File Mover

The File Mover utility, previously named "Data Mover," will be used in Pre-Production and Production
to copy and move files as follows:

e Copy files from DDE Production to ECE Pre-Production for parallel testing.
e In ECE Production, temporarily move files as LOBs work on moving inputs that currently point to
DDE to instead point to ECE.

File Mover Components

The File Mover utility comprises the following components:

Component Description

A daemon process that monitors filesystem events and uses user-
defined rules to determine when a set of files is ready to be copied.

abfsmon When a set of files is ready to be copied, abfsmon generates a copy
batch file for that set. The copy batch file lists the files and other details
needed by downstream file-copy jobs.

Processes a given copy batch file, copying data files and optionally

file mover.plan
= copying or creating trigger files.

For each generated copy batch file, you must create a corresponding
Control Center dispatcher job definition. These dispatcher jobs run the
file mover.plan whenever a file appears matching the naming
pattern specified in the given copy batch file.

Dispatcher job

abfsmon Syntax and Usage

This section describes abfsmon syntax, and provides usage instructions, examples, and notes.

abfsmon Syntax

abfsmon [-h] [--error-file <filename>] [--log-file <filename>]
[--list-period <seconds>] [--update-timeout <seconds]
[--wait-for-unlock] [--daemon]

[--logging-level {CRITICAL | ERROR | WARNING | INFO | DEBUG}]
<list directory> <config file>

Positional arguments

<list_directory> Directory in which copy batch files and state information is written.

Name of a configuration file that contains a list of watched directories and

G matching patterns. For more information, see abfsmon .config File.

Optional arguments

--error-file <filename> Error messages filename.
--log-file <filename> Log filename.
--list-period <seconds> Period in seconds to use for grouping copy batches.

Time in seconds to wait without modification before

—-update-timeout <seconas> designating a file as ready for copying.

--wait-for-unlock Check for the release of . lock files before copying.
--daemon Run as a daemon.

--logging-level {CRITICAL | ERROR |

WARNING | INFO | DEBUG} Level of detail to capture in the log file.

Automatically restart abfsmon after an unexpected

--automatic-restart .
failure.

abfsmon .config File

The abfsmon command requires an input .config file in which you specify the following information:

e The directories to watch for newly created files.

The filename patterns to match when generating the list of files to copy.

How to determine when a file is no longer being written and is ready to be copied.
Whether the the file is a regular file or an mfile.

Whether a trigger file should be created alongside the copied file.

The specific layout of the . config file varies slightly depending on the kind of processing you want to
perform. In general though, each line of a given .config file will contain |-delimited fields carrying the
required information. For more information, see the Examples later in this chapter.

Determining When a File is Ready to be Copied

Every file to be copied will match a filename and directory pattern in the .config file. There are two
different ways that you can configure abfsmon to determine when a file is ready to be copied:

1. The most reliable way is to wait for a small trigger file to be created after the data file has been

written.

2. Alternatively, if the upstream process does not create a trigger file, you can use the
update_ timeout option to tell abfsmon to list a file for copying once it has received no updates
for some amount of time.

More About Trigger Files

In cases where the upstream process creates trigger files, entries in the .config file will take the
following form:

<trigger file name pattern>|<data file name template>|<watch directory>|[file | mfile]

A regular expression pattern for the trigger filename. The pattern
language is Perl-like and is compiled using the Python re
module. The main difference between standard Perl and the

<trigger_file_name_pattern> syntax used here is that the | operator character is not allowed in
the pattern because this is used as the .config file field
delimiter. This pattern should generally include capturing groups
to be used in the <data_file_name_template>.

A template that will be expanded based on the match object
created when <trigger_file_name_pattern> finds a match.

<data_file_name_template> Capturing groups appearing in <trigger_file_name_pattern> are
referenced using typical regular expression backreference
notation (for example, \ 1, \2).

<watch_directory> The full path to the directory in which the files are being created.
[file |mfile] Specifies whether the file is a standard file or a multifile.
Examples
Example 1

In this first example, we watch for a file named like YYYYMMDD data filename.dat, which will be
uploaded to the directory /data/incoming. We know that, as soon as the upload is complete, the
job sending this file will send a 0 byte file correspondingly named

YYYYMMDD data_ filename.dat.trg.

One way of specifying this in the .config file would be as follows:
(.* data_filename\.dat)\.trg$|\1l|/data/incoming|file
In the <trigger_file_name_pattern field, a capturing group (indicated by the parenthesis), surrounds the

part of the name that will match the data file. The <data_file_name_template> simply uses a
backreference to that capturing group to name the corresponding data file.

Example 2

As a second example, we watch for a data file named like

dependent data filel YYYYMMDD.dat. This file will be created by a complicated graph job that
writes many files. We may not know exactly when the data file that we are interested in will be done
being written, but we do know that the complex job will write a small file named like

complex job YYYYMMDD.complete when it has finished. We can wait until that . complete file is
created to start copying.

To do this, one approach would be to specify the following in the .config file:
complex job (.*).complete$|dependent data filel \l.dat|/data/complex job workdir|mfile

With this approach, most of the trigger filename is unrelated to the data filename, but we still need to
make certain that we match the date part of the name. Otherwise, we could be copying a data file from
the wrong day. We surround the date part of <trigger_file_name_pattern> with a capturing group and
reference back to that group with the backreference notation \1 in the <data_file_name_template>.

An alternative approach for this example is to use the update timeout parameter. In this approach,
when a trigger file is unavailable, you can use update timeout to tell abfsmon to wait until a data
file has not received any new data for some specified amount of time. The update-timeout
parameter controls how many seconds abfsmon should wait without seeing updates.

To use this approach, the .config entry would be as follows:

|<data file name pattern>|<watch directory>|[file | mfile]

This is the same syntax as for the trigger entry, except that now the <trigger_file_name_pattern> field is
left empty, and the second field should be a regular expression matching the data filename instead of a
template used for resolving it.

Added Triggers

Sometimes abfsmon may be watching a file that does not have a corresponding trigger file, but the
downstream process reading the data file that the File Mover copies expects to see a trigger file. In this
situation, abfsmon can create a trigger file alongside the copied data file after it copies the data file to
its target.

To enable this behavior, you must append a special field to the regular .config entry for the watched
file. In this case, the entry would take the following form:

|<data file name pattern>|<watch directory>|<file or mfile>|<add trigger extension>

where <add_trigger_extension> is a file extension to append to the name of the data file.

When a file is configured in the manner, the downstream copying component will create a file alongside
the copy target, using a name like the following:

data file name.dat.trg

where 'trg' is the value found in the <add _trigger_extension> field.

Usage Notes

Note the following:

e Name patterns are used to match the basename of a file and should not include the directory part
of any paths.

e Name patterns must be specific enough to not include other files that might be created. For
example, when describing a pattern, is a good idea to include a '$' at the end of the pattern to
match the end of a string. Without such a delimiter, it is easy to inadvertently match lock files,
control files, and suchlike that should not be copied, but have similar names to data files; for
example, filename.dat.mfctl.

e Using the watched file approach to determining whether a multifile is complete can be problematic
and is not recommended. This is because a multifile is really a group of files, and in certain data
processing scenarios it is relatively easy for some data partition files to finish writing long before
other data partition files receive any data. This makes the "safe-to-copy" <update_timeout>
dependent on details of a particular graph and the enironment(s) that it runs in. In the most
problematic scenarios (which are not difficult to construct), the required <update_timeout> becomes
proportional to a data partition's processing time or data volume — for example, the difference in
data volume for partion 0 and partition 1.

Running abfsmon
Notes on Running:

e |t is expected that only one instance of abfsmon will run for a given <list_directory>. abfsmon self-
enforces this when it starts up by creating a pid lock file in the <list_directory>. If such a file already
exists, then abfsmon concludes that another instance of abfsmon is already using the
<list_directory>.

e |fthe .pid lock file is somehow left in place due to a failure, but abfsmon is no longer running,
then it will be necessary to delete the . pid file before abfsmon will start. Typically, if a failure does

happen, the .pid file will be removed gracefully.

e When running as a daemon, abfsmon can be cleanly shutdown by sending it a SIGTERM signal; for

example:

kill “cat listdir/abfsmon.pid”

If it is not running as a daemon, then it should respond to a Control-C keyboard interrupt.

Event Processing

abfsmon processes events in the following order:

1. Process file any queued CREATE events:
o Any trigger file CREATE events are immediately added to the current copy batch.
o Any watched file CREATE events are added to a list of watched files.
2. Process watched files:
o If abfsmon time greater than <update_timeout> has elapsed for any watched file, the mtime for
that file is updated.
o For any files that have an mtime older than update_timeout:
» |f wait_for_unlock has been set and a corresponding .lock file exists, then do nothing.
= Otherwise, add the watched file to the current copy batch

3. Release copy batch:
o If «<list_period> has been exceeded, create a copy batch file listing files to be copied
4. Repeat.

The abfsmon copy batch File

The copy batch file is how abfsmon notifies downstream components that files are ready to be
copied.

While a copy batch is still in use by abfsmon — that is, while copy batch is still having files added to it
— copy entries will be stored in a file in <list_directory> using the following naming convention:

filelist-YYYYMMDD-HH24MISS
where the timestamp corresponds to the time that the batch was created.

Once the batch file is no longer in use by abfsmon and entries are ready for copying by the
downstream components, the copy batch file is renamed to have a . 1st extension:

filelist-YYYYMMDD-HH24MISS.1lst

Entries in the copy batch file are formatted as follows:

<directory name>|<data file name>|<copy method>|<trigger file name>

where <copy_method> will be one of the following:

T Triggered data files.
N Watched data files.

A Watched data files that require a new trigger file be created upon copying.

In the cases of the T or A copy methods, <trigger_file_name> will name the trigger file that is to be
copied or created, respectively.

abfsmon Logging

Log output generated by abfsmon is sent two files that configured by the command line arguments:

¢ ——error-file <error file>
¢ —-log-file <log file>

Any error or warning messages will go to the <error_file>. The <log_file> will receive the same error
messages as the <error_file>, and can be configured to include more detailed messages using the
logging-level command-line argument:

--logging-level [CRITICAL|ERROR|WARNING |INFO |DEBUG]

The default logging level is INFO, which is generally enough information to capture the most interesting
events.

Because these log files can grow large, the abfsmon logger will automatically rotate them at midnight,
renaming log file.logto log file.log.1l, log file.log.1lto log file.log.2, and so
forth.

Failure Recovery

What happens if abfsmon unexpectedly fails?

If abfsmon unexpectedly fails, it will attempt to save its current state in . state files that are located in
<list_directory>. During such controlled, albeit unexpected, shutdowns, abfsmon performs the
following steps:

Writes a snapshot for each <watch_directory> to disk.

Writes a list of any yet unhandled CREATE events to disk as pending events.
Writes a list of any watched files to disk.

Releases the current copy batch for copy.

hon -

5. Releases the pid file lock.

What happens when abfsmon restarts after failure?

When abfsmon starts, it looks in <list_directory> for .state files from any previous runs. If it finds any
such files, it then peforms the following recovery actions:

1. Begins listening for CREATE events in each <watch_directory>.
2. Handles watched files' previous states:
o Reads previous state for watched files.
Adds any previously watched files to the current watch list.
Immediately processes watched files as would be done in the normal event processing loop.
Removes the associated .state files.
3. Processes <watch_directory> snapshots:
o If a directory's current mtime has not changed since the last run, assume any creation events
associated with this directory are already accounted for in the pending events set.
o Any files currently listed in a <watch_directory> that do not appear in the snapshot are added to
the pending events set.
4. Adds previously saved pending events to the pending events set.
5. Adds any CREATE events that occurred during the current run of abfsmon to the pending events
set.
6. Processes pending events:
o A deduped set of pending events is handled as would normally be done for CREATE events
during ordinary event processing.
o Removes the associated .state file.

o

o

o

What is automatic restart?

You can instruct abfsmon to automatically relaunch with the same configuration after an unexpected
failure. For this to happen, the failure needs to be have been handled in such a way that a controlled
shutdown was possible.

So, for example, a controlled shutdown would not happen if abfsmon is sent SIGKILL, or if a failure
occurs that is severe enough to break abfsmon's more general exception handling machinery.

The restart feature has been shown to help in mitigating recoverable failures caused by unexpected or
unhandled temporary environmental conditions. A hypothetical (though not necessarily existing)
example of such a situation would be an unhandled failure in listing a multifile due to a short-lived and
temporary networking issue. Such a failure would likely lead abfsmon into a controlled, but
unexpected, shutdown. However, upon automatic restart, it would likely continue without problems.

Control Center Dispatcher Jobs

You must create a Control Center dispatcher job that will be triggered whenever anew filelist-
YYYYMMDD-HH24MISS. 1st file appears in the <list_directory>. The dispatcher job will run a
corresponding file_mover.plan with the appropriate input parameters.

For more information about dispatcher jobs, see the Control Center documentation.

file_mover.plan

The file mover.plan performs the actual file copying work, takes the following input parameters:

The pathtoa filelist-YYYMMDD-HH24MISS.1lst copy batch file

FILE LIST NAME
- - created by abfsmon.

DESTINATION_ HOST The name of the host that files will be copied to.
SOURCE_HOST The name of the host that files will be copied from.

SRC_TO DST MAP The path to a .map file used to configure “file_mover.plan'.

Of these, FILE _LIST NAME will vary, and should be provided by the Control Center dispatcher job.
The rest will generally be fixed.

.map File Format
The .map file that is used by file mover.plan takes the following form:
<source directory>|[file | mfile]|<target directory>|[file | mfile]

The <directory_name> listed in a copy batch file is matched to a <source_directory> in the .map file in
order to determine the <target_directory> for copying.

The [file | mfile] fields exist for historical reasons, but do not change the behavior of the plan. It is
expected that the source and target are either both £ile or both mfile. For multifiles, the source and
target must be of the same depth.

