
Streaming API for XML

This chapter focuses on the Streaming API for XML (StAX), a streaming Java-based,
event-driven, pull-parsing API for reading and writing XML documents. StAX enables you to
create bidrectional XML parsers that are fast, relatively easy to program, and have a light
memory footprint.

StAX is the latest API in the JAXP family, and provides an alternative to SAX, DOM, TrAX, and
DOM for developers looking to do high-performance stream �ltering, processing, and
modi�cation, particularly with lowmemory and limited extensibility requirements.

To summarize, StAX provides a standard, bidirectional pull parser interface for streaming XML
processing, o ering a simpler programmingmodel than SAX andmore e!cientmemory
management thanDOM. StAX enables developers to parse andmodify XML streams as events,
and to extend XML informationmodels to allow application-speci�c additions.More detailed
comparisons of StAXwith several alternative APIs are provided below, in “Comparing StAX to
Other JAXPAPIs” on page 539.

WhyStAX?
The StAX project was spearheaded by BEAwith support from SunMicrosystems, and the JSR
173 speci�cation passed the Java Community Process �nal approval ballot inMarch, 2004
(http://jcp.org/en/jsr/detail?id=173). The primary goal of the StAXAPI is to give
“parsing control to the programmer by exposing a simple iterator based API. This allows the
programmer to ask for the next event (pull the event) and allows state to be stored in procedural
fashion.” StAXwas created to address limitations in the twomost prevalent parsing APIs, SAX
andDOM.

StreamingversusDOM
Generally speaking, there are two programmingmodels for working with XML infosets:
streaming and the document object model (DOM).

18C H A P T E R 1 8

537

TheDOMmodel involves creating in-memory objects representing an entire document tree
and the complete infoset state for an XML document. Once inmemory, DOM trees can be
navigated freely and parsed arbitrarily, and as such providemaximum"exibility for developers.
However, the cost of this "exibility is a potentially largememory footprint and signi�cant
processor requirements, because the entire representation of the documentmust be held in
memory as objects for the duration of the document processing. This may not be an issue when
working with small documents, but memory and processor requirements can escalate quickly
with document size.

Streaming refers to a programmingmodel in which XML infosets are transmitted and parsed
serially at application runtime, often in real time, and often from dynamic sources whose
contents are not precisely known beforehand.Moreover, stream-based parsers can start
generating output immediately, and infoset elements can be discarded and garbage collected
immediately after they are used.While providing a smaller memory footprint, reduced
processor requirements, and higher performance in certain situations, the primary trade-o
with stream processing is that you can only see the infoset state at one location at a time in the
document. You are essentially limited to the “cardboard tube” view of a document, the
implication being that you need to knowwhat processing you want to do before reading the
XML document.

Streamingmodels for XML processing are particularly useful when your application has strict
memory limitations, as with a cell phone running J2ME, or when your application needs to
simultaneously process several requests, as with an application server. In fact, it can be argued
that themajority of XML business logic can bene�t from stream processing, and does not
require the in-memorymaintenance of entire DOM trees.

Pull Parsing versus PushParsing

Streaming pull parsing refers to a programmingmodel in which a client application calls
methods on an XML parsing library when it needs to interact with an XML infoset; that is, the
client only gets (pulls) XML data when it explicitly asks for it.

Streaming push parsing refers to a programmingmodel in which an XML parser sends (pushes)
XML data to the client as the parser encounters elements in an XML infoset; that is, the parser
sends the data whether or not the client is ready to use it at that time.

Pull parsing provides several advantages over push parsing when working with XML streams:

n With pull parsing, the client controls the application thread, and can call methods on the
parser when needed. By contrast, with push processing, the parser controls the application
thread, and the client can only accept invocations from the parser.

n Pull parsing libraries can bemuch smaller and the client code to interact with those libraries
much simpler than with push libraries, even formore complex documents.

n Pull clients can readmultiple documents at one time with a single thread.

Why StAX?

The Java EE 5Tutorial • September 2010 (originally published 2007)538

n A StAX pull parser can �lter XML documents such that elements unnecessary to the client

can be ignored, and it can support XML views of non-XML data.

StAXUseCases

The StAX speci�cation de�nes a number of use cases for the API:

n Data binding

n Unmarshalling an XML document
n Marshalling an XML document
n Parallel document processing
n Wireless communication

n SOAPmessage processing

n Parsing simple predictable structures
n Parsing graph representations with forward references
n ParsingWSDL

n Virtual data sources

n Viewing as XML data stored in databases
n Viewing data in Java objects created by XML data binding
n Navigating a DOM tree as a stream of events

n Parsing speci�c XML vocabularies

n Pipelined XML processing

A complete discussion of all these use cases is beyond the scope of this chapter. Please refer to

the StAX speci�cation for further information.

Comparing StAX toOther JAXPAPIs

As an API in the JAXP family, StAX can be compared, among other APIs, to SAX, TrAX, and

JDOM.Of the latter two, StAX is not as powerful or "exible as TrAX or JDOM, but neither does

it require asmuchmemory or processor load to be useful, and StAX can, inmany cases,

outperform the DOM-based APIs. The same arguments outlined above, weighing the

cost/bene�ts of the DOMmodel versus the streamingmodel, apply here.

Why StAX?

Chapter 18 • Streaming API for XML 539

With this inmind, the closest comparisons can bemade between StAX and SAX, and it is here
that StAX o ers features that are bene�cial inmany cases; some of these include:

n StAX-enabled clients are generally easier to code than SAX clients.While it can be argued
that SAX parsers aremarginally easier to write, StAX parser code can be smaller and the
code necessary for the client to interact with the parser simpler.

n StAX is a bidirectional API, meaning that it can both read and write XML documents. SAX
is read only, so another API is needed if you want to write XML documents.

n SAX is a push API, whereas StAX is pull. The trade-o s between push and pull APIs
outlined above apply here.

Table 18–1 summarizes the comparative features of StAX, SAX, DOM, and TrAX (table
adapted from “Does StAX Belong in Your XMLToolbox?” at http://www.developer.com/
xml/article.php/3397691/Does-StAX-Belong-in-Your-XML-Toolbox.htm by Je Ryan).

TABLE 18–1 XMLParserAPI Feature Summary

Feature StAX SAX DOM TrAX

API Type Pull, streaming Push, streaming Inmemory tree XSLT Rule

Ease of Use High Medium High Medium

XPath Capability Not supported Not supported Supported Supported

CPU andMemory

E!ciency

Good Good Varies Varies

ForwardOnly Supported Supported Not supported Not supported

Read XML Supported Supported Supported Supported

Write XML Supported Not supported Supported Supported

Create, Read, Update,

Delete

Not supported Not supported Supported Not supported

StAXAPI

The StAXAPI exposesmethods for iterative, event-based processing of XML documents. XML
documents are treated as a �ltered series of events, and infoset states can be stored in a
procedural fashion.Moreover, unlike SAX, the StAXAPI is bidirectional, enabling both reading
and writing of XML documents.

The StAXAPI is really two distinct API sets: a cursorAPI and an iteratorAPI. These two API
sets explained in greater detail later in this chapter, but their main features are brie"y described
below.

StAXAPI

The Java EE 5Tutorial • September 2010 (originally published 2007)540

CursorAPI

As the name implies, the StAX cursorAPI represents a cursor with which you can walk an XML
document from beginning to end. This cursor can point to one thing at a time, and always
moves forward, never backward, usually one infoset element at a time.

The twomain cursor interfaces are XMLStreamReader and XMLStreamWriter.
XMLStreamReader includes accessormethods for all possible information retrievable from the
XML Informationmodel, including document encoding, element names, attributes,
namespaces, text nodes, start tags, comments, processing instructions, document boundaries,
and so forth; for example:

public interface XMLStreamReader {
public int next() throws XMLStreamException;
public boolean hasNext() throws XMLStreamException;
public String getText();
public String getLocalName();
public String getNamespaceURI();
// ... other methods not shown

}

You can call methods on XMLStreamReader, such as getText and getName, to get data at the
current cursor location. XMLStreamWriter providesmethods that correspond to StartElement
and EndElement event types; for example:

public interface XMLStreamWriter {
public void writeStartElement(String localName)
throws XMLStreamException;

public void writeEndElement()
throws XMLStreamException;

public void writeCharacters(String text)
throws XMLStreamException;

// ... other methods not shown
}

The cursor APImirrors SAX inmany ways. For example, methods are available for directly
accessing string and character information, and integer indexes can be used to access attribute
and namespace information. As with SAX, the cursor APImethods return XML information as
strings, whichminimizes object allocation requirements.

Iterator API

The StAX iteratorAPI represents an XML document stream as a set of discrete event objects.
These events are pulled by the application and provided by the parser in the order in which they
are read in the source XML document.

The base iterator interface is called XMLEvent, and there are subinterfaces for each event type
listed in Table 18–2. The primary parser interface for reading iterator events is
XMLEventReader, and the primary interface for writing iterator events is XMLEventWriter. The

StAXAPI

Chapter 18 • Streaming API for XML 541

XMLEventReader interface contains �vemethods, themost important of which is nextEvent,
which returns the next event in an XML stream. XMLEventReader implements
java.util.Iterator, whichmeans that returns from XMLEventReader can be cached or passed
into routines that can work with the standard Java Iterator; for example:

public interface XMLEventReader extends Iterator {
public XMLEvent nextEvent() throws XMLStreamException;
public boolean hasNext();
public XMLEvent peek() throws XMLStreamException;
...

}

Similarly, on the output side of the iterator API, you have:

public interface XMLEventWriter {
public void flush() throws XMLStreamException;
public void close() throws XMLStreamException;
public void add(XMLEvent e) throws XMLStreamException;
public void add(Attribute attribute) throws XMLStreamException;
...

}

Iterator EventTypes

Table 18–2 lists the XMLEvent types de�ned in the event iterator API.

TABLE 18–2 XMLEventTypes

EventType Description

StartDocument Reports the beginning of a set of XML events, including encoding, XML version,

and standalone properties.

StartElement Reports the start of an element, including any attributes and namespace

declarations; also provides access to the pre�x, namespace URI, and local name of

the start tag.

EndElement Reports the end tag of an element. Namespaces that have gone out of scope can be

recalled here if they have been explicitly set on their corresponding

StartElement.

Characters Corresponds to XML CData sections and CharacterData entities. Note that

ignorable white space and signi�cant white space are also reported as Character

events.

EntityReference Character entities can be reported as discrete events, which an application

developer can then choose to resolve or pass through unresolved. By default,

entities are resolved. Alternatively, if you do not want to report the entity as an

event, replacement text can be substituted and reported as Characters.

ProcessingInstruction Reports the target and data for an underlying processing instruction.

Comment Returns the text of a comment.

StAXAPI

The Java EE 5Tutorial • September 2010 (originally published 2007)542

TABLE 18–2 XMLEventTypes (Continued)

EventType Description

EndDocument Reports the end of a set of XML events.

DTD Reports as java.lang.String information about the DTD, if any, associated

with the stream, and provides amethod for returning custom objects found in the

DTD.

Attribute Attributes are generally reported as part of a StartElement event. However, there

are times when it is desirable to return an attribute as a standalone Attribute

event; for example, when a namespace is returned as the result of an XQuery or

XPath expression.

Namespace Aswith attributes, namespaces are usually reported as part of a StartElement,

but there are times when it is desirable to report a namespace as a discrete

Namespace event.

Note that the DTD, EntityDeclaration, EntityReference, NotationDeclaration, and

ProcessingInstruction events are only created if the document being processed contains a

DTD.

Example of EventMapping

As an example of how the event iterator APImaps an XML stream, consider the following XML

document:

<?xml version="1.0"?>

<BookCatalogue xmlns="http://www.publishing.org">

<Book>

<Title>Yogasana Vijnana: the Science of Yoga</Title>

<ISBN>81-40-34319-4</ISBN>

<Cost currency="INR">11.50</Cost>

</Book>

</BookCatalogue>

This document would be parsed into eighteen primary and secondary events, as shown in
Table 18–3. Note that secondary events, shown in curly braces ({}), are typically accessed from
a primary event rather than directly.

TABLE 18–3 Example of IteratorAPI EventMapping

Element/Attribute Event

1 version="1.0" StartDocument

2 isCData = false

data = "\n"

IsWhiteSpace = true

Characters

StAXAPI

Chapter 18 • Streaming API for XML 543

TABLE 18–3 Example of Iterator API EventMapping (Continued)

Element/Attribute Event

3 qname = BookCatalogue:http://www.publishing.org

attributes = null

namespaces = {BookCatalogue" -> http://www.publishing.org"}

StartElement

4 qname = Book

attributes = null

namespaces = null

StartElement

5 qname = Title

attributes = null

namespaces = null

StartElement

6 isCData = false

data = "Yogasana Vijnana: the Science of Yoga\n\t"

IsWhiteSpace = false

Characters

7 qname = Title

namespaces = null

EndElement

8 qname = ISBN

attributes = null

namespaces = null

StartElement

9 isCData = false

data = "81-40-34319-4\n\t"

IsWhiteSpace = false

Characters

10 qname = ISBN

namespaces = null

EndElement

11 qname = Cost

attributes = {"currency" -> INR}

namespaces = null

StartElement

12 isCData = false

data = "11.50\n\t"

IsWhiteSpace = false

Characters

13 qname = Cost

namespaces = null

EndElement

14 isCData = false

data = "\n"

IsWhiteSpace = true

Characters

15 qname = Book

namespaces = null

EndElement

StAXAPI

The Java EE 5Tutorial • September 2010 (originally published 2007)544

TABLE 18–3 Example of Iterator API EventMapping (Continued)

Element/Attribute Event

16 isCData = false

data = "\n"

IsWhiteSpace = true

Characters

17 qname = BookCatalogue:http://www.publishing.org

namespaces = {BookCatalogue" -> http://www.publishing.org"}

EndElement

18 EndDocument

There are several important things to note in this example:

n The events are created in the order in which the corresponding XML elements are

encountered in the document, including nesting of elements, opening and closing of

elements, attribute order, document start and document end, and so forth.

n Aswith proper XML syntax, all container elements have corresponding start and end

events; for example, every StartElement has a corresponding EndElement, even for empty

elements.

n Attribute events are treated as secondary events, and are accessed from their

corresponding StartElement event.

n Similar to Attribute events, Namespace events are treated as secondary, but appear twice

and are accessible twice in the event stream, �rst from their corresponding StartElement

and then from their corresponding EndElement.

n Character events are speci�ed for all elements, even if those elements have no character

data. Similarly, Character events can be split across events.

n The StAX parsermaintains a namespace stack, which holds information about all XML

namespaces de�ned for the current element and its ancestors. The namespace stack, which

is exposed through the javax.xml.namespace.NamespaceContext interface, can be

accessed by namespace pre�x or URI.

ChoosingbetweenCursor and Iterator APIs

It is reasonable to ask at this point, “What API should I choose? Should I create instances of

XMLStreamReader or XMLEventReader?Why are there two kinds of APIs anyway?”

StAXAPI

Chapter 18 • Streaming API for XML 545

DevelopmentGoals

The authors of the StAX speci�cation targeted three types of developers:

n Library and infrastructure developers: Need highly e!cient, low-level APIs withminimal

extensibility requirements.

n J2ME developers: Need small, simple, pull-parsing libraries, and haveminimal extensibility

needs.

n Java EE and Java SE developers: Need clean, e!cient pull-parsing libraries, plus need the

"exibility to both read and write XML streams, create new event types, and extend XML

document elements and attributes.

Given these wide-ranging development categories, the StAX authors felt it wasmore useful to

de�ne two small, e!cient APIs rather than overloading one larger and necessarily more

complex API.

ComparingCursor and Iterator APIs

Before choosing between the cursor and iterator APIs, you should note a few things that you

can do with the iterator API that you cannot do with cursor API:

n Objects created from the XMLEvent subclasses are immutable, and can be used in arrays,

lists, andmaps, and can be passed through your applications even after the parser has

moved on to subsequent events.

n You can create subtypes of XMLEvent that are either completely new information items or

extensions of existing items but with additional methods.

n You can add and remove events from an XML event stream inmuch simpler ways than with

the cursor API.

Similarly, keep some general recommendations inmind whenmaking your choice:

n If you are programming for a particularly memory-constrained environment, like J2ME,

you canmake smaller, more e!cient code with the cursor API.

n If performance is your highest priority (for example, when creating low-level libraries or

infrastructure), the cursor API is more e!cient.

n If you want to create XML processing pipelines, use the iterator API.

n If you want tomodify the event stream, use the iterator API.

n If you want your application to be able to handle pluggable processing of the event stream,

use the iterator API.

n In general, if you do not have a strong preference one way or the other, using the iterator

API is recommended because it is more "exible and extensible, thereby “future-proo�ng”

your applications.

StAXAPI

The Java EE 5Tutorial • September 2010 (originally published 2007)546

Using StAX

In general, StAX programmers create XML stream readers, writers, and events by using the

XMLInputFactory, XMLOutputFactory, and XMLEventFactory classes. Con�guration is done by

setting properties on the factories, whereby implementation-speci�c settings can be passed to

the underlying implementation using the setPropertymethod on the factories. Similarly,

implementation-speci�c settings can be queried using the getProperty factorymethod.

The XMLInputFactory, XMLOutputFactory, and XMLEventFactory classes are described below,

followed by discussions of resource allocation, namespace and attributemanagement, error

handling, and then �nally reading and writing streams using the cursor and iterator APIs.

StAXFactory Classes

The StAX factory classes. XMLInputFactory, XMLOutputFactory, and XMLEventFactory, let you

de�ne and con�gure implementation instances of XML stream reader, streamwriter, and event

classes.

XMLInputFactory Class

The XMLInputFactory class lets you con�gure implementation instances of XML stream reader

processors created by the factory. New instances of the abstract class XMLInputFactory are

created by calling the newInstancemethod on the class. The static method

XMLInputFactory.newInstance is then used to create a new factory instance.

Deriving from JAXP, the XMLInputFactory.newInstancemethod determines the speci�c

XMLInputFactory implementation class to load by using the following lookup procedure:

1. Use the javax.xml.stream.XMLInputFactory system property.

2. Use the lib/xml.stream.properties �le in the J2SE Java Runtime Environment (JRE)

directory.

3. Use the Services API, if available, to determine the classname by looking in the

META-INF/services/javax.xml.stream.XMLInputFactory �les in JAR �les available to

the JRE.

4. Use the platform default XMLInputFactory instance.

After getting a reference to an appropriate XMLInputFactory, an application can use the factory

to con�gure and create stream instances. Table 18–4 lists the properties supported by

XMLInputFactory. See the StAX speci�cation for amore detailed listing.

Using StAX

Chapter 18 • Streaming API for XML 547

TABLE 18–4 javax.xml.stream.XMLInputFactory Properties

Property Description

isValidating Turns on implementation-speci�c validation.

isCoalescing (Required)Requires the processor to coalesce adjacent character data.

isNamespaceAware Turns o namespace support. All implementationsmust support

namespaces. Support for non-namespace-aware documents is

optional.

isReplacingEntityReferences (Required)Requires the processor to replace internal entity references

with their replacement value and report them as characters or the set

of events that describe the entity.

isSupportingExternalEntities (Required)Requires the processor to resolve external parsed entities.

reporter (Required) Sets and gets the implementation of the XMLReporter

interface.

resolver (Required) Sets and gets the implementation of the XMLResolver

interface.

allocator (Required) Sets and gets the implementation of the

XMLEventAllocator interface.

XMLOutputFactory Class

New instances of the abstract class XMLOutputFactory are created by calling the newInstance

method on the class. The static method XMLOutputFactory.newInstance is then used to create

a new factory instance. The algorithm used to obtain the instance is the same as for

XMLInputFactory but references the javax.xml.stream.XMLOutputFactory system property.

XMLOutputFactory supports only one property, javax.xml.stream.isRepairingNamespaces.

This property is required, and its purpose is to create default pre�xes and associate themwith

Namespace URIs. See the StAX speci�cation formore information.

XMLEventFactory Class

New instances of the abstract class XMLEventFactory are created by calling the newInstance

method on the class. The static method XMLEventFactory.newInstance is then used to create a

new factory instance. This factory references the javax.xml.stream.XMLEventFactory

property to instantiate the factory. The algorithm used to obtain the instance is the same as for

XMLInputFactory and XMLOutputFactory but references the

javax.xml.stream.XMLEventFactory system property.

There are no default properties for XMLEventFactory.

Using StAX

The Java EE 5Tutorial • September 2010 (originally published 2007)548

Resources, Namespaces, andErrors

The StAX speci�cation handles resource resolution, attributes and namespace, and errors and
exceptions as described below.

ResourceResolution

The XMLResolver interface provides ameans to set themethod that resolves resources during
XML processing. An application sets the interface on XMLInputFactory, which then sets the
interface on all processors created by that factory instance.

Attributes andNamespaces

Attributes are reported by a StAX processor using lookupmethods and strings in the cursor
interface, and Attribute and Namespace events in the iterator interface. Note here that
namespaces are treated as attributes, although namespaces are reported separately from
attributes in both the cursor and iterator APIs. Note also that namespace processing is optional
for StAX processors. See the StAX speci�cation for complete information about namespace
binding and optional namespace processing.

Error Reporting andExceptionHandling

All fatal errors are reported by way of the javax.xml.stream.XMLStreamException interface.
All nonfatal errors and warnings are reported using the javax.xml.stream.XMLReporter
interface.

ReadingXMLStreams

As described earlier in this chapter, the way you read XML streams with a StAX processor, and
what you get back, vary signi�cantly depending on whether you are using the StAX cursor API
or the event iterator API. The following two sections describe how to read XML streams with
each of these APIs.

Using XMLStreamReader

The XMLStreamReader interface in the StAX cursor API lets you read XML streams or
documents in a forward direction only, one item in the infoset at a time. The followingmethods
are available for pulling data from the stream or skipping unwanted events:

n Get the value of an attribute
n Read XML content
n Determine whether an element has content or is empty
n Get indexed access to a collection of attributes
n Get indexed access to a collection of namespaces

Using StAX

Chapter 18 • Streaming API for XML 549

n Get the name of the current event (if applicable)
n Get the content of the current event (if applicable)

Instances of XMLStreamReader have at any one time a single current event on which its methods
operate.When you create an instance of XMLStreamReader on a stream, the initial current event
is the START_DOCUMENT state. The XMLStreamReader.nextmethod can then be used to step to
the next event in the stream.

Reading Properties, Attributes, andNamespaces

The XMLStreamReader.nextmethod loads the properties of the next event in the stream. You
can then access those properties by calling the XMLStreamReader.getLocalName and
XMLStreamReader.getTextmethods.

When the XMLStreamReader cursor is over a StartElement event, it reads the name and any
attributes for the event, including the namespace. All attributes for an event can be accessed
using an index value, and can also be looked up by namespace URI and local name. Note,
however, that only the namespaces declared on the current StartEvent are available;
previously declared namespaces are notmaintained, and redeclared namespaces are not
removed.

XMLStreamReaderMethods

XMLStreamReader provides the followingmethods for retrieving information about
namespaces and attributes:

int getAttributeCount();
String getAttributeNamespace(int index);
String getAttributeLocalName(int index);
String getAttributePrefix(int index);
String getAttributeType(int index);
String getAttributeValue(int index);
String getAttributeValue(String namespaceUri, String localName);
boolean isAttributeSpecified(int index);

Namespaces can also be accessed using three additional methods:

int getNamespaceCount();
String getNamespacePrefix(int index);
String getNamespaceURI(int index);

Instantiating an XMLStreamReader

This example, taken from the StAX speci�cation, shows how to instantiate an input factory,
create a reader, and iterate over the elements of an XML stream:

XMLInputFactory f = XMLInputFactory.newInstance();
XMLStreamReader r = f.createXMLStreamReader(...);

Using StAX

The Java EE 5Tutorial • September 2010 (originally published 2007)550

while(r.hasNext()) {

r.next();

}

Using XMLEventReader

The XMLEventReaderAPI in the StAX event iterator API provides themeans tomap events in

an XML stream to allocated event objects that can be freely reused, and the API itself can be

extended to handle custom events.

XMLEventReader provides fourmethods for iteratively parsing XML streams:

n next: Returns the next event in the stream
n nextEvent: Returns the next typed XMLEvent
n hasNext: Returns true if there aremore events to process in the stream
n peek: Returns the event but does not iterate to the next event

For example, the following code snippet illustrates the XMLEventReadermethod declarations:

package javax.xml.stream;

import java.util.Iterator;

public interface XMLEventReader extends Iterator {

public Object next();

public XMLEvent nextEvent() throws XMLStreamException;

public boolean hasNext();

public XMLEvent peek() throws XMLStreamException;

...

}

To read all events on a stream and then print them, you could use the following:

while(stream.hasNext()) {

XMLEvent event = stream.nextEvent();

System.out.print(event);

}

ReadingAttributes

You can access attributes from their associated javax.xml.stream.StartElement, as follows:

public interface StartElement extends XMLEvent {

public Attribute getAttributeByName(QName name);

public Iterator getAttributes();

}

You can use the getAttributesmethod on the StartElement interface to use an Iterator

over all the attributes declared on that StartElement.

Using StAX

Chapter 18 • Streaming API for XML 551

ReadingNamespaces

Similar to reading attributes, namespaces are read using an Iterator created by calling the
getNamespacesmethod on the StartElement interface. Only the namespace for the current
StartElement is returned, and an application can get the current namespace context by using
StartElement.getNamespaceContext.

WritingXMLStreams

StAX is a bidirectional API, and both the cursor and event iterator APIs have their own set of
interfaces for writing XML streams. As with the interfaces for reading streams, there are
signi�cant di erences between the writer APIs for cursor and event iterator. The following
sections describe how to write XML streams using each of these APIs.

Using XMLStreamWriter

The XMLStreamWriter interface in the StAX cursor API lets applications write back to an XML
stream or create entirely new streams. XMLStreamWriter hasmethods that let you:

n Write well-formed XML
n Flush or close the output
n Write quali�ed names

Note that XMLStreamWriter implementations are not required to performwell-formedness or
validity checks on input.While some implementationsmay perform strict error checking,
others may not. The rules you implement are applied to properties de�ned in the
XMLOutputFactory class.

The writeCharactersmethod is used to escape characters such as &, <, >, and ". Binding
pre�xes can be handled by either passing the actual value for the pre�x, by using the setPrefix
method, or by setting the property for defaulting namespace declarations.

The following example, taken from the StAX speci�cation, shows how to instantiate an output
factory, create a writer, and write XML output:

XMLOutputFactory output = XMLOutputFactory.newInstance();
XMLStreamWriter writer = output.createXMLStreamWriter(...);
writer.writeStartDocument();
writer.setPrefix("c","http://c");
writer.setDefaultNamespace("http://c");
writer.writeStartElement("http://c","a");
writer.writeAttribute("b","blah");
writer.writeNamespace("c","http://c");
writer.writeDefaultNamespace("http://c");
writer.setPrefix("d","http://c");
writer.writeEmptyElement("http://c","d");
writer.writeAttribute("http://c","chris","fry");
writer.writeNamespace("d","http://c");

Using StAX

The Java EE 5Tutorial • September 2010 (originally published 2007)552

writer.writeCharacters("Jean Arp");

writer.writeEndElement();

writer.flush();

This code generates the following XML (new lines are non-normative):

<?xml version=’1.0’ encoding=’utf-8’?>

<d:d d:chris="fry" xmlns:d="http://c"/>Jean Arp

Using XMLEventWriter

The XMLEventWriter interface in the StAX event iterator API lets applications write back to an
XML stream or create entirely new streams. This API can be extended, but themain API is as
follows:

public interface XMLEventWriter {

public void flush() throws XMLStreamException;

public void close() throws XMLStreamException;
public void add(XMLEvent e) throws XMLStreamException;

// ... other methods not shown.

}

Instances of XMLEventWriter are created by an instance of XMLOutputFactory. Stream events
are added iteratively, and an event cannot bemodi�ed after it has been added to an event writer
instance.

Attributes, Escaping Characters, Binding Pre xes

StAX implementations are required to bu er the last StartElement until an event other than
Attribute or Namespace is added or encountered in the stream. This means that when you add
an Attribute or a Namespace to a stream, it is appended the current StartElement event.

You can use the Charactersmethod to escape characters like &, <, >, and ".

The setPrefix(...)method can be used to explicitly bind a pre�x for use during output, and
the getPrefix(...)method can be used to get the current pre�x. Note that by default,
XMLEventWriter adds namespace bindings to its internal namespacemap. Pre�xes go out of
scope after the corresponding EndElement for the event in which they are bound.

Sun’s StreamingXMLParser Implementation
Application Server includes SunMicrosystems’ JSR 173 (StAX) implementation, called the Sun
Java Streaming XML Parser (referred to as Streaming XML Parser). The Streaming XML Parser
is a high-speed, non-validating,W3CXML 1.0 andNamespace 1.0-compliant streaming XML
pull parser built upon the Xerces2 codebase.

Sun’s Streaming XML Parser Implementation

Chapter 18 • Streaming API for XML 553

In Sun’s Streaming XML Parser implementation, the Xerces2 lower layers, particularly the
Scanner and related classes, have been redesigned to behave in a pull fashion. In addition to the
changes in the lower layers, the Streaming XML Parser includes additional StAX-related
functionality andmany performance-enhancing improvements. The Streaming XML Parser is
implemented in the appserv-ws.jar and javaee.jar �les, both of which are located in the
as-install/lib/ directory.

Included with this Java EE tutorial are StAX code examples, located in the
tut-install/javaeetutorial5/examples/stax/ directory, that illustrate how Sun’s Streaming
XML Parser implementation works. These examples are described in “Example Code” on
page 555.

Before you proceed with the example code, there are two aspects of the Streaming XML Parser
of which you should be aware:

n “Reporting CDATAEvents” on page 554
n “Streaming XML Parser Factories Implementation” on page 554

These topics are discussed below.

ReportingCDATAEvents
The javax.xml.stream.XMLStreamReader implemented in the Streaming XML Parser does
not report CDATA events. If you have an application that needs to receive such events,
con�gure the XMLInputFactory to set the following implementation-speci�c
report-cdata-event property:

XMLInputFactory factory = XMLInptuFactory.newInstance();
factory.setProperty("report-cdata-event", Boolean.TRUE);

StreamingXMLParser Factories Implementation
Most applications do not need to know the factory implementation class name. Just adding the
javaee.jar and appserv-ws.jar �les to the classpath is su!cient formost applications
because these two jars supply the factory implementation classname for various Streaming
XML Parser properties under the META-INF/services/ directory (for example,
javax.xml.stream.XMLInputFactory, javax.xml.stream.XMLOutputFactory, and
javax.xml.stream.XMLEventFactory).

However, theremay be scenarios when an application would like to know about the factory
implementation class name and set the property explicitly. These scenarios could include cases
where there aremultiple JSR 173 implementations in the classpath and the application wants to
choose one, perhaps one that has superior performance, contains a crucial bug �x, or suchlike.

If an application sets the SystemProperty, it is the �rst step in a lookup operation, and so
obtaining the factory instance would be fast compared to other options; for example:

Sun’s Streaming XML Parser Implementation

The Java EE 5Tutorial • September 2010 (originally published 2007)554

javax.xml.stream.XMLInputFactory -->
com.sun.xml.stream.ZephyrParserFactory

javax.xml.stream.XMLOutputFactory -->
com.sun.xml.stream.ZephyrWriterFactor

javax.xml.stream.XMLEventFactory -->
com.sun.xml.stream.events.ZephyrEventFactory

Example Code
This section steps through the example StAX code included in the Java EE 5 Tutorial bundle. All
example directories used in this section are located in the
tut-install/javaeetutorial5/examples/stax/ directory.

The topics covered in this section are as follows:

n “Example CodeOrganization” on page 555
n “Example XMLDocument” on page 556
n “Cursor Example” on page 556
n “Cursor-to-Event Example” on page 558
n “Event Example” on page 560
n “Filter Example” on page 563
n “Read-and-Write Example” on page 565
n “Writer Example” on page 567

Example CodeOrganization

The tut-install/javaeetutorial5/examples/stax/ directory contains the six StAX example
directories:

n Cursor example: The cursor directory contains CursorParse.java, which illustrates how
to use the XMLStreamReader (cursor) API to read an XML �le.

n Cursor-to-Event example: The cursor2event directory contains
CursorApproachEventObject.java, which illustrates how an application can get
information as an XMLEvent object when using cursor API.

n Event example: The event directory contains EventParse.java, which illustrates how to
use the XMLEventReader (event iterator) API to read an XML �le.

n Filter example: The filter directory contains MyStreamFilter.java, which illustrates
how to use the StAX Stream Filter APIs. In this example, the �lter accepts only
StartElement and EndElement events, and �lters out the remainder of the events.

n Read-and-Write example: The readnwrite directory contains
EventProducerConsumer.java, which illustrates how the StAX producer/consumer
mechanism can be used to simultaneously read and write XML streams.

n Writer example: The writer directory contains CursorWriter.java, which illustrates how
to use XMLStreamWriter to write an XML �le programatically.

Example Code

Chapter 18 • Streaming API for XML 555

All of the StAX examples except for theWriter example use an example XML document,
BookCatalog.xml.

ExampleXMLDocument

The example XML document, BookCatalog.xml, used bymost of the StAX example classes, is a
simple book catalog based on the common BookCatalogue namespace. The contents of
BookCatalog.xml are listed below:

<?xml version="1.0" encoding="UTF-8"?>
<BookCatalogue xmlns="http://www.publishing.org">

<Book>

<Title>Yogasana Vijnana: the Science of Yoga</Title>
<author>Dhirendra Brahmachari</Author>

<Date>1966</Date>

<ISBN>81-40-34319-4</ISBN>
<Publisher>Dhirendra Yoga Publications</Publisher>

<Cost currency="INR">11.50</Cost>

</Book>
<Book>

<Title>The First and Last Freedom</Title>

<Author>J. Krishnamurti</Author>

<Date>1954</Date>

<ISBN>0-06-064831-7</ISBN>

<Publisher>Harper & Row</Publisher>
<Cost currency="USD">2.95</Cost>

</Book>

</BookCatalogue>

Cursor Example

Located in the tut-install/javaeetutorial5/examples/stax/cursor/ directory,
CursorParse.java demonstrates using the StAX cursor API to read an XML document. In the
Cursor example, the application instructs the parser to read the next event in the XML input
stream by calling <code>next()</code>.

Note that <code>next()</code> just returns an integer constant corresponding to underlying
event where the parser is positioned. The application needs to call the relevant function to get
more information related to the underlying event.

You can imagine this approach as a virtual cursormoving across the XML input stream. There
are various accessormethods which can be called when that virtual cursor is at a particular
event.

Stepping throughEvents

In this example, the client application pulls the next event in the XML stream by calling the next
method on the parser; for example:

Example Code

The Java EE 5Tutorial • September 2010 (originally published 2007)556

try {
for (int i = 0 ; i < count ; i++) {
// pass the file name.. all relative entity
// references will be resolved against this as
// base URI.
XMLStreamReader xmlr =
xmlif.createXMLStreamReader(filename,
new FileInputStream(filename));

// when XMLStreamReader is created, it is positioned
// at START_DOCUMENT event.
int eventType = xmlr.getEventType();
printEventType(eventType);
printStartDocument(xmlr);
// check if there are more events in the input stream
while(xmlr.hasNext()) {
eventType = xmlr.next();
printEventType(eventType);
// these functions print the information about
// the particular event by calling the relevant
// function
printStartElement(xmlr);
printEndElement(xmlr);
printText(xmlr);
printPIData(xmlr);
printComment(xmlr);

}
}

}

Note that next just returns an integer constant corresponding to the event underlying the
current cursor location. The application calls the relevant function to get more information
related to the underlying event. There are various accessormethods which can be called when
the cursor is at particular event.

Returning StringRepresentations

Because the nextmethod only returns integers corresponding to underlying event types, you
typically need tomap these integers to string representations of the events; for example:

public final static String getEventTypeString(int eventType) {
switch (eventType) {
case XMLEvent.START_ELEMENT:
return "START_ELEMENT";

case XMLEvent.END_ELEMENT:
return "END_ELEMENT";

case XMLEvent.PROCESSING_INSTRUCTION:
return "PROCESSING_INSTRUCTION";

case XMLEvent.CHARACTERS:
return "CHARACTERS";

case XMLEvent.COMMENT:
return "COMMENT";

case XMLEvent.START_DOCUMENT:
return "START_DOCUMENT";

case XMLEvent.END_DOCUMENT:
return "END_DOCUMENT";

case XMLEvent.ENTITY_REFERENCE:

Example Code

Chapter 18 • Streaming API for XML 557

return "ENTITY_REFERENCE";

case XMLEvent.ATTRIBUTE:

return "ATTRIBUTE";
case XMLEvent.DTD:

return "DTD";

case XMLEvent.CDATA:
return "CDATA";

case XMLEvent.SPACE:

return "SPACE";
}

return "UNKNOWN_EVENT_TYPE , " + eventType;

}

Building andRunning theCursor ExampleUsingNetBeans IDE

Follow these instructions to build and run the Cursor example on your Application Server
instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to the tut-install/javaeetutorial5/examples/stax/
directory.

3. Select the cursor folder.

4. Select the Open asMain Project check box.

5. Click Open Project.

6. In the Projects tab, right-click the cursor project and select Properties. The Project
Properties dialog is displayed.

7. Enter the following in the Arguments �eld:

-x 1 BookCatalog.xml

8. Click OK.

9. Right-click the cursor project and select Run.

Building andRunning theCursor ExampleUsingAnt

To compile and run the Cursor example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/stax/cursor/ directory and type the following:

ant run-cursor

Cursor-to-Event Example

Located in the tut-install/javaeetutorial5/examples/stax/cursor2event/ directory,
CursorApproachEventObject.java demonstrates how to get information returned by an
XMLEvent object even when using the cursor API.

Example Code

The Java EE 5Tutorial • September 2010 (originally published 2007)558

The idea here is that the cursor API’s XMLStreamReader returns integer constants

corresponding to particular events, while the event iterator API’s XMLEventReader returns

immutable and persistent event objects. XMLStreamReader is more e!cient, but

XMLEventReader is easier to use, because all the information related to a particular event is

encapsulated in a returned XMLEvent object. However, the disadvantage of event approach is the

extra overhead of creating objects for every event, which consumes both time andmemory.

With this mind, XMLEventAllocator can be used to get event information as an XMLEvent

object, even when using the cursor API.

Instantiating an XMLEventAllocator

The �rst step is to create a new XMLInputFactory and instantiate an XMLEventAllocator:

XMLInputFactory xmlif = XMLInputFactory.newInstance();

System.out.println("FACTORY: " + xmlif);

xmlif.setEventAllocator(new XMLEventAllocatorImpl());

allocator = xmlif.getEventAllocator();

XMLStreamReader xmlr = xmlif.createXMLStreamReader(filename,

new FileInputStream(filename));

Creating anEvent Iterator

The next step is to create an event iterator:

int eventType = xmlr.getEventType();

while(xmlr.hasNext()){

eventType = xmlr.next();

//Get all "Book" elements as XMLEvent object

if(eventType == XMLStreamConstants.START_ELEMENT &&

xmlr.getLocalName().equals("Book")){

//get immutable XMLEvent

StartElement event = getXMLEvent(xmlr).asStartElement();

System.out.println("EVENT: " + event.toString());

}

}

Creating theAllocatorMethod

The �nal step is to create the XMLEventAllocatormethod:

private static XMLEvent getXMLEvent(XMLStreamReader reader)

throws XMLStreamException {

return allocator.allocate(reader);

}

Example Code

Chapter 18 • Streaming API for XML 559

Building andRunning theCursor-to-Event ExampleUsingNetBeans
IDE

Follow these instructions to build and run the Cursor-to-Event example on your Application
Server instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to the tut-install/javaeetutorial5/examples/stax/
directory.

3. Select the cursor2event folder.

4. Select the Open asMain Project check box.

5. Click Open Project.

6. In the Projects tab, right-click the cursor2event project and select Properties. The Project
Properties dialog is displayed.

7. Enter the following in the Arguments �eld:

BookCatalog.xml

8. Click OK.

9. Right-click the cursor2event project and select Run.

Note how the Book events are returned as strings.

Building andRunning theCursor-to-Event ExampleUsingAnt

To compile and run the Cursor-to-Event example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/stax/cursor2event/ directory and type the
following:

ant run-cursor2event

Event Example

Located in the tut-install/javaeetutorial5/examples/stax/event/ directory,
EventParse.java demonstrates how to use the StAX event API to read an XML document.

Creating an Input Factory

The �rst step is to create a new instance of XMLInputFactory:

XMLInputFactory factory = XMLInputFactory.newInstance();
System.out.println("FACTORY: " + factory);

Creating anEvent Reader

The next step is to create an instance of XMLEventReader:

Example Code

The Java EE 5Tutorial • September 2010 (originally published 2007)560

XMLEventReader r = factory.createXMLEventReader(filename,

new FileInputStream(filename));

Creating anEvent Iterator

The third step is to create an event iterator:

XMLEventReader r = factory.createXMLEventReader(filename,

new FileInputStream(filename));

while(r.hasNext()) {

XMLEvent e = r.nextEvent();

System.out.println(e.toString());
}

Getting the Event Stream

The �nal step is to get the underlying event stream:

public final static String getEventTypeString(int eventType) {

switch (eventType) {
case XMLEvent.START_ELEMENT:

return "START_ELEMENT";

case XMLEvent.END_ELEMENT:
return "END_ELEMENT";

case XMLEvent.PROCESSING_INSTRUCTION:

return "PROCESSING_INSTRUCTION";
case XMLEvent.CHARACTERS:

return "CHARACTERS";

case XMLEvent.COMMENT:

return "COMMENT";

case XMLEvent.START_DOCUMENT:

return "START_DOCUMENT";
case XMLEvent.END_DOCUMENT:

return "END_DOCUMENT";

case XMLEvent.ENTITY_REFERENCE:
return "ENTITY_REFERENCE";

case XMLEvent.ATTRIBUTE:

return "ATTRIBUTE";
case XMLEvent.DTD:

return "DTD";

case XMLEvent.CDATA:
return "CDATA";

case XMLEvent.SPACE:

return "SPACE";

}

return "UNKNOWN_EVENT_TYPE " + "," + eventType;

}

Returning theOutput

When you run the Event example, the EventParse class is compiled, and the XML stream is
parsed as events and returned to STDOUT. For example, an instance of the Author element is
returned as:

Example Code

Chapter 18 • Streaming API for XML 561

<[’http://www.publishing.org’]::Author>

Dhirendra Brahmachari

</[’http://www.publishing.org’]::Author>

Note in this example that the event comprises an opening and closing tag, both of which include

the namespace. The content of the element is returned as a string within the tags.

Similarly, an instance of the Cost element is returned as:

<[’http://www.publishing.org’]::Cost currency=’INR’>

11.50

</[’http://www.publishing.org’]::Cost>

In this case, the currency attribute and value are returned in the opening tag for the event.

Building andRunning the Event ExampleUsingNetBeans IDE

Follow these instructions to build and run the Event example on your Application Server

instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to the tut-install/javaeetutorial5/examples/stax/

directory.

3. Select the event folder.

4. Select the Open asMain Project check box.

5. Click Open Project.

6. In the Projects tab, right-click the event project and select Properties. The Project

Properties dialog is displayed.

7. Enter the following in the Arguments �eld:

BookCatalog.xml

8. Click OK.

9. Right-click the event project and select Run.

Building andRunning the Event ExampleUsingAnt

To compile and run the Event example using Ant, in a terminal window, go to the

tut-install/javaeetutorial5/examples/stax/event/ directory and type the following:

ant run-event

Example Code

The Java EE 5Tutorial • September 2010 (originally published 2007)562

Filter Example

Located in the tut-install/javaeetutorial5/examples/stax/filter/ directory,
MyStreamFilter.java demonstrates how to use the StAX stream �lter API to �lter out events
not needed by your application. In this example, the parser �lters out all events except
StartElement and EndElement.

Implementing the StreamFilter Class

The MyStreamFilter class implements javax.xml.stream.StreamFilter:

public class MyStreamFilter
implements javax.xml.stream.StreamFilter {

Creating an Input Factory

The next step is to create an instance of XMLInputFactory. In this case, various properties are
also set on the factory:

XMLInputFactory xmlif = null ;
try {
xmlif = XMLInputFactory.newInstance();
xmlif.setProperty(
XMLInputFactory.IS_REPLACING_ENTITY_REFERENCES,
Boolean.TRUE);

xmlif.setProperty(
XMLInputFactory.IS_SUPPORTING_EXTERNAL_ENTITIES,
Boolean.FALSE);

xmlif.setProperty(XMLInputFactory.IS_NAMESPACE_AWARE,
Boolean.TRUE);

xmlif.setProperty(XMLInputFactory.IS_COALESCING,
Boolean.TRUE);

} catch (Exception ex) {
ex.printStackTrace();

}
System.out.println("FACTORY: " + xmlif);
System.out.println("filename = "+ filename);

Creating the Filter

The next step is to instantiate a �le input stream and create the stream �lter:

FileInputStream fis = new FileInputStream(filename);

XMLStreamReader xmlr = xmlif.createFilteredReader(
xmlif.createXMLStreamReader(fis), new MyStreamFilter());

int eventType = xmlr.getEventType();
printEventType(eventType);
while(xmlr.hasNext()) {
eventType = xmlr.next();
printEventType(eventType);

Example Code

Chapter 18 • Streaming API for XML 563

printName(xmlr,eventType);

printText(xmlr);

if (xmlr.isStartElement()) {
printAttributes(xmlr);

}

printPIData(xmlr);
System.out.println("-----------------------------");

}

Capturing the Event Stream

The next step is to capture the event stream. This is done in basically the same way as in the
Event example.

Filtering the Stream

The �nal step is to �lter the stream:

public boolean accept(XMLStreamReader reader) {

if (!reader.isStartElement() && !reader.isEndElement())
return false;

else

return true;
}

Returning theOutput

When you run the Filter example, the MyStreamFilter class is compiled, and the XML stream
is parsed as events and returned to STDOUT. For example, an Author event is returned as follows:

EVENT TYPE(1):START_ELEMENT

HAS NAME: Author

HAS NO TEXT
HAS NO ATTRIBUTES

EVENT TYPE(2):END_ELEMENT
HAS NAME: Author

HAS NO TEXT

Similarly, a Cost event is returned as follows:

EVENT TYPE(1):START_ELEMENT

HAS NAME: Cost

HAS NO TEXT

HAS ATTRIBUTES:

ATTRIBUTE-PREFIX:
ATTRIBUTE-NAMESP: null

ATTRIBUTE-NAME: currency

ATTRIBUTE-VALUE: USD
ATTRIBUTE-TYPE: CDATA

Example Code

The Java EE 5Tutorial • September 2010 (originally published 2007)564

EVENT TYPE(2):END_ELEMENT
HAS NAME: Cost
HAS NO TEXT

See “Iterator API” on page 541 and “Reading XML Streams” on page 549 for amore detailed
discussion of StAX event parsing.

Building andRunning the Filter ExampleUsingNetBeans IDE

Follow these instructions to build and run the Filter example on your Application Server
instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to the tut-install/javaeetutorial5/examples/stax/
directory.

3. Select the filter folder.

4. Select the Open asMain Project check box.

5. Click Open Project.

6. In the Projects tab, right-click the filter project and select Properties. The Project
Properties dialog is displayed.

7. Enter the following in the Arguments �eld:

-f BookCatalog.xml

8. Click OK.

9. Right-click the filter project and select Run.

Building andRunning the Filter ExampleUsingAnt

To compile and run the Filter example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/stax/filter/ directory and type the following:

ant run-filter

Read-and-Write Example

Located in the tut-install/javaeetutorial5/examples/stax/readnwrite/ directory,
EventProducerConsumer.java demonstrates how to use a StAX parser simultaneously as both
a producer and a consumer.

The StAX XMLEventWriterAPI extends from the XMLEventConsumer interface, and is referred
to as an event consumer. By contrast, XMLEventReader is an event producer. StAX supports
simultaneous reading and writing, such that it is possible to read from one XML stream
sequentially and simultaneously write to another stream.

Example Code

Chapter 18 • Streaming API for XML 565

The Read-and-Write example shows how the StAX producer/consumermechanism can be
used to read and write simultaneously. This example also shows how a stream can bemodi�ed
and how new events can be added dynamically and then written to a di erent stream.

Creating anEvent Producer/Consumer

The �rst step is to instantiate an event factory and then create an instance of an event
producer/consumer:

XMLEventFactory m_eventFactory = XMLEventFactory.newInstance();

public EventProducerConsumer() {

}

...

try {

EventProducerConsumer ms = new EventProducerConsumer();

XMLEventReader reader =

XMLInputFactory.newInstance().createXMLEventReader(
new java.io.FileInputStream(args[0]));

XMLEventWriter writer =

XMLOutputFactory.newInstance().createXMLEventWriter(
System.out);

Creating an Iterator

The next step is to create an iterator to parse the stream:

while(reader.hasNext()) {

XMLEvent event = (XMLEvent)reader.next();

if (event.getEventType() == event.CHARACTERS) {
writer.add(ms.getNewCharactersEvent(event.asCharacters()));

} else {

writer.add(event);

}
}

writer.flush();

Creating aWriter

The �nal step is to create a streamwriter in the form of a new Character event:

Characters getNewCharactersEvent(Characters event) {

if (event.getData().equalsIgnoreCase("Name1")) {
return m_eventFactory.createCharacters(

Calendar.getInstance().getTime().toString());

}
//else return the same event

else {

return event;
}

}

Example Code

The Java EE 5Tutorial • September 2010 (originally published 2007)566

Returning theOutput

When you run the Read-and-Write example, the EventProducerConsumer class is compiled,
and the XML stream is parsed as events and written back to STDOUT. The output is the contents
of the BookCatalog.xml �le described in “Example XMLDocument” on page 556.

Building andRunning theRead-and-Write ExampleUsingNetBeans
IDE

Follow these instructions to build and run the Read-and-Write example on your Application
Server instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog, navigate to the tut-install/javaeetutorial5/examples/stax/
directory.

3. Select the readnwrite folder.

4. Select the Open asMain Project check box.

5. Click Open Project.

6. In the Projects tab, right-click the readnwrite project and select Properties. The Project
Properties dialog is displayed.

7. Enter the following in the Arguments �eld:

BookCatalog.xml

8. Click OK.

9. Right-click the readnwrite project and select Run.

Building andRunning theRead-and-Write ExampleUsingAnt

To compile and run the Read-and-Write example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/stax/readnwrite/ directory and type the following:

ant run-readnwrite

Writer Example

Located in the tut-install/javaeetutorial5/examples/stax/writer/ directory,
CursorWriter.java demonstrates how to use the StAX cursor API to write an XML stream.

Creating theOutput Factory

The �rst step is to create an instance of XMLOutputFactory:

XMLOutputFactory xof = XMLOutputFactory.newInstance();

Example Code

Chapter 18 • Streaming API for XML 567

Creating a StreamWriter

The next step is to create an instance of XMLStreamWriter:

XMLStreamWriter xtw = null;

Writing the Stream

The �nal step is to write the XML stream. Note that the stream is "ushed and closed after the
�nal EndDocument is written:

xtw = xof.createXMLStreamWriter(new FileWriter(fileName));
xtw.writeComment("all elements here are explicitly in the HTML namespace");
xtw.writeStartDocument("utf-8","1.0");
xtw.setPrefix("html", "http://www.w3.org/TR/REC-html40");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","html");
xtw.writeNamespace("html", "http://www.w3.org/TR/REC-html40");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","head");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","title");
xtw.writeCharacters("Frobnostication");
xtw.writeEndElement();
xtw.writeEndElement();
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","body");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","p");
xtw.writeCharacters("Moved to");
xtw.writeStartElement("http://www.w3.org/TR/REC-html40","a");
xtw.writeAttribute("href","http://frob.com");
xtw.writeCharacters("here");
xtw.writeEndElement();
xtw.writeEndElement();
xtw.writeEndElement();
xtw.writeEndElement();
xtw.writeEndDocument();
xtw.flush();
xtw.close();

Returning theOutput

When you run theWriter example, the CursorWriter class is compiled, and the XML stream is
parsed as events and written to a �le named dist/CursorWriter-Output:

<!--all elements here are explicitly in the HTML namespace-->
<?xml version="1.0" encoding="utf-8"?>
<html:html xmlns:html="http://www.w3.org/TR/REC-html40">
<html:head>
<html:title>Frobnostication</html:title></html:head>
<html:body>
<html:p>Moved to <html:a href="http://frob.com">here</html:a>
</html:p>
</html:body>
</html:html>

In the actual dist/CursorWriter-Output �le, this stream is written without any line breaks; the
breaks have been added here tomake the listing easier to read. In this example, as with the

Example Code

The Java EE 5Tutorial • September 2010 (originally published 2007)568

object stream in the Event example, the namespace pre�x is added to both the opening and
closingHTML tags. Adding this pre�x is not required by the StAX speci�cation, but it is good
practice when the �nal scope of the output stream is not de�nitively known.

Building andRunning theWriter ExampleUsingNetBeans IDE

Follow these instructions to build and run theWriter example on your Application Server
instance using NetBeans IDE.

1. In NetBeans IDE, select File→Open Project.

2. In the Open Project dialog navigate to the tut-install/javaeetutorial5/examples/stax/
directory.

3. Select the writer folder.

4. Select the Open asMain Project check box.

5. Click Open Project.

6. In the Projects tab, right-click the writer project and select Properties. The Project
Properties dialog is displayed.

7. Enter the following in the Arguments �eld:

-f dist/CursorWriter-Output

8. Click OK.

9. Right-click the writer project and select Run.

Building andRunning theWriter ExampleUsingAnt

To compile and run theWriter example using Ant, in a terminal window, go to the
tut-install/javaeetutorial5/examples/stax/writer/ directory and type the following:

ant run-writer

Further Information about StAX
Formore information about StAX, see:

n Java Community Process page:

http://jcp.org/en/jsr/detail?id=173.

n W3CRecommendation “ExtensibleMarkup Language (XML) 1.0”:

http://www.w3.org/TR/REC-xml

n XML Information Set:

http://www.w3.org/TR/xml-infoset/

n W3CRecommendation “Document ObjectModel”:

Further Information about StAX

Chapter 18 • Streaming API for XML 569

http://www.w3.org/DOM/

n SAX “Simple API for XML”:

http://www.saxproject.org/

n DOM“Document ObjectModel”:

http://www.w3.org/

TR/2002/WD-DOM-Level-3-Core-20020409/core.html#ID-B63ED1A3

n W3CRecommendation “Namespaces in XML”:

http://www.w3.org/TR/REC-xml-names/

For some useful articles about working with StAX, see:

n Je Ryan, “Does StAX Belong in Your XMLToolbox?”:

http://www.developer.com/

xml/article.php/3397691/Does-StAX-Belong-in-Your-XML-Toolbox.htm

n Elliotte Rusty Harold, “An Introduction to StAX”:

http://www.xml.com/pub/a/2003/09/17/stax.html

Further Information about StAX

The Java EE 5Tutorial • September 2010 (originally published 2007)570

