote success by default

Success Codes Failure Codes
[A [
1
[DElete I [DElete I

— Enwironment far Invocations of this Cammand
Erwironment Y ariables Set

Namel

Yalue I

Eaa| mEEE|

§ave| Qreatel Eancell Help |

This dialog box lets you define the environment variables used by the UNIX command and
control how Orchestrate handles exit codes returned by the command.

In theCommand Exit Code Handling area, specify how Orchestrate interprets the exit codes
returned from the UNIX command. By default, Orchestrate treats an exit code of 0 as success-
ful and all others as errors.

For this operator, specify:
Success Codes = 0 and 1: Exit codes 0 and 1 indicate success; all others are errors.

13-12

Visual Orchestrate User's Guide Handling Operator Inputs and Outputs

You must set 1 as avalid exit code because gr ep returns both 0 and 1 to indicate success.
An exit code of 0 means gr ep found the search string; an exit code of 1 meansit did not.

See the section “Handling Command Exit Codes” on page 13-35 for more information.
9. Enter 1 in thé&uccess Code field.
10. Press thAdd button to add 1 as a success code.
11. Use théNew Operator dialog box buttons to do one of the following:

< Save the information about the operator, but do not create it. A saved operator appears in
the Server View area in parentheses, to indicate that it has not yet been created.

« Createthe operator so that you can use it in your application. You must create the operator
before an operator user can use it.

e Cancd operator creation.
e Open on-linedHelp.

If you choseCreate above, you can now use the operator in an Orchestrate step, as you use a
predefined Orchestrate operator. The following figure shows a step using this operator:

Vizual Orchestrate - Server "borodin_server” as “stephen™

File Edit Wiew Custom Toolz Program ‘Windows Help

O| DR8] L=|o|o|y| &|=|@m|®] EE[E] o] x]¢] 2|

B [Server - boradin_server
B2 Programs B Program Editor - User-Untitled [modified]
- Operators

B (7 Analtics

[~ (77 Collectars

B (21 DB2 —

[~ (7 General ¥ fl

[(23 Informis

[~ (27 Oracke

[~ (27 Partitioners

- (07 SA%

- (07 Sort

[~ (77 Statistics

EI-£3 User

my_grep

L ry_sork

----- = Datasets

-5 Schemas

- 318 Configurations

[~ 1 Initial Step

| Loaded program 'gen_1"' i

Additional Tabs in the Custom Operator Dialog Box

For this example, you can leave the settings for the thredniphbss, Outputs, andOptions in

their default states. The operator in this example takes as its input, data received over the default
standard input and uses the default export schema. It writes its output to the default standard output,
and it uses the default import schema. The operator defines no user-settable options (for a descrip-

Creating UNIX Operators Visual Orchestrate User's Guide 13 -13

tion of setting options, see the section “Handling Operator Inputs and Outputs” on page 13-7).

You can use thé&dvanced tab to set th&€onstraints option for the operator. Constraints let you
specify node pool or resource pool constraints on the operator. See the chapter “Constraints” for
more information on using constraints.

To change the owner or access rights for the operator, usedtess tab.

Example: Operator Using Files for Input and Output

This section shows how to create a UNIX command operator that runs the UNIX SyncSort utility in
parallel. The following figure shows this sample operaitprsort :

record()

my_sort

record(rec:string;)

!

In this example, the SyncSort command is invoked with the following command line:

syncsort /fields age 1 integer 1 /fields state 12 char 2
/ keys age
/statistics
linfile source /outfile dest

This command invokes the SyncSort utility to sort records, using a 1-byte integewyéelthe

/ fi el ds argument specifies the name, position, data type, and length of a field in the command'’s
input. The/ st ati stics option configures SyncSort to output statistical information about the
sort operation.

In theny_gr ep example (in the section “Example: Operator Using Standard Input and Output” on
page 13-9), thgr ep command takes its input from standard input and writes its output to standard
output. In this example, SyncSort accesses its input and output via file names specified by
command-line arguments. SyncSort takes its input from the file specified byi ttie | e
argument and writes its output to a file specified by th& fi | e argument.

Therefore, thery_sort UNIX command operator delivers input records to SyncSort using a file
name. Orchestrate does not write the data to a disk file, but instead creates a UNIX named pipe that
the command reads in the same way that it reads a filemftert operator similarly takes the
SyncSort output from a named pipe.

The name of the pipe is defined at run time. When you define this operator, Orchestrate creates a
temporary variable for the pipe name, which it replaces at run time.

13-14

Visual Orchestrate User's Guide Handling Operator Inputs and Outputs

To create the UNIX command operator my_sor t , perform the following steps:
Choose Custom -> Define Custom Operator from the Orchestrate menu.
Click the UNIX Command button to create a UNIX command operator.
Specify the Name of the operator: ny_sort

Specify the Library name for the operator: User.

o M DN

Specify the Command:

syncsort /fields age 1 integer 1 /fields state 12 char 2
/ keys age /statistics

Note that you omit any reference to the input or output files in the command string.

% Custom Dperator M= E

Marne: Irny_sc-rt Library: IUser

Type: ¢ Native Operator & LNIX Command

Command IInl:uuts | Dutputs| Options | Exit & Ernvironment | Advanced | Accesz]

— Command To Execute

r~ Command Mame

Command: | inteqer 1 fields state 12 char 2 fkevs age Sstatisics

Operator Type: @+ " Sequential " Operator Default

~ Command Line Argument Order

Argument Source | Argument Name Argument Type

— SampleCommandLine
$ synceort ffields age 1 integer 1 Mields state 12 char 2 /keys age /statisics

ﬁavel Qreatel Eancell Help |

6. Specify the Operator Type as Parallel.

Creating UNIX Operators Visual Orchestrate User's Guide 13 -15

7. Choose the Input tab to configure the input data set. Shown below is the I nput dialog box:

¥ Custom Dperator ME E
M ame: Irn_l,l_sort Library: IUser

Type: (" Native Operator % UNIX Command

— nis Command [nputs D escription

Input Fraom Conmect Ta Distributar?

List of defined inputs —— 1y [pacazer & 0 D § 0

New | Edi | Dee |

§ave| Qreatel Eancell Help |

By default, the first input data set is defined to pass the input stream to the command through
standard input. You must modify thisinput data set to use afile name, asfollows.

8. Sedlect Data set #0.

13-16 Visual Orchestrate User's Guide Handling Operator Inputs and Outputs

9. Pressthe Edit button to open the UNIX Command I nput dialog box, shown below, to config-
ure the input:

s, Unix Command Input E3

— Specify Input to Unix Command O perator

— Orchestrate Input Link,

Link. #: ID_

— Export Schema [Orchestrate--»Unix Command)]

{llacal) ~] _ Detais.. |

[Specify Schema as Operator Dption

— Command |nput
€ Program reads from standard input ar ather file descriptar

£+ Program reads from named file

Generated Filename [nput
% Pass filenarne on command line

" Pass filename in enviranment variable

Argument M ame: |£infile

Ok | Eancell Help |

10. Specify the Orchestrate Input Link: 0
Thefirst input data set is link 0, the second islink 1, and so forth.
11. Do not modify the Export Schema, as this example uses the default export schema.

12. Under Command I nput, choose how the source data is delivered to the UNIX command. This
setting defines how the data from the input data set is delivered to the UNIX command.

Click Program reads from a named file to indicate that the input data set is connected to the
command using afile name.

13. Under Generated Filename I nput select Pass filename on command line.

14. For Argument Name, specify /i nfi | e, the name of the SyncSort command-line argument
used to specify the input file.

15. Click OK to save the settings.

Creating UNIX Operators Visual Orchestrate User's Guide 13 -17

16. Click the Command tab. The Sample Command Line area of the dialog box displays the
command and the new arguments for the input dataset: /i nfil e <i nputfile>.

% Custom Dperator M= E
Marne: Irny_sc-rt Library: IUser

Type: ¢ Native Operator & LNIX Command

¢ Enmman I Inputs | Outputs| Options | Exit & Envirarment | Advanced | Access|

— Command To Execute

r~ Command Mame

Command: | inteqer 1 fields state 12 char 2 fkevs age Sstatisics

Operator Type: &+ Parallel " Sequential " Operator Default

~ Command Line Argument Order

Argument Source | Argument Name
Input 0 | finfile

Argument Type
| Filename

Command echo

T — SampleCammandLine

$ syncsort ffields age 1 integer 1 Mields state 12 char 2 /keys age fstatisics Ainfile
<inputfile>

ﬁavel Qreatel Eancell Help |

<i nput fi | e> isaplaceholder for the name of a UNIX pipe that connects the input data set to
the UNIX command. At run time, Orchestrate replaces <i nput fi | e> with the actual pipe
name. UNIX commands, such as SyncSort, do not differentiate between reading data from a
named pipe from reading data from an actual file.

17. Choose the Outputs tab to configure the operator’s output.

13 -18 Visual Orchestrate User's Guide Handling Operator Inputs and Outputs

18. From the Output to area of the Outputstab, select the default output, output 0, and then press
Edit. This opens the following dialog box:

. Unix Command Output E2

— Specify Output from Unix Command O peratar

— Command Dutput
" Program writes ta standard output or other file descriptor

* Program writes ta named file

Generated Filename Output
* Pasz filename on command line

= Pasz filename in environment varniable

Argurnent Mamme: |#outile

— Import Schema [Unix Command-» Orchestrate]:

f llacal ~| _ Detais |

[~ Specify Schema az Operator Dption

— Drchestrate Output Link
Link #: I]

[~ Set Preserve Partitioning Flag

Ok | Cancell Help |

By default, the first output data set is defined to read the output stream of the command over
standard output. You must modify this output data set to use afile name.

19. Click Program writesto named file.
20. For Argument Name, enter / out fi | e.
21. Click Set Preserve Partitioning Flag.

When set, the preserve-partitioning flag indicates that a data set must not be repartitioned. By
default, the flag is clear, to indicate that repartitioning is permissible. For details on the pre-
serve-partitioning flag, see the section “The Preserve-Partitioning Flag” on page 8-11.

22. ClickOK.
23. Click theCommand tab to view thesample Command Line.
The commandout fil e <outputfil e>appears on the sample UNIX command line.

<out put fi | e> is a placeholder for the name of a UNIX pipe that connects the output of the
UNIX command to the output data set. At run time, Orchestrate replacegut f i | e> with

the actual pipe name. UNIX commands, such as SyncSort, do not differentiate between writing
data to a named pipe and writing data to an actual file.

24. ClickCreateto create the operator.

Creating UNIX Operators Visual Orchestrate User’s Guide

Example: Specifying Input and Output Record Schemas

You can as define a UNIX command operator to handle input and output data of types other than
ASCII strings delimited by spaces. For example, you may want to create an operator that runs a
UNIX command that processes binary data. To configure your command operator to handle non-
default data types and formats, you define schema for the import and/or output performed by the
command operator.

For example, the following figure shows a UNIX command operator with a defined export and
import schema:

i Input data set

record {binary, field_delim= none} (

Export schema
P a:int32; b:dfloat; c:string[10];)

UNIX command operator

record {binary, field_delim= none} (

Import schema a:int32; b:dfloat; c:string[10];)

i Output data set

The UNIX command in this example requires input data in binary format with no field delimiters,
as defined in the export schema. In addition, the output data set requires a non-default data format,
as defined in the import schema. The following steps describe how to use Visual Orchestrate to
define the input and output schemas for this sample UNIX command operator.

To set the record schemas of the input and output, do the following:
1. Choosethe Input tab of the Custom Operator diaog box to configure the operator inpuit.

The first time you select the Input tab, you see input Data set # 0, the default input data set,
aready defined.

2. Select Data set #0.

13-19

13 -20 Visual Orchestrate User's Guide Handling Operator Inputs and Outputs
3. Pressthe Edit button to edit Data set # 0. This opens the UNI X Command I nput dialog box,
shown below:

i, Unix Command Input

— Specify Input to Unix Command O perator

— Orchestrate Input Link,

Link, #: ||D—

— Export Schema [Qrchestrate--» Unix Command)

I [private] j Details... I

[Specify Schema as Operator Option

— Command |nput
" Program reads: fram standard input or ather file descriptor

" Program reads from named file

File Descriptor Qutput

Input File Descriptor; IStandard Input vl

Ok | Eancell Help |

4. Pressthe Details button to define the record schema for input data set 0. The Schema Editor
window opens, as shown below:

. S5chema Editor - View Mode M=] &3
) Access Contral————————————
Nane: RN < | o [
Qwner:
Tepe: I vl

Schema Stuctune

REE I
Type I j‘

I HuflEkle
Field List: ™| Weetar

™| Eived Lenaths I

Type Infarmation

Froperties far:
IImports’E wport Operators j

AddFielEl | [ekEEFEEE] Properties »> |

Dele;el Hew | lmportl Edit | Eancell Help |

Creating UNIX Operators Visual Orchestrate User's Guide 13 - 21

Press New to define a new record schema.
Use the Schema Editor to define the input record schema shown in the figure above.
Press Save to save the record schema.

© N o o

In the UNIX Command Input dialog box, choose how the records of the input data set are
delivered to the UNIX command. Choose either:

Program reads from standard input or other file descriptor
The UNIX command reads its input from standard input, or from afile descriptor that you
specify.
Program reads from named file
In this case, you have two options:
e Passfilename on command line
Specify theArgument Name. Orchestrate adds the argument name and a file name to
the UNIX command in the form:

[arg _nane <inputfile>

wherear g_nane is the value specified fgkrgument Name and<i nputfil e> is a
temporary variable. At run time, Orchestrate repladasput fi |l e> with a UNIX

pipe name. UNIX commands do not differentiate between reading data over a named
pipe and reading data from an actual file.

* Passfilenamein environment variable

Specify theVariable Name. Orchestrate creates the environment variable at run time
and initializes it to a UNIX pipe name. UNIX commands do not differentiate between
reading data over a nhamed pipe and reading data from an actual file.

See the section “Example: Passing File Names Using Environment Variables” on page
13-26 for an example using environment variables.

9. Click theOutput tab to define the export schema of the output data set.

The first time you select th®utput tab, you see inpuData set # 0 already defined, as the
default output data set.

10. SelecData set #0.

11. Click theEdit button to ediData set # 0.

12. Click theDetails button to define the record schema. Hehema Editor window opens.
13. Use théschema Editor to define the output record schema shown above.

14. Specify how the records of the input data set are delivered to the UNIX command. Choose one
of these two:

Program writesto standard output or other file descriptor

The UNIX command writes its output to standard output, or to a file descriptor that you
specify.
Program writesto named files
In this case, you have two options:
e Passfilename on command line

13 -22 Visual Orchestrate User's Guide Passing Arguments to and Configuring UNIX Commands

Specify the Argument Name. Orchestrate adds the argument name and a file name to
the UNIX command in the form:

larg_nane <outputfile>

where ar g_nane isthe value specified for Argument Name and <out putfil e>isa
temporary variable. At run time, Orchestrate replaces <out put fi | e> with a UNIX
pipe name. UNIX commands do not differentiate between writing data over a named
pipe and writing data to an actual file.

+ Passfilenamein environment variable

Specify theVariable Name. Orchestrate creates the environment variable at run time
and initializes it to a UNIX pipe name. UNIX commands do not differentiate between
writing data over a named pipe and writing data to an actual file.

For a description of passing environment variables to a UNIX command, see the sec-
tion “Example: Passing File Names Using Environment Variables” on page 13-26.

Passing Arguments to and Configuring UNIX Commands

This section describes how to define your UNIX command operator to call the UNIX command
with a script for more flexibility in passing arguments, to define user-settable options to pass to the
UNIX command, to use environment variables to configure a UNIX command, and to handle com-
mand input and output files with configuration and other information. This section covers the fol-
lowing topics:

e “Using a Shell Script to Call the UNIX Command” on page 13-22

* “Handling Message and Information Output Files” on page 13-24

e “Handling Configuration and Parameter Input Files” on page 13-25

e “Using Environment Variables to Configure UNIX Commands” on page 13-26

« “Example: Passing File Names Using Environment Variables” on page 13-26

« “Example: Defining User-Settable Options for a UNIX Command” on page 13-28

Using a Shell Script to Call the UNIX Command

You can define the operator so that it calls a UNIX shell script instead of directly calling the UNIX
command or application. Using a script this way is useful when your operator must perform
processing on options passed to the operator, before it can pass those options as arguments to the
UNIX command.

Orchestrate calls the shell script, passing it the dynamic options set by the operator user. The shell
script parses the options and configures the UNIX command accordingly. While not mandatory,
using a shell script is a convenient way to handle parameter parsing in Orchestrate.

Creating UNIX Operators Visual Orchestrate User's Guide 13 — 23

You can also use a shell script to pass configuration information to a particular instance of an
operator run in parallel. For information, see the sections “Handling Message and Information
Output Files” on page 13-24.

For example, suppose you define a UNIX command operator and specify the following command
under theCommand tab:

my_shell _script -a -c -e /data/ny_data_file
| |1 |

Static portion Dynamic portion

In your shell script, you can reference the arguments with shell variables of thi&lfarn$n. The
table below shows the values of the shell variables for the example above, as well as other shell
variables you can use in your script.

Shell Variable Argument

$0 Wrapper file name
Example: ny_shel | _scri pt
$1 First argument
Example: - a
$2 Second argument
Example: - c
$3 Third argument
Example: - e
$# Number of arguments passed to the script
Example: 4
$* All arguments as asingle string

For example, you could code your shell script so that when a user speeiftgsan SMP, the
script appends APT_PARTITION_NUMBER to the file nameéat a/ ny_dat aFi |l e, thus
generating a unique file name from each processing node.

Using the Here-Document Idiom in Shell Scripts

UNIX command operators that take user-specified options often call a shell script to process those
options before invoking the UNIX command. For commands that read configuration information
from a parameter file, the shell script can write any parameter values calculated by the shell script
to a file, before calling the UNIX command.

One technique that you can use in a shell script to write information to a filehieréhdocument
idiom. Shown below is an excerpt from a shell script using this idiom:

cat > file_nane <<ECF

EOF

13-24

Visual Orchestrate User’s Guide Passing Arguments to and Configuring UNIX Commands

In this example, cat writes everything after <<ECF to the file named fi/e_nane, until it
encounters an ECF on aline by itself. This procedure lets you calculate values from user-supplied
options in the shell script and write those values to the parameter file.

Handling Message and Information Output Files

UNIX commands can create output files containing messages (information and error log files) or
output summaries. For operator outputs that do not contain data, the command can write directly to
the files without using an Orchestrate data set. Suppose, for example, that you want to run a UNIX
command with the form:

uni x_command options -e error_file

This command creates afile containing any error messages that the command generates.

When executing this command in parallel with a UNIX command operator, you can let the
command generate a file on each processing node, as shown in the following figure:

UNIX operator Processing nodes

»
»

8 8 8 Output files

On an M PP, each processing node has its own disk storage. The UNIX command writes its output
files to the local disk storage on the processing node. Upon completion of the Orchestrate
application, you can examine the output files.

On an SMP, all processing nodes frequently share disk drives. You must assign unique names to
the output files, so that a file generated by one processing node does not overwrite afile generated
by another processing node.

You can define the UNIX operator to call a shell script to execute the UNIX command. You code
the shell script to create a unique file name for each error file. For example, the following shell
script executes uni x_conmand on an SMP:

#! / bi n/ ksh
ny_comrand options -e error_file. $APT_PARTI TI ON_NUVBER

APT_PARTITION_NUMBER is an environment variable, set by Orchestrate, that contains the
partition number of the operator on each processing node. If an operator has three partitions (runs
on three processing nodes), Orchestrate sets APT_PARTITION_NUMBER to O on the first
processing node, 1 on the second, and 2 on the third processing node. Therefore, this shell script
would create three output files. error _file.0,error_file.1,anderror_file. 2.

Creating UNIX Operators Visual Orchestrate User's Guide 13 — 25

By using APT_PARTITION_NUMBER, you guarantee that each instance of the UNIX command
operator on an SMP creates an error file with a unique name. When the operator runs again, it will
overwrite all the error files.

Note that you must create a shell script to run the command shown above. You cannot use the
Command tab in the Custom Operator dialog box to enter and run the command, because
Orchestrate evaluates the command in the Command tab at the time you invoke your application.
At invocation time, APT_PARTITION_NUMBER evaluates to the number of the processing node
that invokes the application; therefore, each processing node executing the command would use the
same value for APT_PARTITION_NUMBER.

A shell script, by contrast, is executed only when the operator runs on each processing node, so that
APT_PARTITION_NUMBER evaluates to the number of the processing node executing the shell
script.

See the section “Using a Shell Script to Call the UNIX Command” on page 13-22 for more
information.

Handling Configuration and Parameter Input Files

Many UNIX commands and applications take input files that contain configuration or parameter
information. You then modify the input file instead of editing the operator to change the operator’s
action. This section describes how to use files as input to the UNIX command called by your
operator.

For example, the following command line, specified inGoenmand tab of theCustom Opera-
tor dialog box, uses a parameter file:

uni x_conmmand options -p p_file

In this example, the command reads the parameter filel e to determine the command’s action.

On an MPP, each instance of a parallel operator executes on a different processing node, with its
own disk storage. You must make sure that there is a copy of the parameter file in the same
directory on each processing node executing the operator.

On an SMP, all processing nodes, corresponding to the CPUs in the system, frequently share disk
storage. You need only one copy of the file, as all instances of the operator on the SMP will access
the same file.

You can also use the environment variable APT_PARTITION_NUMBE®&a shell script to exe-

cute the UNIX command, as described in the section “Handling Command Exit Codes” on page
13-35. Using a shell script enables you create a different configuration file for each processing
node. For example, you could invoke the command in the following shell script:

#!/bi n/ ksh
uni x_command options -p p_fil e. $APT_PARTI TI ON_NUVBER

13-26

Visual Orchestrate User’s Guide Passing Arguments to and Configuring UNIX Commands

This shell script causes the command to look for a parameter file named p_fil e. 0 on the first
processing node, p_fi | e. 1 on the second processing node, and so forth.

Using Environment Variables to Configure UNIX Commands

One common way to configure a UNIX command is to use environment variables. Environment
variables can define the location of system resources or hold configuration options for a command.
For a UNIX command to access an environment variable, the variable must be set in the UNIX
shell that invokes the command.

To run a command from a UNIX command operator, Orchestrate first creates a UNIX shell using
the login name of the user invoking the application. The shell contains environment variables
defined by the user’s execution environment.

In addition, in defining your UNIX command operator, you can create environment variables that
hold the following:

« File names used as inputs to or outputs from a command.

You create these environment variables when you configure the input and output data set con-
nections used by the operator. The example below describes how to pass file names using envi-
ronment variables.

« Configuration settings for the command.

The Exit & Environment tab area of th€ustom Operator dialog box lets you define envi-
ronment variables that Orchestrate will set before it invokes your UNIX command. In this way,
you can pass information to the command.

Example: Passing File Names Using Environment Variables

Many UNIX commands access an environment variables to determine an input or output file name.
In addition to letting you handle command-line arguments to a UNIX command in your operator,
Orchestrate lets you define your UNIX command operator to handle environment variables.

Suppose, for example, that you want to run the following command using a UNIX command oper-
ator:

filter args

This command filters its input based on the arguments passed to it. The command also obtains the
name of an input file by the value of the environment variable FILTER_INPUT, and the name of an
output file from the environment variable FILTER_OUTPUT.

Orchestrate creates the environment variable at run time and initializes it to a UNIX pipe name.
UNIX commands do not differentiate between reading data from a named pipe and reading data
from an actual file.

Creating UNIX Operators Visual Orchestrate User's Guide 13 - 27

To define the environment variables for this example, do the following:

1. Choosethe Input tab of the Custom Operator diaog box to configure the operator input.

2. Select Data set #0.

3. Pressthe Edit button to edit Data set # 0. This opensthe UNIX Command I nput dialog box.
4. Inthe UNIX Command Input dialog box, choose how the records of the input data set are

delivered to the UNIX command. Select the following:
Program reads from named file

5. Choose how the file name is passed to the UNIX command. For this example, select the fol-
lowing:

Pass filenamein environment variable
6. Specify the Variable Name: FI LTER | NPUT.

Orchestrate creates the environment variable at run time and initializes it to a UNIX pipe
name.

7. Click the Output tab to define the export schema of the output data set.
Select Data set # 0.

9. Click the Edit button to edit Data set # 0.

10. Choose how the record of the input data set are delivered to the UNIX command. Choose:
Program writesto named files

11. Specify how the file name is passed to the UNIX command. For this example, select the fol-
lowing:

Pass filename in environment variable
12. Specify the Variable Name: FI LTER_QUTPUT.

Orchestrate creates the environment variable at run time and initializes it to a UNIX pipe
name.

Example: Defining an Environment Variable for a UNIX Command

In this example, a UNIX operator executes a UNIX command that uses the environment variable
MY _ENV_VAR to determine the location of its parameter file. To configure the UNIX command
operator to set that environment variable, perform the following steps:

13 -28 Visual Orchestrate User's Guide

Passing Arguments to and Configuring UNIX Commands

1. Inthe Custom Operator dialog box, select the Exit & Environment tab, shown below:

¥ Custom Dperator

M ame: I

Command | Inputs | Outputs| Options Esit & Enviranment |.-’-\dvanc:ed | Access|

Library: IUser

Type: (" Native Operator % UNIX Command

M= 3

— Exit Code and Erviranment

r— Command Exit Code Handling

Success Codes

|_ Addr] o
[Nelete I

[~ Esit codes denote success by default

Failure Codes

i
[Elete I

— Enwironment far Invocations of this Cammand
Erwironment Y ariables Set

Name [4y_ENY_YAR

Walue Ifhumex'my_din"m}'cmﬁd

ddd | | Dete |

§ave| Qreatel Eancell Help |

2. Under Environment for I nvocations of this Command, enter the following information:

Name: MY¥_ENV_VAR
Value: / horme/ ny_di r/ nyconfig

3. Click the Add button.

This environment variable will be set in the UNIX shell when Orchestrate executes the operator.

Example: Defining User-Settable Options for a UNIX Command

The ny_sort example (in the section “Example: Operator Using Standard Input and Output” on
page 13-9) describes a UNIX command operator that always runs the SyncSort command with a
predefined command line. The user interface to this command operstticisalways sorting the

input file using the same sorting key and always generating statistics about the sort.

Orchestrate also lets you define UNIX command operators vdyhamic interface, which allows

the operator user to specify options when using the operator in a step. Suppose, that the operator
user needs to perform multiple sorting operations, in which the sorts differ by the key fields used to
perform the sort. Rather than creating a different, static UNIX command operator for each type of

Creating UNIX Operators Visual Orchestrate User’s Guide

sort operation, you can create a single, dynamic sort operator that allows the user to pass
configuration options to the operator.

To create adynamic command operator, you define at least part of the UNIX command as dynamic.
For example, in the Command tab you could specify the following as the static portion of the
sample UNIX command above:

syncsort /fields age 1 integer 1 /fields state 12 char 2

The static portion of this command defines the data format of the sorted data, but does not specify
the sorting keys or statistics option. The dynamic portion of the command lets the user optionally
specify the / key and / st ati sti cs options. The operator user can specify one, both, or neither
option to the operator each time the operator isinvoked in a step.

This example describes how to create a command operator that lets the operator user set two
options. It also describes how the operator user sets the options, and the results of setting the
options.

Adding Options to an Operator
To create a sort operator that takes user-settable options, perform the following steps:

13-29

1. Createthenmy_sort operator as described in the section “Example: Operator Using Files for
Input and Output” on page 13-13. However, instead of the command line used in that operator

definition, enter the following command line in tBemmand tab:
syncsort /fields age 1 integer 1 /fields state 12 char 2

Note that this command line contains no specification kelys or/ st ati sti cs.

13 -30 Visual Orchestrate User's Guide Passing Arguments to and Configuring UNIX Commands

2. To create user-settable options for the operator, first choose the Options tab of the Custom
Operator dialog box:

% Custom Dperator M= =
W arne: I Librany: IUser
Type: " Mative Operator @ UNIX Command
Command | Inputs | Outputs !Ilnuonal Exit & Enviranment | Advanced | Access|
— Unix Operator Option
Option Hame Option Type Argument Hame Add.
Edit |
[D=t |
Save | Create | Cancel | Help |

3. Pressthe Add button to open the Custom Operator Option Editor dialog box:

i, Custom Operator Option Editor

— Unix Operator Option

Option Mame: |keys

Optio Type: IString ﬂ

Argument Hame: [ey

ak Cahicel

4. Specify the Option Name.

This is the name of the option that the operator user selects in the Option Editor dialog box.
5. Select the Option Type.
This is the data type of any value specified to the option. Available data types are Boolean,

Integer, Float, String, and Pathname. For details on the operator user interface to options of
each type, see the section “How the Operator User Sets Options” on page 13-31.

6. SettheéOption Nametokeys.

Creating UNIX Operators Visual Orchestrate User's Guide 13 - 31

10.
11.
12.

13.

14.
15.

16.

Note that Orchestrate sets the default Argument Nameto - keys.
Set the Option Typeto Stri ng.

You let the user specify a string as the option’s value, becausédhe argument takes a
string specifying one or more sorting keys, separated by commas.

Set theArgument Nameto/ keys.

Click OK to close theCustom Operator Option Editor.

ClickAdd to add thest at s option.

Set theOption Nametost at s.

Set theéOption Type to Bool ean.

A flag argument means that the option takes no additional value from the user.
Set theArgument Nameto/ st ati sti cs.

Click OK.

Click theCommand tab to view the command. Note that Banple Command Line shows
both arguments. These arguments will be included in the command only if the user specifies
them when using the operator in a step.

Also note that the options appear in @@mmand Line Argument Order list. You can use
the Up andDown buttons to change the order of the arguments to the UNIX command, as
reflected in the Sample Command Line area.

Pres<reate to create the operator.

An operator user inserting this operator into a step can how specifgytimgtion to set the sorting
keys and that at s option to enable statistic generation.

How the Operator User Sets Options

To access the user-settable options on this sample command operator, the operator user inserts the
operator into the application. Then, the operator user double clicks the operator to open the
Operator Properties dialog box. The user presses #hdd button to open th®ption Editor

dialog box. From the list in that dialog box, the user selects and sets one or more operator options.

13 -32 Visual Orchestrate User's Guide Passing Arguments to and Configuring UNIX Commands

Shown below are the Operator Properties dialog box, and the Option Editor dialog box after
each option (keys and st at s) has been selected:

W, O tor Properties

Advanced |

- Gieneral Properti

Label: [iy_son ¥ Copy Fram Operator Name
Operator: [|sermy_son =l
. Option Editor M=l E3
Operator: User:my_sort
Option: Ike_l,ls j
g L Type:
add | Edf | [oEEE] (W P |
Walue

\\ \m = | — |£ Walue: ;I M

. Option Editor M=l E3

Operator: User:my_sort

Option: [opats -
. Ik J ak. I Cancel Help

—Walue

[Thiz option type haz no settable values |

QK I Cancel | Help |

For the key option in this example, the operator can specify one or more sorting keys, separated by
commeas. For the st at s option, simply specifying st at s enables the option.

Below are detailed descriptions of the operator user interface for options of each supported type.

Setting Boolean Options
Options with the type Boolean do not take a value. Specifying the option name is al that is

required. For example, the SyncSort / st at i sti cs option does not require a value; simply speci-
fying the option enables the generation of sorting statistics.

Creating UNIX Operators Visual Orchestrate User's Guide 13 - 33

An option using Boolean has the following dialog box in the Option Editor:

. Option Editor M= 3
Operator: User:my_sort

Optior: d

Type: Boolean Flag

—Walue

[Thiz option type haz no settable values |

QK I Cancel | Help |

Setting Integer Options
The option takes a single integer value. Integer options have the following dialog box in the

Option Editor:
. Option Editor M=l E3

Operator: User:my_sort

O R -

Type: Integer

 Integer Value

Yalue: M

QK I Cancel | Help

Setting Float Options
Float options have the same dialog box as | nteger, described above.

13 -34 Visual Orchestrate User's Guide Passing Arguments to and Configuring UNIX Commands

Setting String Options
An option using String has the following dialog box in the Option Editor:

. Option Editor M=l E3

Operator: User:my_grep

Option: [

Type: String

—Walue

Yalue: ;I M

QK I Cancel | Help |

Setting Pathname Options
Pathname arguments have the following dialog box in the Option Editor:

. Option Editor M=l E3

Operator: User:my_sort

Option: Ipath_arg j
Type: Pathname

Bath
Fathname

Path: [/data/default Browse... | M

QK I Cancel | Help |

The default value of Path is the current working directory (set in the Paths tab of the Program
Properties dialog box, as described in the section “Setting Program Directory Paths” on page
2-13). Pressinggrowse opens the Visual Orchestrate file browser to allow the operator user to set
thePaths value.

Results of Setting Options

If the operator user sets no option, the UNIX command operator executes only the static portion of
the command line:

syncsort /fields age 1 integer 1 /fields state 12 char 2
linfile source /outfile dest

However, the operator user can also sek#ys option to the valuage. In this case, the operator
executes the command line:

Creating UNIX Operators Visual Orchestrate User's Guide 13 - 35

syncsort /fields age 1 integer 1 /fields state 12 char 2
/ keys age
/infile source /outfile dest

A user specifying the st at s option and the key option with avalue of age would invoke the com-
mand line;

syncsort /fields age 1 integer 1 /fields state 12 char 2
/ keys age /statistics
/infile source /outfile dest

Handling Command Exit Codes

All UNIX commands return an exit code indicating the success, failure, or other result of the com-
mand. Orchestrate interprets the exit code when it executes a UNIX command operator, to deter-
mine whether the command has executed successfully. You can control how Orchestrate interprets
exit codes.

Note: If, for any reason, the UNIX command returns an exit code that Orchestrate interprets as a
failure, the operator fails. When any operator in astep fails, Orchestrate terminates the entire step.

When you create a UNIX command operator, you use the Exit & Environment tab in the Custom
Operator dialog box to define how Orchestrate interprets exit codes. This tab is shown below:

% Custom Operator [_ []]

Mame; |my_grep Library: |User
Type: ¢ Mative Operatar & LINEX Command

Command | Inputs | Outputs] Options — Exit & Envitonment |.-’-‘«dvanced | access|

r— Exit Code and Environment

— Command Exit Code Handling
[~ Exit codes denote success by default

Success Codes Failure Codes
| i [F e
1
[VE[ErE | [VE[ErE |

— Environment for Invocations of this Command
Environment V ariables Set

Mame |

Walue |

Eda| nEEEN|

§ave| Qreatel Eancell Help |

13-36

Visual Orchestrate User's Guide How Orchestrate Optimizes Command Operators

By default, Orchestrate interprets an exit code of 0 as a success and all other exit codes asafailure.

In the Command Exit Code Handling area you can set the following options:

« Exit codes default successful: Causes all exit codes to be treated as success, except codes
explicitly designated as errors usikgilure Codes. Ignores any settings defined Byccess
Codes.

e Success Codes: Specifies exit codes defining successful execution of the command; all codes
that you have not specified Saccess Codes are considered errors. Configures Orchestrate to
ignore any settings defined Bilure Codes.

You can specifieither Success Codes or Exit codes default successful, but not both. Some com-
mon specifications are:

e Success Codes = 0 and 1: Exit codes 0 and 1 indicate success; all others are errors.
+ Exit codes default successful selected: All exit codes indicate success.

« Exit codes default successful selected andrailure Codes = 1: All exit codes other than 1
indicate success; exit code 1 indicates an error.

How Orchestrate Optimizes Command Operators

As described in the section “Execution of a UNIX Command Operator” on page 13-5, by default a
UNIX command operator consists of the three parts shown on the right-hand side of the following

figure:
¢

v

export

¢

UNIX operator UNIX command

!

i mport
|

!

When executing the operator, Orchestrate creates one UNIX process each for the export, command,
and import parts of the operator on each processing node executing the operator. For example, on a
four node system, Orchestrate creates 12 UNIX processes for the four instances of the operator.

Creating UNIX Operators Visual Orchestrate User's Guide 13 - 37

This section describes how Orchestrate can optimize your UNIX command operator. In many of
these optimizations, Orchestrate skips either the export or the import process.

This section covers the following topics:

e “Cascading UNIX Command Operators” on page 13-37

e “Using Files as Inputs to UNIX Command Operators” on page 13-38

e “Using FileSets as Command Operator Inputs and Outputs” on page 13-39
e “Using Partial Record Schemas” on page 13-39

Cascading UNIX Command Operators

In creating an Orchestrate step, you can cascade (connect in succession) UNIX command
operators, as shown below:

UNIX operator

ot]

i \ May be bypassed

UNIX operator

¢

By default, Orchestrate performs an import on the output of the first operator and an export on the
input of the second. However, Orchestrate eliminates both the import and the export, if all three of
the following conditions are met:

« Both operators have the same execution mode (parallel or sequential).
e Both operators have the same constraints.

« The output port of the first operator and the input port of the second operator use the same
record schema.

The last condition is the most important. If the two ports do not have the same record schema,
Orchestrate must perform the export and the import operations in order to convert the output of the
first operator to the record format required by the UNIX command of the second. For example, if
the first operator specifies an ASCII text mode representation of the imported data, but the export
of the second operator specifies a binary representation, Orchestrate must perform both the import
and the export.

13-38

Visual Orchestrate User's Guide How Orchestrate Optimizes Command Operators

Using Files as Inputs to UNIX Command Operators

Orchestrate lets you specify a UNIX file instead of a data set, as an input to any operator.
Orchestrate automatically performs an import to convert the input file to an Orchestrate data set.
Shown below is an example of thisimport operation:

AN

user.dat | Step &
user.dat
i mport
Step \ i
copy copy
Step as written Step as executed by Orchestrate

The left side of this figure shows the step as defined by the user. The right side shows the step as
executed by Orchestrate, as it automatically performs the import required to read the UNIX data
files.

However, when the operator is a UNIX command operator, the first action of the operator on input
is to export the input data set to convert it to the file format required by the UNIX command, as
shown below:

user.dat user.dat |Step ¥
@/—\ | mport
Step i May be bypassed

UNIX operator UNIX operator

Step as written Step as executed by Orchestrate, by default

In the case shown above, Orchestrate can bypass the import and export, to connect the input file
directly to the UNIX command.

Creating UNIX Operators Visual Orchestrate User's Guide 13 — 39

If aninput file has the same record schema as the operator input interface, then the UNIX command
operator directly reads the file. If the operator executes in parallel on an SMP, each instance of the
operator directly reads thefile, in parallel.

Using FileSets as Command Operator Inputs and Outputs

The previous section described how Orchestrate optimizes a UNIX command operator when you

specify a file as the operator’s input or output. You can also spefiifpat as an operator’s input

or output. A fileset is an ASCII text file that contains either a list of UNIX source files for input, or

a list of destination files for output. The files referenced by a fileset are UNIX data files, not
Orchestrate data sets. The fileset must contain one file name per line and can optionally contain a
record schema defining the layout of the data in the data files. All data files referenced by the fileset
must have the same layout.

You can use the Orchestrate operatgsort to create a fileset, as described in the chapter on the
export operator in theédrchestrate User’s Guide: OperatorsOr if you wish, you can create a
fileset using atext editor outside the Orchestrate environment.

Orchestrate optimizes the data access of filesets by parallel UNIX command operators in much the
same way that it optimizes for individual files. If, on input, the fileset has the same record schema
asthe input port of the operator, Orchestrate bypasses the export operation and connects the fileset
directly to the UNIX command. If, on output, the fileset has the same record schema as defined for
the output port of the operator, Orchestrate bypasses the import and writes the data directly to the
fileset.

Using Partial Record Schemas

When importing data using an Orchestrate partial record schema, you define only the fields of

interest in your data. Your records may contain many individual fields — perhaps even hundreds.
However, to process the records, your application may access only a few fields to use as sorting
keys, partitioning keys, or input fields to Orchestrate operators. You can simplify the import/export
procedure by providing only enough schema information to identify the fields required by your
application. See the chapters on theport andexport operators in thérchestrate User's

Guide: Operatorgor a complete description of partia record schemas.

Shown below is a sample record schemawith field information for only two fields:

Record after import, as stored in a data set

nane: st ring[20] i ncone: df | oat

The following record schema defines the two fields of this record:

record { intact=rNanme, record_|l ength=82, record_delimstring="\r\n" }
(nane: string[20] { position=12, delinknone };

13 -40 Visual Orchestrate User's Guide How Orchestrate Optimizes Command Operators

i ncome: dfl oat { position=40, delim=",’, text };

)

One advantage of using a partia record schema is that the i nport operator does not perform a
conversion on the data. Therefore, the intact portion of the record contains data in its original
format.

Shown below is an example application containing an i nport operator followed by a UNIX
command operator:

i May be bypassed

//

UNIX operator

If the data set created by the import operator contains a partial record schema, Orchestrate can omit
the export of the UNIX command operator, because the input data set contains data in the original
format. The following figure shows the application, in this case:

T\

Step x

UNIX operator

Index

A

accessors 4-17
aggregate data types

subrecord 3-6

tagged 3-6
aggregate fields

in input data sets 5-7
applications

components of 1-4

creating 2-1

deploying 2-2, 2-6

display-intensive 6-8

multiple-step 6-4

performance

effect of output display 6-8

running 2-7

single-step 6-3

stepsin 6-4

validating 2-6
APT_Collector class 9-3
APT_CONFIG_FILE 1-14
APT_Dateclass 12-21
APT_Decimal class 12-23
APT_ERROR_CONFIGURATION 11-4
APT_Partitioner class 8-4
APT_RawFidld class 12-25
APT_StringField class 12-24
APT _Timeclass 12-21
APT_TimeStamp class 12-21
APT_WRITE_DS_VERSION 4-33
arcs

performance monitor display of 7-4

B

branching
in steps 6-3

C

cluster/MPP systems
See MPP systems

Visual Orchestrate User’s Guide

collecting 9-1
defined 9-2
method 9-1
any 9-3
ordered 9-3
other 9-3
round robin 9-3
sorted merge 9-3
operators and 9-2
preserve-partitioning flag and 9-2
collection method 9-1
any 9-3
example of use 9-5
ordered 9-3
other 9-3
round robin 9-3
sorted merge 9-3
example of use 9-6
collectors
defined 9-1
See also collecting
components of Orchestrate application 1-4
configuration file
disk poolsand 10-4
node allocation and 1-3, 10-2
node definitions and 10-5
node pools and 10-2
Congtraint Editor dialog box 10-6, 10-8
constraints
applying 1-10, 10-1
combining node and resource 10-8
data sets and 10-9
logical nodesand 10-2, 10-4, 10-5
MPP systems 10-2
node definitions and 10-5
node maps and 10-1
node poolsand 10-1
operators and 10-1
Orchestrate configuration file and 10-5
resource pools and 10-1

Visual Orchestrate User’s Guide

SMP systems 10-4
creating operators 12-1
Custom Operator dialog box 12-5, 13-10
custom operators
action of 12-3
arguments to 12-2
C++ compiler for 12-4
characteristics 12-2
coding
datatypesand 12-20
examples 12-32, 12-34
for multiple inputs 12-32
creating 12-7
date fieldsand 12-21
decimal fields and
example 12-23
defined 12-1
example 12-15, 12-16, 12-17, 12-21
execution mode 12-2
execution of 12-8, 12-31
flow-control macros 12-27
functions
[index] 12-26
_clearnull() 12-26
_null() 12-26
_setnull() 12-26
fieldname _clearnull() 12-26
fieldname _null() 12-26
fieldname_setnull() 12-26
setVectorLength() 12-26
vectorLength() 12-26
1/0O macros 12-28
examples 12-28
included header files 12-4
informational macros 12-27
input and output interfaces
defining 12-9
input data sets and 12-4
input interface 12-6
input interface schema 12-8
input ports
indexing 12-9
naming 12-9
inputs
auto read 12-9, 12-32, 12-34
noauto read 12-34
interface schema and 12-10, 12-13
input 12-10, 12-13

Index

nullable fields 12-25
output 12-10, 12-13
vector fields 12-26
interface schemas
null fieldsin 12-25
introduction to 1-10
macros 12-27
discardRecord() 12-28
discardTransfer() 12-28
doTransfer() 12-29
doTransfersFrom() 12-29
doTransfersTo() 12-29
endLoop() 12-27
failStep() 12-27
holdRecord() 12-28
inputDone() 12-28
inputs() 12-27
nextLoop() 12-27
outputs() 12-27
readRecord() 12-28
transferAndWriteRecord() 12-29
transfers() 12-27
writeRecord() 12-28
nullable fields and 12-25
numeric fields and 12-21
option definition 12-7
optionsfor 12-17
data types of 12-19
defining 12-20
Orchestrate server administrator and 12-4
output data sets and 12-4
output interface 12-6
output interface schema 12-8
output ports
indexing 12-9
naming 12-9
outputs
auto write 12-9
partitioning method 12-2
Per-record code 12-6
Post-loop code 12-7
Pre-loop code 12-7
processing loop 12-3
raw fields and
example 12-25
reject output
example 12-30
saving 12-7

Index

See also native operators
string fields and
example 12-24
timefields and 12-21
timestamp fields and 12-21
transfer macros 12-29
examples 12-30
transfers and 12-2, 12-16
user options for
datatypesof 12-19
user-settable options for 12-18
using 12-1
vector fields and 12-26

D

dataflow 1-5
See data-flow models
dataflows
performance monitor display of 7-4
Data Set Properties dialog box 4-8
Data Set Viewer 4-14
data sets and 4-14
using 4-14
data sets
as input to operators 5-10
as output from operators 5-10
configuring 4-8
constraints and 10-9
syntax 10-9
using 10-9
creating
orchadmin and 4-35
Data Set Properties dialog box 4-8
Data Set Viewer and 4-14
dialog box 4-8
disk poolsand 10-9
export and 4-7
file naming 4-37
flat files 1-8
import and 4-7
introduction to 1-5
Link Properties dialog box and 4-11
multiple inputs and 4-4
multiple outputs and 4-4
operators and 4-3
data type compatibility 3-8, 5-17
Orchestrate version and 4-33
output

Visual Orchestrate User’s Guide

record schema 5-8
parallel representation 4-32

datafiles 4-32

descriptor file 4-32

segments 4-32
partitioning 1-2, 1-9, 4-7

disk poolsand 10-10
performance monitor and 7-4
persistent

examples 4-6

record count 4-16

viewing 4-14
record fields

default value 4-27
record schema 1-6
representation of 4-32
segments and 4-32
storage format 4-33
structure of 4-1, 4-32
viewing 4-14
virtual

examples 4-5

data type conversions

data set fieldsand 3-8, 5-17
default 3-9

examples 3-10
modify and 3-9

examples 3-10
operators and 3-8, 5-17
record schemas and 3-8

data types

compatibility 5-17
conversion
errors 5-17
string and decimal fields 5-20
warnings 5-17
conversions 5-17
date 3-2
decimal 3-4
floating-point 3-5
integer 3-6
introduction to 3-1
nulls 3-2
raw 3-6
string 3-6
subrecord 3-6
tagged 3-6
time 3-6

1 -3

Visual Orchestrate User’s Guide

timestamp 3-7
data-flow diagrams
See data-flow models
data-flow models
and steps 6-2
definition of 1-5
directed acyclic graph 6-2
partitioning and 8-5
UNIX command operators and 13-7
date 3-2
range 3-2
date datatype
See data types
date
date fields 4-20
datatype 4-20
schema definition of 4-20
DB2
DB2 partitioner 8-4
partitioning and 8-4
decimal 3-4
assignment to
strings and 3-5
precision
range 3-4
range 3-5
representation size 3-4
scae
range 3-4
sign nibble 3-4
values 3-4
strings and 3-5
valid representation 3-4
zero representation 3-4
decimal datatype
See data types
decimal
decimal fields 4-21
datatype 4-21
precision limit 4-21
range limit 4-21
schemadefinition of 4-21
default value
record fields 4-27
development environment 2-1
dialog box
Constraint Editor 10-6, 10-8
Custom Operator 12-5

UNIX Command 13-10

Data Set Properties 4-8
Data Set Viewer 4-14
Input Interface Editor 12-9
Link Properties 4-11, 8-14
Operator Properties 5-4, 6-14, 10-6
Option Editor 5-5
Output Interface Editor 12-9
Program Editor 10-6
Program Properties 2-4
Step Properties 6-6

directed acyclic graph
defined 6-2

disk pools 10-1, 10-4
assigning data setsto 10-9
constraining operatorsto 10-10
data set partitions and 10-10
data sets and 10-4

disks
allocating 10-5
constraints and 10-5
node definitions and 10-5

E

enumerated fields 5-13
environment variables
APT_CONFIG FILE 1-14

APT_PARTITION_NUMBER 13-24

APT_WRITE_DS VERSION 4-33
setting 6-10
error handling 5-18
error log 11-1
error messages
default components 11-4
display control

Index

APT_ERROR_CONFIGURATION

and 11-4
default display 11-4
keywords 11-4
example 11-4
keywords
errorlndex 11-2
ipaddr 11-3
jobid 11-2
lengthprefix 11-3
message 11-3
moduleld 11-2
nodename 11-3

Index
nodeplayer 11-3
opid 11-3
severity 11-2
timestamp 11-2
vseverity 11-2
subprocesses and
default display 11-3
errors
error log 11-1
reporting 11-1
Excel

performance monitor spreadsheet and 7-8
execution mode

See operators

execution mode

Execution Window

message headers and 2-10

text wrap and 2-10
export 4-7

F

field accessors 4-17
field adapters
schemavariables and 5-13
fields
and schemavariables 5-13
enumerated 5-13
fixed-length 4-1
See record fields
variable-length 4-1
fixed-length field 4-1
fixed-length records 4-1
flat files 1-8
floating-point data type
See data types
floating-point
floating-point fields
schema definition 4-21

G
get_orchserver variable 6-13
grids
performance monitor display 7-7
group operator
and partitioning 8-7

H
hash partitioner

Visual Orchestrate User’s Guide

characteristics 8-9

key field distribution 8-10

using 8-9
hash partitioning 8-9
header files

for custom operators 12-4
here-document idiom

UNIX command operators and 13-23

|
import 4-7
import/export utility 4-7
Input Interface Editor dialog box 12-9
integer data type

See data types

integer

integer fields

record schema 4-21

J
job-manager 2-7
examples 2-7, 2-8
syntax 2-7
abandon 2-8
errors 2-9
kill 2-8, 2-9
run 2-8

L

link numbers
enabling 2-9
Link Properties
Adapterstab 4-10
Advanced tab 4-10
dialog box 4-10
Schematab 4-10
Link Properties dialog box 4-11, 8-14
links 4-10
configuring 4-10
persistent data sets and 4-10
Lock Manager 2-15
locking objects 2-15
locks
clearing 2-15
in Visual Orchestrate 2-15
logical nodes 10-2, 10-4
configuring 10-5

1 -5

Visual Orchestrate User’s Guide

M
massively parallel processing 1-3
memory
setting in Visual Orchestrate 6-9
messages
error 11-1
error log 11-1
Orchestrate format 11-2
warning 5-18, 11-1
modify operator
conversions with 5-18
data type conversions and 3-10
preventing errors with 5-18
suppressing warning messages with 5-18
moviefiles
performance monitor and 7-10
MPP systems
constraints and 10-2
performance and 1-3
UNIX command operators and 13-24

N
naming
fields 4-19
native operators
defined 12-1
See also custom operators
node definitions 10-5
node maps 10-1, 10-8
constraining operatorsto 10-8
default 10-8
example 10-8
operators and 10-1
using 10-8
node names 10-5
node pool constraints 10-6
data sets and 10-6
operators and 10-6
syntax 10-6
using 10-6
node pools 10-1, 10-2, 10-5
default operator usage 10-1
normalized table
data setsand 4-2
nullability 4-3
introduction to 3-2
Seenulls
Vectors and 4-24

Index

nullable fields

introduction to 3-2

nulls 3-2, 4-3

(o)

datatypesand 3-2
default value of 4-27
defined 4-19
handling 4-19
representation of 4-19
vectorsand 4-19

operator interface schema 5-6

data set compatibility 3-8, 5-7, 5-17
aggregate fields 5-21
date fields 5-20
decimal fields 5-19
nullsand 5-21
string and numeric fields 5-18
time fields 5-20
timestamp fields 5-20
vector fields 5-21
data type conversion 3-8
matching to input data sets 3-8, 5-17
output data sets and 5-8
schema variables 5-11

Operator Properties dialog box 6-14, 10-6
operators

and output data sets 5-8
collecting and 9-1
configuring 5-3
Operator Properties dialog box and 5-4
Option Editor 5-5
constraining 10-1
constraints
node maps and 10-8
node poolsand 10-6
creating 13-1
custom operators and 12-1
See custom operators
creating steps from 6-2
data setswith 4-3, 5-2
data type conversions 3-8
disk pools
constraining to 4-36, 10-6, 10-7
dynamic interface schema
example 5-15
input schema 5-15
output schema 5-15

Index

setting interface schema 5-15
using 5-15
errorsand 11-1
execution mode 1-10
controlling 5-2
paralel 5-2
sequential 5-2
input data sets with 5-7
inputs 5-1
interface schema 5-6
defined 5-6
introduction to 1-10
multiple inputs and outputs 5-1
node maps 10-1
constraining to 10-8
node pools 10-1
constraining to 4-36, 10-6
default usage of 10-1
nullsfieldsand 5-21
Operator Properties dialog box 5-4
Option Editor 5-5
output data sets and 5-8
outputs 5-1
parallel execution of 1-9
partitioning
preserve-partitioning flag and 8-11
partitioning and 8-1
performance monitor and 1-13
prebuilt 1-10
preserve-partitioning flag and 8-11
resource pools
constraining to 4-36, 10-6, 10-7
resources
constraining to 4-36, 10-6, 10-7
schemavariables and 5-11
UNIX command operators 13-1
creating 13-1
vector fieldsand 5-21
Option Editor 5-5
Orchestrate
configuration file
default 2-12
validating 2-14
datatypes 3-1
date 3-2
decimal 3-4
floating-point 3-5
integer 3-6

Visual Orchestrate User’s Guide

raw 3-6
string 3-6
subrecord 3-6
tagged 3-6
time 3-6
timestamp 3-7
development environment 2-1
disk poolsand 10-4
Orchestrate Analytics Library (optional)
and partitioning 8-8
Orchestrate application devel opment
parallel execution mode 1-14
sequential execution mode 1-14
Orchestrate applications
creating 2-1
See also applications
Orchestrate classes
APT_Caollector 9-3
APT_Date 12-21
APT_Decima 12-23
APT_Partitioner 8-4
APT_RawField 12-25
APT_StringField 12-24
APT_Time 12-21
APT_TimeStamp 12-21
Orchestrate Installation and Administration
Manual 1-14
Orchestrate server administrator 2-2
orchview
invoking 7-4
See also performance monitor
osh
constraints and
combined node and resource 10-8
Visual Orchestrate and 2-15
Output Interface Editor dialog box 12-9

P

parallelism
partition 1-2
pipeline 1-2
partial record schema 4-18
partial record schemas
UNIX command operators and 13-39
partial schemadefinition 4-18
partition parallelism 1-2
partitioners
See partitioning

Visual Orchestrate User’s Guide

partitioning
data sets 1-2, 1-9, 4-7
fan-in 8-6
fan-out 8-6
method 8-1
DB2 8-4
entire 8-4, 8-5
examples 8-5
hash 8-4
modulus 8-4
other 8-4
random 8-4, 8-8
range 8-4
round robin 8-4, 8-7
same 8-4, 8-5
selecting 8-8
operators
keyed 8-9
keyless 8-9
selecting 8-8
operators and 8-1
parallel operators and 8-6
preserve-partitioning flag and 8-11
sequential operators and 8-6
partitioning method 8-1, 8-3
any 84
DB2 8-4
default 8-4
entire 8-4, 8-5
hash 8-4
modulus 8-4
other 8-4
random 8-4, 8-8
range 8-4
round robin 8-4
same 8-4, 8-5
partitioning operators
See partitioning
partitions
number of 8-8
See also partitioning
similar-size 8-3
size of 8-3, 8-8
performance
paralelization and 1-3
performance monitor 7-1
controls

display 7-7

Index

data sets 7-4
display 7-4
gridsize 7-4
persistent 7-4
virtual 7-4
display 7-7
controls 7-7
datasetsin 7-7
gridsin 7-7
operatorsin 7-6
display window 7-1
Edit menu 7-8
invoking 7-4
moviefilesand 7-10
operators
display 1-13
Options dialog box 7-5, 7-7
records
rate of transfer 7-8
volume of transfer 7-8
rotate 7-1, 7-5
sampling interval 7-4
spreadsheets and 7-8
statistics
data sets 7-7
operators 7-6
spreadshest 7-8
using 7-1
zoom 7-1, 7-5
persistent data sets
collecting and 9-5
configuration file and 4-34
creating
orchadmin and 4-35
datafiles 4-34
descriptor file 4-34
dialog box 4-8
examples 4-6
file naming 4-37
introduction to 1-7
Link Properties dialog box and 4-11
operators and 5-2
representation of 4-32
pipe safety 13-4
pipeline parallelism 1-2
post scripts 6-12
pre scripts 6-12
prebuilt operators 1-10

Index

preferences
setting 2-9
preserve-partitioning flag 8-11
collecting and 9-2
examples of use 8-11, 8-14
sequential operators and 8-13
setting and clearing 8-14
usage rules 8-13
Program Editor dialog box 10-6
Program Editor window 6-5
Program Properties
dialog box 2-4
Parameters tab 2-15
Server tab 2-5
psort operator
and partitioning 8-7

R
range partitioner 8-10
key field distribution 8-10
using 8-10
raw datatype
See data types
raw
raw fields
aligned 4-21
schema definition 4-21
record count 4-16
record fields 1-6
datefields
schema definition 4-20
decimal fields
schema definition 4-21
default values 4-27
floating-point fields
schema definition 4-21
integer fields
schema definition 4-21
naming 4-19
raw fields
schema definition 4-21
string fields
schema definition 4-22
subrecord fields
schema definition 4-25
tagged aggregate fields
schema definition 4-26
timefields

Visual Orchestrate User’s Guide

schema definition 4-23
timestamp fields
schema definition 4-23
record schema 1-6
automatic creation of 4-17
date fields 4-20
decimal fields 4-21
defined 4-2
example 4-16
field identifier 4-3
floating-point fields 4-21
import of 4-17
importing 4-32
inheritance of 4-17
integer fields 4-21
matching with operators 3-8, 5-17
nullability 4-3
partial 4-18
raw fields 4-21
Schema Editor and 4-27
aggregate fields 4-30
creating 4-29
importing 4-32
schemavariablesand 5-11
string fields 4-3, 4-22
fixed length 4-22
length 4-3
variable length 4-22
subrecord fields 4-25
syntax 4-16
tagged aggregate fields 4-26
timefields 4-23
timestamp fields 4-23
record schema editing
Schema Editor and 4-30
record transfers 5-14
and schema variables 5-11
records 1-6
fixed-length 4-1
variable-length 4-1
resource pools 10-1, 10-5
resources 10-1
roundrobin operator 8-7
running an application 2-6
run-time errors 11-1
See also error messages
See also warning messages

1 -9

1 -10

Visual Orchestrate User’s Guide

S
sampling interval
performance monitor 7-4
scalability 1-3
schema definition
complete 4-18
partial
when to use 4-18
schema definition files 4-17
Schema Editor 4-27
aggregate fields and 4-30
creating schemawith 4-29
dialog box 4-28
editing schema with 4-30
importing schema 4-32
new schema from existing schema 4-30
using 4-27
schemavariables 5-11
field adapters and 5-13
output
record schema of 5-13
record schema of 5-12
transfer mechanism and 5-14
scratch disks 10-5
script generation 2-15
scripts
pre and post 6-12
sequential execution mode 1-14
virtual data setsand 6-11
server
automatic connection 2-12
connecting to 2-3
default 2-11
introduction to 2-2
variables 6-12
server variables 6-12
set_orchserver variable 6-12
shared-nothing systems 1-3
shell scripts
steps and 6-12
SMP systems
constraints and 10-4
disk 1/0 and 1-3
performance and 1-3
scaling and 1-3
UNIX command operators and 13-24
sortmerge operator
example of use 9-6

spreadsheets
performance monitor 7-8
Step Properties dialog box 6-6
env properties 6-10
execution mode properties 6-10
paths properties
compiler path 2-13
conductor host 2-13
sort dir 2-13
post properties 6-12
pre properties 6-12
server properties 6-8
config 6-8
database 6-8
steps
branching in 6-3
check flag and 6-7
checking 6-7
configuring 6-6
Step Properties dialog box 6-6
creating 6-5
data-flow models of 6-2
defined 5-1
designing 6-1
errorsand 11-1
executing 6-7
get_orchserver_variable and 6-13
introduction to 1-11
multiple-step applications 6-4
performance monitor and 7-1
running 6-7
set_orchserver variable and 6-12
shell scriptsand 6-12
single-step applications 6-3
Step Properties dialog box and 6-6
server properties 6-8
using operators to create 6-2
virtual data setsin 6-3
string data type
See data types
string
string fields
schema definition 4-22
subrecord data type
See data types
subrecord
subrecord fields
nested 4-25

Index

Index

referencing 4-25
schema definition 4-25

T
tagged aggregate fields
nullability of 4-27
referencing 4-26
schema definition 4-26
tagged data type
See data types
tagged
temporary file usage 2-13
time data type
See data types
time
timefields 4-23
datatype 4-23
schema definition of 4-23
timestamp data type
See data types
timestamp
timestamp fields 4-23
datatype 4-23
schema definition of 4-23
transfer mechanism 5-14
transfers 5-11
See record transfers

U

UNIX command operators 13-1

advantages of 13-1
argument order 13-11
characteristics of 13-2
checkpointing and 13-13
constraints and 13-13
creating 13-1

example 13-9, 13-10, 13-13, 13-28
data sets and

input 13-8

output 13-8

record schemas 13-8
environment variables and 13-26

example 13-26

using 13-26
example 13-9, 13-13, 13-28
execution mode 13-2, 13-5
execution moddl 13-5
exit codes and 13-11, 13-35

Visual Orchestrate User’s Guide

example 13-11
export and 13-5
controlling 13-6
default 13-6
filesets and 13-38
import and 13-5
controlling 13-6
default 13-6
input filesand 13-13
example 13-13
MPP 13-25
SMP 13-25
inputs and 13-6, 13-7
data sets 13-8
default record schema 13-9
intact schemas and 13-39
optimizations of 13-36
options and 13-28
data types of 13-30
defining 13-28
output filesand 13-13
APT_PARTITION_NUMBER 13-24
example 13-13
MPP 13-24
SMP 13-24
using 13-24
outputs and 13-6, 13-7
data sets 13-8
default record schema 13-9
parameter files and 13-6
partial record schemas and 13-39
pipe safety 13-4
record schemas and 13-6, 13-8
default 13-8
defining 13-8
example 13-19
scriptsin 13-22
shell scriptsand 13-22, 13-24
environment variables 13-24
example 13-24
here-document idiom 13-23
using 13-22
stdin
example 13-10
using 13-10
stdout
example 13-10
using 13-10

1 -1

Visual Orchestrate User’s Guide

SyncSort
example 13-13

UNIX commands and 13-3
requirements for 13-4

UNIX shell commands
defined 13-3

user options and 13-28
datatypes of 13-30
defining 13-28
example 13-28

UNIX commands

characteristics of 13-3

UNIX command operators and 13-3
requirements for 13-4

Vv

variable-length field 4-1
variable-length records 4-1
vector fields
defining 4-24
in input data sets 5-7
operators and 5-21
vectors
datatypesand 4-24
introduction to 3-2
nullability of elements 4-24
nullsand 4-19
numbering elements 4-24
of subrecords 4-25
referencing elements 4-24
vendor icons
enabling 2-10
virtual data sets
examples 4-5
introduction to 1-7
Link Properties dialog box and 4-11
operators and 5-2
representation of 4-32
sequential execution mode and 6-11
steps and 6-3
Visual Orchestrate 2-2
automatic connection 2-12
configuration validation 2-14
configuring 2-4
connecting 2-3
connection timeout 2-12
creating applications 2-2
Data Set Viewer 4-14

w

Index

data sets
dialog box 4-8
default configuration 2-12
default directory 2-12, 2-13
default library 2-12
default server 2-11
deploying applications 2-2
development environment 2-1
enabling
link numbers 2-9
vendor icons 2-10
introduction to 2-1
locking objectsin 2-15
main window 2-2
osh and 2-15
osh script generation 2-15
preferences 2-9
program parameters 2-15
program properties 2-4
RDBMS configuration and 2-4
running an application 2-6
scripts 6-12
steps 6-4
text wrap and 2-10
user preferences and 2-9
validating applications 2-6

warning messages

default components 11-4
display control
APT_ERROR_CONFIGURATION
and 11-4
default display 11-4
keywords 11-4
example 11-4
keywords
errorlndex 11-2
ipaddr 11-3
jobid 11-2
lengthprefix 11-3
message 11-3
moduleld 11-2
nodename 11-3
nodeplayer 11-3
opid 11-3
severity 11-2
timestamp 11-2

Index
vseverity 11-2
subprocesses and
default display 11-3
warnings
log 5-18
Orchestrate handling 5-18
X
X Windows

performance monitor and 7-1

Visual Orchestrate User’s Guide

-13

	Table of Contents
	1: Introduction to Orchestrate
	Parallelism and Orchestrate Applications
	Introduction to Parallelism
	Pipeline Parallelism
	Partition Parallelism
	Parallel-Processing Environments: SMP and Cluster/MPP
	The Orchestrate Configuration File

	Orchestrate Application Components
	Data-Flow Modeling

	Orchestrate Data Sets
	The Orchestrate Schema
	Virtual and Persistent Data Sets
	Partitioning Data Sets

	Orchestrate Operators
	Operator Execution
	Prebuilt and Custom Operators

	Orchestrate Steps
	The Orchestrate Performance Monitor

	Creating Orchestrate Applications
	Orchestrate Installation and Administration

	2: Creating Applications with Visual Orchestrate
	The Orchestrate Development Environment
	Creating an Orchestrate Application
	Deploying the Application on Your UNIX System
	Deploying Your Application with job-manager
	Summary of Deployment Commands

	Setting User Preferences
	Setting Program Directory Paths
	Visual Orchestrate Utilities
	Checking an Orchestrate Configuration
	Using the Orchestrate Shell
	Generating an osh Script to Configure and Run a Program
	Using the Lock Manager

	3: Orchestrate Data Types
	Introduction to Orchestrate Data Types
	Vectors
	Support for Nullable Fields

	Orchestrate Data Types in Detail
	Date
	Decimal
	Floating-Point
	Integers
	Raw
	String
	Subrecord
	Tagged
	Time
	Timestamp

	Performing Data Type Conversions
	Rules for Orchestrate Data Type Conversions
	Summary of Orchestrate Data Type Conversions
	Example of Default Type Conversion
	Example of Type Conversion with modify
	Data Type Conversion Errors

	4: Orchestrate Data Sets
	Orchestrate Data Sets
	Data Set Structure
	Record Schemas
	Using Data Sets with Operators
	Using Virtual Data Sets
	Using Persistent Data Sets
	Importing Data into a Data Set
	Partitioning a Data Set
	Copying and Deleting Persistent Data Sets

	Using Visual Orchestrate with Data Sets
	Working with Persistent Data Sets
	Working with Virtual Data Sets
	Using the Data Set Viewer
	Obtaining the Record Count from a Persistent Data Set

	Defining a Record Schema
	Schema Definition Files
	Field Accessors
	How a Data Set Acquires Its Record Schema
	Using Complete or Partial Schema Definitions
	Naming Record Fields
	Defining Field Nullability
	Using Value Data Types in Schema Definitions
	Vectors and Aggregates in Schema Definitions
	Default Values for Fields in Output Data Sets
	Using the Visual Orchestrate Schema Editor

	Representation of Disk Data Sets
	Setting the Data Set Version Format
	Data Set Files

	5: Orchestrate Operators
	Operator Overview
	Operator Execution Modes
	Persistent Data Sets and Steps

	Using Visual Orchestrate with Operators
	Operator Interface Schemas
	Example of Input and Output Interface Schema
	Input Data Sets and Operators
	Output Data Sets and Operators
	Operator Interface Schema Summary
	Record Transfers and Schema Variables
	Flexibly Defined Interface Fields
	Using Operators with Data Sets That Have Partial Schemas

	Data Set and Operator Data Type Compatibility
	Data Type Conversion Errors and Warnings
	String and Numeric Data Type Compatibility
	Decimal Compatibility
	Date, Time, and Timestamp Compatibility
	Vector Data Type Compatibility
	Aggregate Field Compatibility
	Null Compatibility

	6: Orchestrate Steps
	Using Steps in Your Application
	The Flow of Data in a Step
	Designing a Single-Step Application
	Designing a Multiple-Step Application

	Working with Steps in Visual Orchestrate
	Creating Steps
	Executing a Step
	Setting Server Properties for a Step
	Setting Environment Variables
	Setting Step Execution Modes
	Using Pre and Post Scripts

	7: The Performance Monitor
	The Performance Monitor Window
	How the Performance Monitor Represents Your Program Steps
	Configuring the Performance Monitor

	Controlling the Performance Monitor Display
	General Display Control
	Operator Display Control
	Data Set Display Control
	Generating a Results Spreadsheet
	Creating Movie Files

	8: Partitioning in Orchestrate
	Partitioning Data Sets
	Partitioning and a Single-Input Operator
	Partitioning and a Multiple-Input Operator

	Partitioning Methods
	The Benefit of Similar-Size Partitions
	Partitioning Method Overview
	Partitioning Method Examples

	Using the Partitioning Operators
	Choosing a Partitioning Operator

	The Preserve-Partitioning Flag
	Example of the Preserve-Partitioning Flag’s Effect
	Preserve-Partitioning Flag with Sequential Operators
	Manipulating the Preserve-Partitioning Flag
	Example: Using the Preserve-Partitioning Flag

	9: Collectors in Orchestrate
	Sequential Operators and Collectors
	Sequential Operators and the Preserve-Partitioning Flag
	Collection Methods

	Choosing a Collection Method
	Setting a Collection Method
	Collection Operator and Sequential Operator with Any Method
	Collection Operator before Write to Persistent Data Set

	10: Constraints
	Using Constraints
	Controlling Where Your Code Executes on a Parallel System
	Controlling Where Your Data Is Stored

	Using Constraints with Operators and Steps
	Configuring Orchestrate Logical Nodes
	Using Node Pool Constraints
	Using Resource Constraints
	Combining Node and Resource Constraints
	Using Node Maps

	Data Set Constraints

	11: Run-Time Error and Warning Messages
	How Orchestrate Detects and Reports Errors
	Error and Warning Message Format
	Messages from Subprocesses

	Controlling the Format of Message Display

	12: Creating Custom Operators
	Custom Orchestrate Operators
	Kinds of Operators You Can Create
	How a Generated Operator Processes Data
	Configuring Orchestrate For Creating Operators

	Using Visual Orchestrate to Create an Operator
	How Your Code Is Executed

	Specifying Operator Input and Output Interfaces
	Adding and Editing Definitions of Input and Output Ports
	Reordering the Input Ports or Output Ports
	Deleting an Input or Output Port
	Specifying the Interface Schema
	Defining Transfers
	Referencing Operator Interface Fields in Operator Code

	Examples of Custom Operators
	Convention for Property Settings in Examples
	Example: Sum Operator
	Example: Sum Operator Using a Transfer
	Example: Operator That Recodes a Field
	Example: Adding a User-Settable Option to the Recoding Operator

	Using Orchestrate Data Types in Your Operator
	Using Numeric Fields
	Using Date, Time, and Timestamp Fields
	Using Decimal Fields
	Using String Fields
	Using Raw Fields
	Using Nullable Fields
	Using Vector Fields

	Using the Custom Operator Macros
	Informational Macros
	Flow-Control Macros
	Input and Output Macros
	Transfer Macros

	How Visual Orchestrate Executes Generated Code
	Designing Operators with Multiple Inputs
	Requirements for Coding for Multiple Inputs
	Strategies for Using Multiple Inputs and Outputs

	13: Creating UNIX Operators
	Introduction to UNIX Command Operators
	Characteristics of a UNIX Command Operator
	UNIX Shell Commands
	Execution of a UNIX Command Operator

	Handling Operator Inputs and Outputs
	Using Data Sets for Inputs and Outputs
	Example: Operator Using Standard Input and Output
	Example: Operator Using Files for Input and Output
	Example: Specifying Input and Output Record Schemas

	Passing Arguments to and Configuring UNIX Commands
	Using a Shell Script to Call the UNIX Command
	Handling Message and Information Output Files
	Handling Configuration and Parameter Input Files
	Using Environment Variables to Configure UNIX Commands
	Example: Passing File Names Using Environment Variables
	Example: Defining an Environment Variable for a UNIX Command
	Example: Defining User-Settable Options for a UNIX Command

	Handling Command Exit Codes
	How Orchestrate Optimizes Command Operators
	Cascading UNIX Command Operators
	Using Files as Inputs to UNIX Command Operators
	Using FileSets as Command Operator Inputs and Outputs
	Using Partial Record Schemas

