L K R 4 CHAPTER 18

Streaming API for XML

This chapter focuses on the Streaming API for XML (StAX), a streaming Java-based,
event-driven, pull-parsing API for reading and writing XML documents. StAX enables you to
create bidrectional XML parsers that are fast, relatively easy to program, and have a light
memory footprint.

StAX s the latest API in the JAXP family, and provides an alternative to SAX, DOM, TrAX, and
DOM for developers looking to do high-performance stream filtering, processing, and
modification, particularly with low memory and limited extensibility requirements.

To summarize, StAX provides a standard, bidirectional pull parser interface for streaming XML
processing, offering a simpler programming model than SAX and more efficient memory
management than DOM. StAX enables developers to parse and modify XML streams as events,
and to extend XML information models to allow application-specific additions. More detailed
comparisons of StAX with several alternative APIs are provided below, in “Comparing StAX to
Other JAXP APIs” on page 539.

Why StAX?

The StAX project was spearheaded by BEA with support from Sun Microsystems, and the JSR
173 specification passed the Java Community Process final approval ballot in March, 2004
(http://jcp.org/en/jsr/detail?id=173). The primary goal of the StAX API is to give
“parsing control to the programmer by exposing a simple iterator based API. This allows the
programmer to ask for the next event (pull the event) and allows state to be stored in procedural
fashion” StAX was created to address limitations in the two most prevalent parsing APIs, SAX
and DOM.

Streaming versus DOM

Generally speaking, there are two programming models for working with XML infosets:
streaming and the document object model (DOM).

537

Why StAX?

538

The DOM model involves creating in-memory objects representing an entire document tree
and the complete infoset state for an XML document. Once in memory, DOM trees can be
navigated freely and parsed arbitrarily, and as such provide maximum flexibility for developers.
However, the cost of this flexibility is a potentially large memory footprint and significant
processor requirements, because the entire representation of the document must be held in
memory as objects for the duration of the document processing. This may not be an issue when
working with small documents, but memory and processor requirements can escalate quickly
with document size.

Streaming refers to a programming model in which XML infosets are transmitted and parsed
serially at application runtime, often in real time, and often from dynamic sources whose
contents are not precisely known beforehand. Moreover, stream-based parsers can start
generating output immediately, and infoset elements can be discarded and garbage collected
immediately after they are used. While providing a smaller memory footprint, reduced
processor requirements, and higher performance in certain situations, the primary trade-oft
with stream processing is that you can only see the infoset state at one location at a time in the
document. You are essentially limited to the “cardboard tube” view of a document, the
implication being that you need to know what processing you want to do before reading the
XML document.

Streaming models for XML processing are particularly useful when your application has strict
memory limitations, as with a cell phone running J2ME, or when your application needs to
simultaneously process several requests, as with an application server. In fact, it can be argued
that the majority of XML business logic can benefit from stream processing, and does not
require the in-memory maintenance of entire DOM trees.

Pull Parsing versus Push Parsing

Streaming pull parsing refers to a programming model in which a client application calls
methods on an XML parsing library when it needs to interact with an XML infoset; that is, the
client only gets (pulls) XML data when it explicitly asks for it.

Streaming push parsing refers to a programming model in which an XML parser sends (pushes)
XML data to the client as the parser encounters elements in an XML infoset; that is, the parser
sends the data whether or not the client is ready to use it at that time.

Pull parsing provides several advantages over push parsing when working with XML streams:

= With pull parsing, the client controls the application thread, and can call methods on the
parser when needed. By contrast, with push processing, the parser controls the application
thread, and the client can only accept invocations from the parser.

= Pull parsing libraries can be much smaller and the client code to interact with those libraries
much simpler than with push libraries, even for more complex documents.

= Pull clients can read multiple documents at one time with a single thread.

The Java EE 5Tutorial « September 2010 (originally published 2007)

Why StAX?

= A StAX pull parser can filter XML documents such that elements unnecessary to the client
can be ignored, and it can support XML views of non-XML data.

StAX Use Cases

The StAX specification defines a number of use cases for the API:

= Databinding

= Unmarshallingan XML document
= Marshalling an XML document
Parallel document processing

= Wireless communication

= SOAP message processing

= Parsing simple predictable structures
= Parsing graph representations with forward references
= Parsing WSDL

= Virtual data sources

= Viewing as XML data stored in databases
= Viewing data in Java objects created by XML data binding
= Navigating a DOM tree as a stream of events

= Parsing specific XML vocabularies

= Pipelined XML processing

A complete discussion of all these use cases is beyond the scope of this chapter. Please refer to
the StAX specification for further information.

Comparing StAX to Other JAXP APIs

Asan APIin the JAXP family, StAX can be compared, among other APIs, to SAX, TrAX, and
JDOM. Of the latter two, StAX is not as powerful or flexible as TrAX or JDOM, but neither does
it require as much memory or processor load to be useful, and StAX can, in many cases,
outperform the DOM-based APIs. The same arguments outlined above, weighing the
cost/benefits of the DOM model versus the streaming model, apply here.

Chapter 18 « Streaming APl for XML 539

StAX API

With this in mind, the closest comparisons can be made between StAX and SAX, and it is here
that StAX offers features that are beneficial in many cases; some of these include:

= StAX-enabled clients are generally easier to code than SAX clients. While it can be argued
that SAX parsers are marginally easier to write, StAX parser code can be smaller and the
code necessary for the client to interact with the parser simpler.

= StAXisabidirectional API, meaning that it can both read and write XML documents. SAX
is read only, so another API is needed if you want to write XML documents.

® SAXisa push API, whereas StAX is pull. The trade-offs between push and pull APIs
outlined above apply here.

Table 18-1 summarizes the comparative features of StAX, SAX, DOM, and TrAX (table
adapted from “Does StAX Belong in Your XML Toolbox?” at http://www.developer.com/
xml/article.php/3397691/Does-StAX-Belong-in-Your-XML-Toolbox.htm by Jeff Ryan).

TABLE 18-1 XML Parser API Feature Summary

Feature StAX SAX bom TrAX

API Type Pull, streaming Push, streaming In memory tree XSLT Rule
Ease of Use High Medium High Medium
XPath Capability Not supported Not supported Supported Supported
CPU and Memory Good Good Varies Varies
Efficiency

Forward Only Supported Supported Not supported Not supported
Read XML Supported Supported Supported Supported
Write XML Supported Not supported Supported Supported
Create, Read, Update, Not supported Not supported Supported Not supported
Delete

StAX API

The StAX API exposes methods for iterative, event-based processing of XML documents. XML
documents are treated as a filtered series of events, and infoset states can be stored in a
procedural fashion. Moreover, unlike SAX, the StAX APl is bidirectional, enabling both reading
and writing of XML documents.

The StAX APl is really two distinct API sets: a cursor APl and an iterator API. These two API
sets explained in greater detail later in this chapter, but their main features are briefly described
below.

540 The Java EE 5 Tutorial - September 2010 (originally published 2007)

StAX AP

Cursor API

As the name implies, the StAX cursor API represents a cursor with which you can walk an XML
document from beginning to end. This cursor can point to one thing at a time, and always
moves forward, never backward, usually one infoset element at a time.

The two main cursor interfaces are XMLStreamReader and XMLStreamWriter.

XMLSt reamReader includes accessor methods for all possible information retrievable from the
XML Information model, including document encoding, element names, attributes,
namespaces, text nodes, start tags, comments, processing instructions, document boundaries,
and so forth; for example:

public interface XMLStreamReader {
public int next() throws XMLStreamException;
public boolean hasNext() throws XMLStreamException;
public String getText();
public String getLocalName();
public String getNamespaceURI();
// ... other methods not shown

}

You can call methods on XMLStreamReader, such as getText and getName, to get data at the
current cursor location. XMLStreamwWriter provides methods that correspond to StartElement
and EndElement event types; for example:

public interface XMLStreamWriter {
public void writeStartElement(String localName)
throws XMLStreamException;
public void writeEndElement ()
throws XMLStreamException;
public void writeCharacters(String text)
throws XMLStreamException;
// ... other methods not shown

}

The cursor API mirrors SAX in many ways. For example, methods are available for directly
accessing string and character information, and integer indexes can be used to access attribute
and namespace information. As with SAX, the cursor API methods return XML information as
strings, which minimizes object allocation requirements.

Iterator API

The StAX iterator API represents an XML document stream as a set of discrete event objects.
These events are pulled by the application and provided by the parser in the order in which they
are read in the source XML document.

The base iterator interface is called XMLEvent, and there are subinterfaces for each event type
listed in Table 18-2. The primary parser interface for reading iterator events is
XMLEventReader, and the primary interface for writing iterator events is XMLEventWriter. The

Chapter 18 « Streaming APl for XML 541

StAX API

XMLEventReader interface contains five methods, the most important of which is nextEvent,
which returns the next event in an XML stream. XMLEventReader implements
java.util.Iterator, which means that returns from XMLEventReader can be cached or passed
into routines that can work with the standard Java Iterator; for example:

public interface XMLEventReader extends Iterator {
public XMLEvent nextEvent() throws XMLStreamException;
public boolean hasNext();
public XMLEvent peek() throws XMLStreamException;

}
Similarly, on the output side of the iterator API, you have:

public interface XMLEventWriter {
public void flush() throws XMLStreamException;
public void close() throws XMLStreamException;
public void add(XMLEvent e) throws XMLStreamException;
public void add(Attribute attribute) throws XMLStreamException;

Iterator Event Types
Table 18-2 lists the XMLEvent types defined in the event iterator APL

TABLE18-2 XMLEvent Types

EventType Description

StartDocument Reports the beginning of a set of XML events, including encoding, XML version,
and standalone properties.

StartElement Reports the start of an element, including any attributes and namespace
declarations; also provides access to the prefix, namespace URI, and local name of
the start tag.

EndElement Reports the end tag of an element. Namespaces that have gone out of scope can be
recalled here if they have been explicitly set on their corresponding
StartElement.

Characters Corresponds to XML CData sections and CharacterData entities. Note that
ignorable white space and significant white space are also reported as Character
events.

EntityReference Character entities can be reported as discrete events, which an application
developer can then choose to resolve or pass through unresolved. By default,
entities are resolved. Alternatively, if you do not want to report the entity as an
event, replacement text can be substituted and reported as Characters.

ProcessingInstruction Reports the target and data for an underlying processing instruction.

Comment Returns the text of a comment.

542 The Java EE 5Tutorial « September 2010 (originally published 2007)

StAX AP

TABLE18-2 XMLEvent Types (Continued)

Event Type Description

EndDocument Reports the end of a set of XML events.

DTD Reports as java.lang.String information about the DTD, if any, associated
with the stream, and provides a method for returning custom objects found in the
DTD.

Attribute Attributes are generally reported as part of a StartElement event. However, there

are times when it is desirable to return an attribute as a standalone Attribute
event; for example, when a namespace is returned as the result of an XQuery or
XPath expression.

Namespace As with attributes, namespaces are usually reported as part of a StartElement,
but there are times when it is desirable to report a namespace as a discrete
Namespace event.

Note that the DTD, EntityDeclaration, EntityReference, NotationDeclaration, and

ProcessingInstruction eventsare only created if the document being processed contains a
DTD.

Example of Event Mapping

As an example of how the event iterator API maps an XML stream, consider the following XML
document:

<?xml version="1.0"?>
<BookCatalogue xmlns="http://www.publishing.org">
<Book>
<Title>Yogasana Vijnana: the Science of Yoga</Title>
<ISBN>81-40-34319-4</ISBN>
<Cost currency="INR">11.50</Cost>
</Book>
</BookCatalogue>

This document would be parsed into eighteen primary and secondary events, as shown in
Table 18-3. Note that secondary events, shown in curly braces ({}), are typically accessed from
a primary event rather than directly.

TABLE 18-3 Example of Iterator API Event Mapping

Element/Attribute Event

1 version="1.0" StartDocument

2 isCDhata = false Characters
data = "\n"

IsWhiteSpace = true

Chapter 18 « Streaming APl for XML 543

StAX AP

TABLE 18-3 Example of Iterator API Event Mapping

#

Element/Attribute

Event

3

10

11

12

13

14

15

gname = BookCatalogue:http://www.publishing.org
attributes = null
namespaces = {BookCatalogue" -> http://www.publishing.org"}

gname = Book

attributes = null
namespaces = null

gname = Title

attributes = null
namespaces = null

isChata = false
data = "Yogasana Vijnana: the Science of Yoga\n\t"
IsWhiteSpace = false

gname = Title

namespaces = null

gname = ISBN

attributes = null
namespaces = null

isCData = false
data = "81-40-34319-4\n\t"

IsWhiteSpace =

gname = ISBN

namespaces = null

gname = Cost

attributes = {"currency" -> INR}
namespaces = null

isCData = false
data = "11.50\n\t"
IsWhiteSpace = false

gname = Cost

namespaces = null

isCData = false

data = "\n"
IsWhiteSpace =

gname = Book

namespaces = null

StartElement

StartElement

StartElement

Characters

EndElement

StartElement

Characters

EndElement

StartElement

Characters

EndElement

Characters

EndElement

544 The Java EE 5Tutorial « September 2010 (originally published 2007)

StAX API

TABLE 18-3 Example of Iterator API Event Mapping (Continued)

Element/Attribute Event

16 isCDhata = false Characters
data = "\n"
IsWhiteSpace = true

17 gname = BookCatalogue:http://www.publishing.org EndElement
namespaces = {BookCatalogue" -> http://www.publishing.org"}

18 EndDocument

There are several important things to note in this example:

The events are created in the order in which the corresponding XML elements are
encountered in the document, including nesting of elements, opening and closing of
elements, attribute order, document start and document end, and so forth.

As with proper XML syntax, all container elements have corresponding start and end
events; for example, every StartElement has a corresponding EndElement, even for empty
elements.

Attribute events are treated as secondary events, and are accessed from their
corresponding StartElement event.

Similar to Attribute events, Namespace events are treated as secondary, but appear twice
and are accessible twice in the event stream, first from their corresponding StartElement
and then from their corresponding EndElement.

Character events are specified for all elements, even if those elements have no character
data. Similarly, Character events can be split across events.

The StAX parser maintains a namespace stack, which holds information about all XML
namespaces defined for the current element and its ancestors. The namespace stack, which
is exposed through the javax.xml.namespace.NamespaceContext interface, can be
accessed by namespace prefix or URL

Choosing between Cursor and Iterator APIs

It is reasonable to ask at this point, “What API should I choose? Should I create instances of
XMLStreamReader or XMLEventReader? Why are there two kinds of APIs anyway?”

Chapter 18 « Streaming APl for XML 545

StAX API

546

Development Goals

The authors of the StAX specification targeted three types of developers:

Library and infrastructure developers: Need highly efficient, low-level APIs with minimal
extensibility requirements.

J2ME developers: Need small, simple, pull-parsing libraries, and have minimal extensibility
needs.

Java EE and Java SE developers: Need clean, efficient pull-parsing libraries, plus need the
flexibility to both read and write XML streams, create new event types, and extend XML
document elements and attributes.

Given these wide-ranging development categories, the StAX authors felt it was more useful to
define two small, efficient APIs rather than overloading one larger and necessarily more
complex API

Comparing Cursor and Iterator APIs

Before choosing between the cursor and iterator APIs, you should note a few things that you
can do with the iterator API that you cannot do with cursor API:

Objects created from the XMLEvent subclasses are immutable, and can be used in arrays,
lists, and maps, and can be passed through your applications even after the parser has
moved on to subsequent events.

You can create subtypes of XMLEvent that are either completely new information items or
extensions of existing items but with additional methods.

You can add and remove events from an XML event stream in much simpler ways than with
the cursor APL.

Similarly, keep some general recommendations in mind when making your choice:

If you are programming for a particularly memory-constrained environment, like J2ME,
you can make smaller, more efficient code with the cursor API.

If performance is your highest priority (for example, when creating low-level libraries or
infrastructure), the cursor API is more efficient.

If you want to create XML processing pipelines, use the iterator APL
If you want to modify the event stream, use the iterator API.

If you want your application to be able to handle pluggable processing of the event stream,
use the iterator APL

In general, if you do not have a strong preference one way or the other, using the iterator
APl is recommended because it is more flexible and extensible, thereby “future-proofing”
your applications.

The Java EE 5Tutorial « September 2010 (originally published 2007)

Using StAX

Using StAX

In general, StAX programmers create XML stream readers, writers, and events by using the
XMLInputFactory, XMLOutputFactory, and XMLEventFactory classes. Configuration is done by
setting properties on the factories, whereby implementation-specific settings can be passed to
the underlying implementation using the setProperty method on the factories. Similarly,
implementation-specific settings can be queried using the getProperty factory method.

The XMLInputFactory, XMLOutputFactory, and XMLEventFactory classes are described below,
followed by discussions of resource allocation, namespace and attribute management, error
handling, and then finally reading and writing streams using the cursor and iterator APIs.

StAX Factory Classes

The StAX factory classes. XMLInputFactory, XMLOutputFactory, and XMLEventFactory, let you
define and configure implementation instances of XML stream reader, stream writer, and event
classes.

XMLInputFactory Class

The XMLInputFactory class lets you configure implementation instances of XML stream reader
processors created by the factory. New instances of the abstract class XMLInputFactory are
created by calling the newInstance method on the class. The static method
XMLInputFactory.newInstance is then used to create a new factory instance.

Deriving from JAXP, the XMLInputFactory.newInstance method determines the specific
XMLInputFactory implementation class to load by using the following lookup procedure:

1. Usethe javax.xml.stream.XMLInputFactory system property.

2. Usethe lib/xml.stream.properties file in the J2SE Java Runtime Environment (JRE)
directory.

3. Use the Services API, if available, to determine the classname by looking in the
META-INF/services/javax.xml.stream.XMLInputFactory files in JAR files available to
the JRE.

4. Use the platform default XMLInputFactory instance.

After getting a reference to an appropriate XMLInputFactory, an application can use the factory
to configure and create stream instances. Table 18-4 lists the properties supported by
XMLInputFactory. See the StAX specification for a more detailed listing.

Chapter 18 « Streaming APl for XML 547

Using StAX

TABLE18-4 javax.xml.stream.XMLInputFactory Properties

Property Description

isValidating Turns on implementation-specific validation.

isCoalescing (Required) Requires the processor to coalesce adjacent character data.

isNamespaceAware Turns off namespace support. All implementations must support
namespaces. Support for non-namespace-aware documents is
optional.

isReplacingEntityReferences (Required) Requires the processor to replace internal entity references

with their replacement value and report them as characters or the set
of events that describe the entity.

isSupportingExternalEntities (Required) Requires the processor to resolve external parsed entities.

reporter (Required) Sets and gets the implementation of the XMLReporter
interface.

resolver (Required) Sets and gets the implementation of the XMLResolver
interface.

allocator (Required) Sets and gets the implementation of the

XMLEventAllocator interface.

XMLOutputFactory Class

New instances of the abstract class XMLOutputFactory are created by calling the newInstance
method on the class. The static method XMLOutputFactory.newInstance is then used to create
anew factory instance. The algorithm used to obtain the instance is the same as for
XMLInputFactory butreferences the javax.xml.stream.XMLOutputFactory system property.

XMLOutputFactory supports only one property, javax.xml.stream.isRepairingNamespaces.
This property is required, and its purpose is to create default prefixes and associate them with
Namespace URIs. See the StAX specification for more information.

XMLEventFactory Class

New instances of the abstract class XMLEventFactory are created by calling the newInstance
method on the class. The static method XMLEventFactory.newInstance is then used to create a
new factory instance. This factory references the javax.xml.stream.XMLEventFactory
property to instantiate the factory. The algorithm used to obtain the instance is the same as for
XMLInputFactory and XMLOutputFactory but references the
javax.xml.stream.XMLEventFactory system property.

There are no default properties for XMLEventFactory.

548 The Java EE 5 Tutorial - September 2010 (originally published 2007)

Using StAX

Resources, Namespaces, and Errors

The StAX specification handles resource resolution, attributes and namespace, and errors and
exceptions as described below.

Resource Resolution

The XMLResolver interface provides a means to set the method that resolves resources during
XML processing. An application sets the interface on XMLInputFactory, which then sets the
interface on all processors created by that factory instance.

Attributes and Namespaces

Attributes are reported by a StAX processor using lookup methods and strings in the cursor
interface, and Attribute and Namespace events in the iterator interface. Note here that
namespaces are treated as attributes, although namespaces are reported separately from
attributes in both the cursor and iterator APIs. Note also that namespace processing is optional
for StAX processors. See the StAX specification for complete information about namespace
binding and optional namespace processing.

Error Reporting and Exception Handling

All fatal errors are reported by way of the javax.xml.stream.XMLStreamException interface.
All nonfatal errors and warnings are reported using the javax.xml.stream.XMLReporter
interface.

Reading XML Streams

As described earlier in this chapter, the way you read XML streams with a StAX processor, and
what you get back, vary significantly depending on whether you are using the StAX cursor API
or the event iterator API. The following two sections describe how to read XML streams with
each of these APIs.

Using XMLSt reamReader

The XMLStreamReader interface in the StAX cursor API lets you read XML streams or
documents in a forward direction only, one item in the infoset at a time. The following methods
are available for pulling data from the stream or skipping unwanted events:

Get the value of an attribute

Read XML content

Determine whether an element has content or is empty
Get indexed access to a collection of attributes

Get indexed access to a collection of namespaces

Chapter 18 « Streaming APl for XML 549

Using StAX

550

= Getthe name of the current event (if applicable)
= Get the content of the current event (if applicable)

Instances of XMLStreamReader have at any one time a single current event on which its methods
operate. When you create an instance of XMLSt reamReader on a stream, the initial current event
is the START_DOCUMENT state. The XMLSt reamReader . next method can then be used to step to
the next event in the stream.

Reading Properties, Attributes, and Namespaces

The XMLStreamReader . next method loads the properties of the next event in the stream. You
can then access those properties by calling the XMLSt reamReader . getLocalName and
XMLStreamReader.getText methods.

When the XMLSt reamReader cursor is over a StartElement event, it reads the name and any
attributes for the event, including the namespace. All attributes for an event can be accessed
using an index value, and can also be looked up by namespace URI and local name. Note,
however, that only the namespaces declared on the current StartEvent are available;
previously declared namespaces are not maintained, and redeclared namespaces are not
removed.

XMLStreamReader Methods

XMLStreamReader provides the following methods for retrieving information about
namespaces and attributes:

int getAttributeCount();

String getAttributeNamespace(int index);

String getAttributelLocalName(int index);

String getAttributePrefix(int index);

String getAttributeType(int index);

String getAttributeValue(int index);

String getAttributeValue(String namespaceUri, String localName);
boolean isAttributeSpecified(int index);

Namespaces can also be accessed using three additional methods:

int getNamespaceCount();
String getNamespacePrefix(int index);
String getNamespaceURI(int index);

Instantiating an XMLSt reamReader

This example, taken from the StAX specification, shows how to instantiate an input factory,
create a reader, and iterate over the elements of an XML stream:

XMLInputFactory f
XMLStreamReader r

XMLInputFactory.newInstance();
f.createXMLStreamReader(...);

The Java EE 5Tutorial « September 2010 (originally published 2007)

Using StAX

while(r.hasNext()) {
r.next();

}

Using XMLEventReader

The XMLEventReader APIin the StAX event iterator API provides the means to map events in
an XML stream to allocated event objects that can be freely reused, and the AP itself can be
extended to handle custom events.

XMLEventReader provides four methods for iteratively parsing XML streams:

= next: Returns the next event in the stream

= nextEvent: Returns the next typed XMLEvent

= hasNext: Returns true if there are more events to process in the stream
m peek: Returns the event but does not iterate to the next event

For example, the following code snippet illustrates the XMLEventReader method declarations:

package javax.xml.stream;
import java.util.Iterator;
public interface XMLEventReader extends Iterator {
public Object next();
public XMLEvent nextEvent() throws XMLStreamException;
public boolean hasNext();
public XMLEvent peek() throws XMLStreamException;

}

To read all events on a stream and then print them, you could use the following:

while(stream.hasNext()) {
XMLEvent event = stream.nextEvent();
System.out.print(event);

Reading Attributes

You can access attributes from their associated javax.xml.stream.StartElement, as follows:

public interface StartElement extends XMLEvent {
public Attribute getAttributeByName(QName name);
public Iterator getAttributes();

}

You can use the getAttributes method on the StartElement interface to use an Iterator
over all the attributes declared on that StartElement.

Chapter 18 « Streaming APl for XML 551

Using StAX

552

Reading Namespaces

Similar to reading attributes, namespaces are read using an I'terator created by calling the
getNamespaces method on the StartElement interface. Only the namespace for the current
StartElement is returned, and an application can get the current namespace context by using
StartElement.getNamespaceContext.

Writing XML Streams

StAX is a bidirectional API, and both the cursor and event iterator APIs have their own set of
interfaces for writing XML streams. As with the interfaces for reading streams, there are
significant differences between the writer APIs for cursor and event iterator. The following
sections describe how to write XML streams using each of these APIs.

Using XMLStreamWriter

The XMLStreamWriter interface in the StAX cursor API lets applications write back to an XML
stream or create entirely new streams. XMLStreamWriter has methods that let you:

= Write well-formed XML
= Flush or close the output
= Write qualified names

Note that XMLStreamWriter implementations are not required to perform well-formedness or
validity checks on input. While some implementations may perform strict error checking,
others may not. The rules you implement are applied to properties defined in the
XMLOutputFactory class.

ThewriteCharacters method is used to escape characters such as &, <, >, and ". Binding
prefixes can be handled by either passing the actual value for the prefix, by using the setPrefix
method, or by setting the property for defaulting namespace declarations.

The following example, taken from the StAX specification, shows how to instantiate an output
factory, create a writer, and write XML output:

XMLOutputFactory output = XMLOutputFactory.newInstance();
XMLStreamWriter writer = output.createXMLStreamWriter(...);
writer.writeStartDocument();

writer.setPrefix("c","http://c");
writer.setDefaultNamespace("http://c");
writer.writeStartElement ("http://c","a");
writer.writeAttribute("b","blah");
writer.writeNamespace("c","http://c");
writer.writeDefaultNamespace("http://c");
writer.setPrefix("d","http://c");
writer.writeEmptyElement ("http://c","d");
writer.writeAttribute("http://c","chris","

writer.writeNamespace("d", "http://c");

fry");

The Java EE 5Tutorial « September 2010 (originally published 2007)

Sun’s Streaming XML Parser Implementation

writer.writeCharacters("Jean Arp");
writer.writeEndElement();
writer.flush();

This code generates the following XML (new lines are non-normative):

<?xml version="1.0" encoding="utf-8’?>

<d:d d:chris="fry" xmlns:d="http://c"/>Jean Arp

Using XMLEventWriter

The XMLEventWriter interface in the StAX event iterator API lets applications write back to an
XML stream or create entirely new streams. This API can be extended, but the main APl is as
follows:

public interface XMLEventWriter {
public void flush() throws XMLStreamException;
public void close() throws XMLStreamException;
public void add(XMLEvent e) throws XMLStreamException;
// ... other methods not shown.

}

Instances of XMLEventWriter are created by an instance of XMLOutputFactory. Stream events
are added iteratively, and an event cannot be modified after it has been added to an event writer
instance.

Attributes, Escaping Characters, Binding Prefixes

StAX implementations are required to buffer the last StartElement until an event other than
Attribute or Namespace is added or encountered in the stream. This means that when you add
an Attribute or a Namespace to a stream, it is appended the current StartElement event.

You can use the Characters method to escape characters like &, <, >, and ".

The setPrefix(...) method can be used to explicitly bind a prefix for use during output, and
the getPrefix(...) method can be used to get the current prefix. Note that by default,
XMLEventWriter adds namespace bindings to its internal namespace map. Prefixes go out of
scope after the corresponding EndElement for the event in which they are bound.

Sun'’s Streaming XML Parser Implementation

Application Server includes Sun Microsystems’ JSR 173 (StAX) implementation, called the Sun
Java Streaming XML Parser (referred to as Streaming XML Parser). The Streaming XML Parser
is a high-speed, non-validating, W3C XML 1.0 and Namespace 1.0-compliant streaming XML
pull parser built upon the Xerces2 codebase.

Chapter 18 « Streaming APl for XML 553

Sun’s Streaming XML Parser Implementation

554

In Sun’s Streaming XML Parser implementation, the Xerces2 lower layers, particularly the
Scanner and related classes, have been redesigned to behave in a pull fashion. In addition to the
changes in the lower layers, the Streaming XML Parser includes additional StAX-related
functionality and many performance-enhancing improvements. The Streaming XML Parser is
implemented in the appserv-ws. jar and javaee. jar files, both of which are located in the
as-install/1ib/ directory.

Included with this Java EE tutorial are StAX code examples, located in the

tut-install/ javaeetutorial5/examples/stax/ directory, that illustrate how Sun’s Streaming
XML Parser implementation works. These examples are described in “Example Code” on
page 555.

Before you proceed with the example code, there are two aspects of the Streaming XML Parser
of which you should be aware:

= “Reporting CDATA Events” on page 554
= “Streaming XML Parser Factories Implementation” on page 554

These topics are discussed below.

Reporting CDATA Events

The javax.xml.stream.XMLStreamReader implemented in the Streaming XML Parser does
not report CDATA events. If you have an application that needs to receive such events,
configure the XMLInputFactory to set the following implementation-specific
report-cdata-event property:

XMLInputFactory factory = XMLInptuFactory.newInstance();
factory.setProperty("report-cdata-event", Boolean.TRUE);

Streaming XML Parser Factories Implementation

Most applications do not need to know the factory implementation class name. Just adding the
javaee.jar and appserv-ws.jar files to the classpath is sufficient for most applications
because these two jars supply the factory implementation classname for various Streaming
XML Parser properties under the META-INF/services/ directory (for example,
javax.xml.stream.XMLInputFactory, javax.xml.stream.XMLOutputFactory, and
javax.xml.stream.XMLEventFactory).

However, there may be scenarios when an application would like to know about the factory
implementation class name and set the property explicitly. These scenarios could include cases
where there are multiple JSR 173 implementations in the classpath and the application wants to
choose one, perhaps one that has superior performance, contains a crucial bug fix, or suchlike.

If an application sets the SystemProperty, it is the first step in a lookup operation, and so
obtaining the factory instance would be fast compared to other options; for example:

The Java EE 5Tutorial « September 2010 (originally published 2007)

Example Code

javax.xml.stream.XMLInputFactory -->

com.sun.xml.stream.ZephyrParserFactory

javax.xml.stream.XMLOutputFactory -->

com.sun.xml.stream.ZephyrWriterFactor

javax.xml.stream.XMLEventFactory -->

com.sun.xml.stream.events.ZephyrEventFactory

Example Code

This section steps through the example StAX code included in the Java EE 5 Tutorial bundle. All
example directories used in this section are located in the
tut-install/ javaeetutorial5/examples/stax/ directory.

The topics covered in this section are as follows:

“Example Code Organization” on page 555
“Example XML Document” on page 556
“Cursor Example” on page 556
“Cursor-to-Event Example” on page 558
“Event Example” on page 560

“Filter Example” on page 563
“Read-and-Write Example” on page 565
“Writer Example” on page 567

Example Code Organization

The tut-install/ javaeetutorial5/examples/stax/ directory contains the six StAX example
directories:

Cursor example: The cursor directory contains CursorParse. java, which illustrates how
to use the XMLSt reamReader (cursor) API to read an XML file.

Cursor-to-Event example: The cursor2event directory contains
CursorApproachEventObject. java, which illustrates how an application can get
information as an XMLEvent object when using cursor API.

Event example: The event directory contains EventParse. java, which illustrates how to
use the XMLEventReader (event iterator) API to read an XML file.

Filter example: The filter directory contains MyStreamFilter. java, which illustrates
how to use the StAX Stream Filter APIs. In this example, the filter accepts only
StartElement and EndElement events, and filters out the remainder of the events.

Read-and-Write example: The readnwrite directory contains
EventProducerConsumer. java, which illustrates how the StAX producer/consumer
mechanism can be used to simultaneously read and write XML streams.

Writer example: The writer directory contains CursorWriter. java, which illustrates how
to use XMLStreamWriter to write an XML file programatically.

Chapter 18 « Streaming APl for XML 555

Example Code

556

All of the StAX examples except for the Writer example use an example XML document,
BookCatalog.xml.

Example XML Document

The example XML document, BookCatalog.xml, used by most of the StAX example classes, is a
simple book catalog based on the common BookCatalogue namespace. The contents of
BookCatalog.xml are listed below:

<?xml version="1.0" encoding="UTF-8"?>
<BookCatalogue xmlns="http://www.publishing.org">
<Book>
<Title>Yogasana Vijnana: the Science of Yoga</Title>
<author>Dhirendra Brahmachari</Author>
<Date>1966</Date>
<ISBN>81-40-34319-4</ISBN>
<Publisher>Dhirendra Yoga Publications</Publisher>
<Cost currency="INR">11.50</Cost>
</Book>
<Book>
<Title>The First and Last Freedom</Title>
<Author>J. Krishnamurti</Author>
<Date>1954</Date>
<ISBN>0-06-064831-7</ISBN>
<Publisher>Harper & Row</Publisher>
<Cost currency="USD">2.95</Cost>
</Book>
</BookCatalogue>

Cursor Example

Located in the tut-install/ javaeetutorial5/examples/stax/cursor/ directory,
CursorParse.java demonstrates using the StAX cursor API to read an XML document. In the
Cursor example, the application instructs the parser to read the next event in the XML input
stream by calling <code>next ()</code>.

Note that <code>next () </code> just returns an integer constant corresponding to underlying
event where the parser is positioned. The application needs to call the relevant function to get
more information related to the underlying event.

You can imagine this approach as a virtual cursor moving across the XML input stream. There
are various accessor methods which can be called when that virtual cursor is at a particular
event.

Stepping through Events

In this example, the client application pulls the next event in the XML stream by calling the next
method on the parser; for example:

The Java EE 5Tutorial « September 2010 (originally published 2007)

Example Code

try {
for (int i =0 ; i < count ; i++) {
// pass the file name.. all relative entity
// references will be resolved against this as
// base URI.
XMLStreamReader xmlr =
xmlif.createXMLStreamReader (filename,
new FileInputStream(filename));
// when XMLStreamReader is created, it is positioned
// at START_DOCUMENT event.
int eventType = xmlr.getEventType();
printEventType(eventType);
printStartDocument (xmlr);
// check if there are more events in the input stream
while(xmlr.hasNext()) {
eventType = xmlr.next();
printEventType(eventType);
// these functions print the information about
// the particular event by calling the relevant
// function
printStartElement (xmlr);
printEndElement (xmlr);
printText(xmlr);
printPIData(xmlr);
printComment (xmlr);

}

Note that next just returns an integer constant corresponding to the event underlying the
current cursor location. The application calls the relevant function to get more information
related to the underlying event. There are various accessor methods which can be called when
the cursor is at particular event.

Returning String Representations

Because the next method only returns integers corresponding to underlying event types, you
typically need to map these integers to string representations of the events; for example:

public final static String getEventTypeString(int eventType) {
switch (eventType) {
case XMLEvent.START ELEMENT:
return "START ELEMENT";
case XMLEvent.END ELEMENT:
return "END_ELEMENT";
case XMLEvent.PROCESSING INSTRUCTION:
return "PROCESSING INSTRUCTION"
case XMLEvent.CHARACTERS:
return "CHARACTERS";
case XMLEvent.COMMENT:
return "COMMENT";
case XMLEvent.START DOCUMENT:
return "START DOCUMENT";
case XMLEvent.END DOCUMENT:
return "END DOCUMENT";
case XMLEvent.ENTITY REFERENCE:

Chapter 18 « Streaming APl for XML 557

Example Code

return "ENTITY REFERENCE";
case XMLEvent.ATTRIBUTE:
return "ATTRIBUTE"
case XMLEvent.DTD:
return "DTD";
case XMLEvent.CDATA:
return "CDATA"
case XMLEvent.SPACE:
return "SPACE"
}
return "UNKNOWN EVENT TYPE ,

+ eventType;

Building and Running the Cursor Example Using NetBeans IDE

Follow these instructions to build and run the Cursor example on your Application Server
instance using NetBeans IDE.

1. InNetBeans IDE, select File—Open Project.

2. Inthe Open Project dialog, navigate to the tut-install/ javaeetutorial5/examples/stax/
directory.

Select the cursor folder.
Select the Open as Main Project check box.
Click Open Project.

AU

In the Projects tab, right-click the cursor project and select Properties. The Project
Properties dialog is displayed.

7. Enter the following in the Arguments field:

-x 1 BookCatalog.xml
8. Click OK.

9. Right-click the cursor project and select Run.

Building and Running the Cursor Example Using Ant

To compile and run the Cursor example using Ant, in a terminal window, go to the
tut-install/ javaeetutorial5/examples/stax/cursor/ directory and type the following:

ant run-cursor

Cursor-to-Event Example

Located in the tut-install/ javaeetutorial5/examples/stax/cursor2event/ directory,
CursorApproachEventObject.java demonstrates how to get information returned by an
XMLEvent object even when using the cursor API.

558 The Java EE 5 Tutorial - September 2010 (originally published 2007)

Example Code

The idea here is that the cursor API’s XMLSt reamReader returns integer constants
corresponding to particular events, while the event iterator API’s XMLEventReader returns
immutable and persistent event objects. XMLSt reamReader is more efficient, but
XMLEventReader is easier to use, because all the information related to a particular event is
encapsulated in a returned XMLEvent object. However, the disadvantage of event approach is the
extra overhead of creating objects for every event, which consumes both time and memory.

With this mind, XMLEventAllocator can be used to get event information as an XMLEvent
object, even when using the cursor APL

Instantiating an XMLEventAllocator

The first step is to create a new XMLInputFactory and instantiate an XMLEventAllocator:

XMLInputFactory xmlif = XMLInputFactory.newInstance();

System.out.println("FACTORY: " + xmlif);

xmlif.setEventAllocator(new XMLEventAllocatorImpl());

allocator = xmlif.getEventAllocator();

XMLStreamReader xmlr = xmlif.createXMLStreamReader(filename,
new FileInputStream(filename));

Creating an Event Iterator

The next step is to create an event iterator:

int eventType = xmlr.getEventType();
while(xmlr.hasNext()){
eventType = xmlr.next();
//Get all "Book" elements as XMLEvent object
if(eventType == XMLStreamConstants.START ELEMENT &&
xmlr.getLocalName().equals("Book")){
//get immutable XMLEvent
StartElement event = getXMLEvent(xmlr).asStartElement();
System.out.println("EVENT: " + event.toString());

Creating the Allocator Method
The final step is to create the XMLEventAllocator method:

private static XMLEvent getXMLEvent(XMLStreamReader reader)
throws XMLStreamException {
return allocator.allocate(reader);

Chapter 18 « Streaming APl for XML 559

Example Code

560

Building and Running the Cursor-to-Event Example Using NetBeans
IDE

Follow these instructions to build and run the Cursor-to-Event example on your Application
Server instance using NetBeans IDE.

1.
2.

SANEN L

In NetBeans IDE, select File—Open Project.

In the Open Project dialog, navigate to the tut-install/ javaeetutorial5/examples/stax/
directory.

Select the cursor2event folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the cursor2event project and select Properties. The Project
Properties dialog is displayed.

Enter the following in the Arguments field:

BookCatalog.xml
Click OK.

Right-click the cursor2event project and select Run.

Note how the Book events are returned as strings.

Building and Running the Cursor-to-Event Example Using Ant

To compile and run the Cursor-to-Event example using Ant, in a terminal window, go to the
tut-install/ javaeetutorial5/examples/stax/cursor2event/ directory and type the
following:

ant run-cursor2event

Event Example

Located in the tut-install/ javaeetutorial5/examples/stax/event/ directory,
EventParse. java demonstrates how to use the StAX event API to read an XML document.

Creating an Input Factory

The first step is to create a new instance of XMLInputFactory:

XMLInputFactory factory = XMLInputFactory.newInstance();

System.out.println("FACTORY:

+ factory);

Creating an Event Reader

The next step is to create an instance of XMLEventReader:

The Java EE 5Tutorial « September 2010 (originally published 2007)

Example Code

XMLEventReader r = factory.createXMLEventReader(filename,
new FileInputStream(filename));

Creating an Event Iterator

The third step is to create an event iterator:

XMLEventReader r = factory.createXMLEventReader(filename,
new FileInputStream(filename));

while(r.hasNext()) {

XMLEvent e = r.nextEvent();
System.out.println(e.toString());

Getting the Event Stream

The final step is to get the underlying event stream:

public final static String getEventTypeString(int eventType) {

switch (eventType) {

case XMLEvent.START ELEMENT:
return "START ELEMENT";

case XMLEvent.END_ ELEMENT:
return "END_ELEMENT";

case XMLEvent.PROCESSING INSTRUCTION:
return "PROCESSING INSTRUCTION"

case XMLEvent.CHARACTERS:
return "CHARACTERS"

case XMLEvent.COMMENT:
return "COMMENT";

case XMLEvent.START DOCUMENT:
return "START DOCUMENT";

case XMLEvent.END DOCUMENT:
return "END DOCUMENT";

case XMLEvent.ENTITY_ REFERENCE:
return "ENTITY REFERENCE"

case XMLEvent.ATTRIBUTE:
return "ATTRIBUTE";

case XMLEvent.DTD:
return "DTD";

case XMLEvent.CDATA:
return "CDATA";

case XMLEvent.SPACE:
return "SPACE";

}

return "UNKNOWN EVENT TYPE " + "," + eventType;
}
Returning the Output

When you run the Event example, the EventParse class is compiled, and the XML stream is
parsed as events and returned to STDOUT. For example, an instance of the Author element is

returned as:

Chapter 18 « Streaming APl for XML

561

Example Code

562

<[’http://www.publishing.org’]: :Author>
Dhirendra Brahmachari
</[’http://www.publishing.org’]::Author>

Note in this example that the event comprises an opening and closing tag, both of which include
the namespace. The content of the element is returned as a string within the tags.

Similarly, an instance of the Cost element is returned as:

<[’http://www.publishing.org’]::Cost currency="INR>
11.50
</[’http://www.publishing.org’]::Cost>

In this case, the currency attribute and value are returned in the opening tag for the event.

Building and Running the Event Example Using NetBeans IDE

Follow these instructions to build and run the Event example on your Application Server
instance using NetBeans IDE.

1. InNetBeans IDE, select File—Open Project.

2. Inthe Open Project dialog, navigate to the tut-install/ javaeetutorial5/examples/stax/
directory.

Select the event folder.
Select the Open as Main Project check box.
Click Open Project.

AN

In the Projects tab, right-click the event project and select Properties. The Project
Properties dialog is displayed.

7. Enter the following in the Arguments field:

BookCatalog.xml
8. Click OK.

9. Right-click the event project and select Run.

Building and Running the Event Example Using Ant

To compile and run the Event example using Ant, in a terminal window, go to the
tut-install/ javaeetutorial5/examples/stax/event/ directory and type the following:

ant run-event

The Java EE 5Tutorial « September 2010 (originally published 2007)

Example Code

Filter Example

Located in the tut-install/ javaeetutorial5/examples/stax/filter/ directory,
MyStreamFilter.java demonstrates how to use the StAX stream filter API to filter out events
not needed by your application. In this example, the parser filters out all events except
StartElement and EndElement.

Implementing the StreamFilter Class

The MyStreamFilter class implements javax.xml.stream.StreamFilter:

public class MyStreamFilter
implements javax.xml.stream.StreamFilter {

Creating an Input Factory

The next step is to create an instance of XMLInputFactory. In this case, various properties are
also set on the factory:

XMLInputFactory xmlif = null ;
try {
xmlif = XMLInputFactory.newInstance();
xmlif.setProperty(
XMLInputFactory.IS REPLACING ENTITY REFERENCES,
Boolean.TRUE);
xmlif.setProperty(
XMLInputFactory.IS SUPPORTING EXTERNAL ENTITIES,
Boolean.FALSE);
xmlif.setProperty(XMLInputFactory.IS NAMESPACE AWARE,
Boolean.TRUE);
xmlif.setProperty(XMLInputFactory.IS COALESCING,
Boolean.TRUE);
} catch (Exception ex) {
ex.printStackTrace();
}
System.out.println("FACTORY: " + xmlif);
System.out.println("filename = "+ filename);

Creating the Filter

The next step is to instantiate a file input stream and create the stream filter:

FileInputStream fis = new FileInputStream(filename);

XMLStreamReader xmlr = xmlif.createFilteredReader(
xmlif.createXMLStreamReader(fis), new MyStreamFilter());

int eventType = xmlr.getEventType();
printEventType(eventType);
while(xmlr.hasNext()) {
eventType = xmlr.next();
printEventType(eventType);

Chapter 18 « Streaming APl for XML 563

Example Code

564

printName(xmlr,eventType);

printText(xmlr);

if (xmlr.isStartElement()) {
printAttributes(xmlr);

printPIData(xmlr);
System.out.println("--------cemmmmmm ");

Capturing the Event Stream

The next step is to capture the event stream. This is done in basically the same way as in the
Event example.

Filtering the Stream
The final step is to filter the stream:

public boolean accept(XMLStreamReader reader) {
if (!reader.isStartElement() && !reader.isEndElement())
return false;
else
return true;

Returning the Output

When you run the Filter example, the MySt reamFilter class is compiled, and the XML stream
is parsed as events and returned to STDOUT. For example, an Author event is returned as follows:

EVENT TYPE(1):START_ELEMENT
HAS NAME: Author

HAS NO TEXT

HAS NO ATTRIBUTES

EVENT TYPE(2):END_ELEMENT
HAS NAME: Author

HAS NO TEXT

Similarly, a Cost event is returned as follows:

EVENT TYPE(1):START_ELEMENT
HAS NAME: Cost
HAS NO TEXT

HAS ATTRIBUTES:
ATTRIBUTE-PREFIX:
ATTRIBUTE-NAMESP: null

ATTRIBUTE-NAME: currency

ATTRIBUTE-VALUE: USD

ATTRIBUTE-TYPE: CDATA

The Java EE 5Tutorial « September 2010 (originally published 2007)

Example Code

EVENT TYPE(2):END_ELEMENT
HAS NAME: Cost
HAS NO TEXT

See “Tterator API” on page 541 and “Reading XML Streams” on page 549 for a more detailed
discussion of StAX event parsing.

Building and Running the Filter Example Using NetBeans IDE

Follow these instructions to build and run the Filter example on your Application Server
instance using NetBeans IDE.

1. InNetBeans IDE, select File—Open Project.

2. Inthe Open Project dialog, navigate to the tut-install/ javaeetutorial5/examples/stax/
directory.

Select the filter folder.
Select the Open as Main Project check box.
Click Open Project.

AN LI

In the Projects tab, right-click the filter project and select Properties. The Project
Properties dialog is displayed.

7. Enter the following in the Arguments field:

-f BookCatalog.xml
8. Click OK.

9. Right-click the filter project and select Run.

Building and Running the Filter Example Using Ant
To compile and run the Filter example using Ant, in a terminal window, go to the

tut-install/ javaeetutorial5/examples/stax/filter/ directory and type the following:

ant run-filter

Read-and-Write Example

Located in the tut-install/ javaeetutorial5/examples/stax/readnwrite/ directory,
EventProducerConsumer. java demonstrates how to use a StAX parser simultaneously as both
aproducer and a consumer.

The StAX XMLEventWriter API extends from the XMLEventConsumer interface, and is referred
to as an event consumer. By contrast, XMLEventReader is an event producer. StAX supports
simultaneous reading and writing, such that it is possible to read from one XML stream
sequentially and simultaneously write to another stream.

Chapter 18 « Streaming APl for XML 565

Example Code

566

The Read-and-Write example shows how the StAX producer/consumer mechanism can be
used to read and write simultaneously. This example also shows how a stream can be modified
and how new events can be added dynamically and then written to a different stream.

Creating an Event Producer/Consumer

The first step is to instantiate an event factory and then create an instance of an event
producer/consumer:

XMLEventFactory m eventFactory = XMLEventFactory.newInstance();
public EventProducerConsumer() {
}
try {
EventProducerConsumer ms = new EventProducerConsumer();
XMLEventReader reader =
XMLInputFactory.newInstance().createXMLEventReader(
new java.io.FileInputStream(args[0]));
XMLEventWriter writer =

XMLOutputFactory.newInstance().createXMLEventWriter(
System.out);

Creating an Iterator

The next step is to create an iterator to parse the stream:

while(reader.hasNext()) {
XMLEvent event = (XMLEvent)reader.next();
if (event.getEventType() == event.CHARACTERS) {
writer.add(ms.getNewCharactersEvent(event.asCharacters()));
} else {
writer.add(event);
}
}

writer.flush();

Creating a Writer

The final step is to create a stream writer in the form of a new Character event:

Characters getNewCharactersEvent(Characters event) {

if (event.getData().equalsIgnoreCase("Namel")) {

return m_eventFactory.createCharacters(
Calendar.getInstance().getTime().toString());

}

//else return the same event

else {
return event;

}

The Java EE 5Tutorial « September 2010 (originally published 2007)

Example Code

Returning the Output

When you run the Read-and-Write example, the EventProducerConsumer class is compiled,
and the XML stream is parsed as events and written back to STDOUT. The output is the contents
of the BookCatalog. xml file described in “Example XML Document” on page 556.

Building and Running the Read-and-Write Example Using NetBeans
IDE

Follow these instructions to build and run the Read-and-Write example on your Application
Server instance using NetBeans IDE.

1. InNetBeans IDE, select File—Open Project.

2. Inthe Open Project dialog, navigate to the tut-install/ javaeetutorials/examples/stax/
directory.

Select the readnwrite folder.
Select the Open as Main Project check box.
Click Open Project.

SANER A

In the Projects tab, right-click the readnwrite project and select Properties. The Project
Properties dialog is displayed.

7. Enter the following in the Arguments field:

BookCatalog.xml
8. Click OK.

9. Right-click the readnwrite project and select Run.

Building and Running the Read-and-Write Example Using Ant

To compile and run the Read-and-Write example using Ant, in a terminal window, go to the
tut-install/ javaeetutorial5/examples/stax/readnwrite/ directory and type the following:

ant run-readnwrite

Writer Example

Located in the tut-install/ javaeetutorials/examples/stax/writer/ directory,
CursorWriter.java demonstrates how to use the StAX cursor API to write an XML stream.

Creating the Output Factory

The first step is to create an instance of XMLOutputFactory:

XMLOutputFactory xof = XMLOutputFactory.newInstance();

Chapter 18 « Streaming APl for XML 567

Example Code

568

Creating a Stream Writer

The next step is to create an instance of XMLStreamWriter:

XMLStreamWriter xtw = null;

Writing the Stream

The final step is to write the XML stream. Note that the stream is flushed and closed after the
final EndDocument is written:

xtw = xof.createXMLStreamWriter(new FileWriter(fileName));
xtw.writeComment("all elements here are explicitly in the HTML namespace");
xtw.writeStartDocument("utf-8","1.0");

xtw.setPrefix("html", "http://www.w3.0rg/TR/REC-htm140");
xtw.writeStartElement ("http://www.w3.0rg/TR/REC-htm140", " "html")
xtw.writeNamespace("html", "http://www.w3.0rg/TR/REC-html40");
xtw.writeStartElement ("http://www.w3.0rg/TR/REC-html40","head");
xtw.writeStartElement ("http://www.w3.0rg/TR/REC-html40", "title");
xtw.writeCharacters("Frobnostication")

xtw.writeEndElement();

xtw.writeEndElement();

xtw.writeStartElement ("http://www.w3.0rg/TR/REC-html40","body");
xtw.writeStartElement ("http://www.w3.0rg/TR/REC-htm140","p");
xtw.writeCharacters("Moved to");

xtw.writeStartElement ("http://www.w3.0rg/TR/REC-html40","a");
xtw.writeAttribute("href","http://frob.com");
xtw.writeCharacters("here");

Xxtw.writeEndElement();

xtw.writeEndElement();

xtw.writeEndElement();

xtw.writeEndElement();

xtw.writeEndDocument();

xtw. flush();

xtw.close();

Returning the Output

When you run the Writer example, the CursorWriter class is compiled, and the XML stream is
parsed as events and written to a file named dist/CursorWriter-Output:

<!--all elements here are explicitly in the HTML namespace-->
<?xml version="1.0" encoding="utf-8"?>

<html:html xmlns:html="http://www.w3.0rg/TR/REC-html140">
<html:head>
<html:title>Frobnostication</html:title></html:head>
<html:body>

<html:p>Moved to <html:a href="http://frob.com">here</html:a>
</html:p>

</html:body>

</html:html>

In the actual dist/CursorWriter-Output file, this stream is written without any line breaks; the
breaks have been added here to make the listing easier to read. In this example, as with the

The Java EE 5Tutorial « September 2010 (originally published 2007)

Further Information about StAX

object stream in the Event example, the namespace prefix is added to both the opening and
closing HTML tags. Adding this prefix is not required by the StAX specification, but it is good
practice when the final scope of the output stream is not definitively known.

Building and Running the Writer Example Using NetBeans IDE

Follow these instructions to build and run the Writer example on your Application Server
instance using NetBeans IDE.

1.
2.

AN LI

In NetBeans IDE, select File—Open Project.

In the Open Project dialog navigate to the tut-install/ javaeetutorial5s/examples/stax/
directory.

Select thewriter folder.
Select the Open as Main Project check box.
Click Open Project.

In the Projects tab, right-click the writer project and select Properties. The Project
Properties dialog is displayed.

Enter the following in the Arguments field:

-f dist/CursorWriter-Output
Click OK.

Right-click the writer project and select Run.

Building and Running the Writer Example Using Ant

To compile and run the Writer example using Ant, in a terminal window, go to the
tut-install/ javaeetutorial5/examples/stax/writer/ directory and type the following:

ant run-writer

Further Information about StAX

For more information about StAX, see:

Java Community Process page:
http://jcp.org/en/jsr/detail?id=173.

W3C Recommendation “Extensible Markup Language (XML) 1.0”:
http://www.w3.0rg/TR/REC-xml

XML Information Set:

http://www.w3.0rg/TR/xml-infoset/

W3C Recommendation “Document Object Model”:

Chapter 18 « Streaming APl for XML 569

Further Information about StAX

http://www.w3.0rg/DOM/

= SAX “Simple API for XML
http://www.saxproject.org/

= DOM “Document Object Model™:

http://www.w3.0rg/
TR/2002/WD-DOM-Level-3-Core-20020409/core.html#ID-B63ED1A3

= W3C Recommendation “Namespaces in XML”:

http://www.w3.0rg/TR/REC-xml-names/

For some useful articles about working with StAX, see:

= Jeff Ryan, “Does StAX Belong in Your XML Toolbox?”:

http://www.developer.com/
xml/article.php/3397691/Does-StAX-Belong-in-Your-XML-Toolbox.htm

= Elliotte Rusty Harold, “An Introduction to StAX”:
http://www.xml.com/pub/a/2003/09/17/stax.html

570 The Java EE 5Tutorial « September 2010 (originally published 2007)

